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Abstract—In this paper, a stochastic optimization framework
is developed to reduce congestion on distribution feeders using
batteries, under offline and online design paradigms. Our design
is customized, implemented, tested, and analyzed in a real-world
testbed that was built based on a university-utility collaboration
in California. Our proposed method seeks to optimize peak load
at the feeder while taking into account feeder load uncertainty as
well as hardware, utility, and customer constraints. We present
both experimental and numerical results. Insightful observations,
design trade-offs, and lessons learned are discussed.
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I. INTRODUCTION

Power distribution feeders are designed to support certain
peak loads that can occur at any given time. However, if the
average load is low compared to the peak load, then the feeder
will be overbuilt to accommodate the peak. In fact, having a
high peak load but for a short duration of time can force the
utility to upgrade a feeder that would in most situations be
under loaded. This sort of feeder upgrade could be costly, and
therefore could be eliminated or postponed [1].

One can reduce the peak-to-average-ratio on a feeder by
carefully planning to turn the local loads on and off [2], but
in many cases the loads are not time shiftable. In this situation,
energy storage, both stationary [3], and mobile such as electric
vehicles [4], can be used to stabilize the system, offset the load,
and keep the peak-to-average-ratio low. One can also combine
energy storage and other customer-side resources so as to have
certain customers act as microgrids [5].

The storage on the customer side can charge when the feeder
load is low, and discharge when it is high, reducing the total
peak. However, any such arrangement will require customers
to have communication with the utility and be able to adjust
their load to relieve stress on the grid during these peak load
times. Of course, the utility could also improve this situation
by carefully choosing the time-of-use and rate structures [6].

In this paper, we show how the above idea can work in
practice on a utility-scale testbed that is built and operated
through a university-utility collaboration in Riverside, Cali-
fornia. First, we provide a detailed overview of the testbed
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Fig. 1. The energy resources at the University of California at Riverside’s
CE-CERT microgrid. From left to right and top to bottom: battery racks,
battery connections, battery inverter, solar panel inverters, and EV chargers.
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Fig. 2. The CE-CERT microgrid is served by Feeder #1224 at Hunter Sub-
station. A secured web-based communication infrastructure provides minute-
by-minute access to RPU’s data acquisition system for this feeder.

and its electrical layout, energy components, and near real-
time interactions with the utility’s Supervisory Control and
Data Acquisition (SCADA) system. Second, we analyze and
characterize historical load data for a target feeder and identify
the challenges, opportunities, and the needs for a battery-
assisted distribution feeder peak load reduction system. Third,
we provide an optimization-based framework to operate the
batteries in the testbed, considering both offline and online
designs and various design objectives and constraints. Finally,
we present experimental and numerical results from the testbed
and report several insightful and interesting observations.

II. OVERVIEW OF UTILITY-SCALE TEST SYSTEM

The site of this utility-scale project is in Riverside, Cali-
fornia. This project is based on a collaboration between the
University of California at Riverside (UCR) and Riverside
Public Utilities (RPU). The batteries are located on-site at the
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Fig. 3. The electrical layout of building #1200 at CE-CERT facility.

College of Engineering Center for Environmental Research
and Technology (CE-CERT). The batteries are grouped into
two 500 kWh modules, where each module is served by a 100
kW grid-connected inverter. Other on-site distributed energy
resources (DERs) at CE-CERT include three solar arrays at
260 kW, 100 kW, and 100 kW nominal generation capacities,
and four level-2 electric vehicle (EV) chargers, see Fig. 1.

CE-CERT is served through the 12 kV Feeder #1224 on
RPU’s 69 kV Hunter Capital Station, see Fig. 2. The service
area for RPU spans 82 square miles. It serves electricity to over
107,000 metered electric customers in City of Riverside. In
total, RPU has 14 substations on its subtransmissions system.
The RPU historical peak demand is 612 MW that was recorded
on September 16, 2014 during a summer heat wave.

There are three buildings at CE-CERT that are served by
three separate 277/480 VAC transformers. Of interest in this
project is building # 1200, where all batteries and one 100
kW solar panel are currently installed. The electric layout of
this building is shown in Fig. 3. The total energy and power
ratings of the available batteries are 1 MWh and 200 kW.

Our goal is to do feeder-level peak-load shaving by opti-
mally operating battery resources at CE-CERT’s microgrid.

RPU and CE-CERT are collaborating to explore the impact
that customer power resources could have on the feeder. To fa-
cilitate this goal, RPU has provided CE-CERT with a datalink
from its SCADA system through a secured communications
line1. The following values are obtained for Feeder #1224 on a
minute-by-minute basis: Neutral Amps, Active Power, Reactive
Power, Average Phase Current, Apparent Power, and Voltage.

Of particular interest to this project is the data on active
power, i.e., the feeder’s load profile. Examples of such load
profile are shown in Fig. 4 for the days of May 3-5, 2015.
We can see that there is a major difference between the
load profile on weekdays and weekends. Similar trends are
observed in other weeks and months. Since the peak load is
low on weekends, our focus in this project is to analyze the
load profiles on weekdays. For the two sample load profiles on
weekdays in Fig. 4, the peak loads are at 2.85 MW and occured
at 1:55PM and 2:05PM. We can make two observations here:

• First, the peak often does not last long, which means even
a relatively small energy storage might be able to make
a noticeable impact on the peak load at the feeder.

1The authors would like to thank Alan Woodcock, Alan Lee, Ed Sponsler,
and Alex Vu for their help in establishing the communications line.
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Fig. 4. Sample load profiles of Feeder #1224 from Sunday 5/3/2015 to
Tuesday 5/5/2015. The load profile is different on weekdays versus weekends.
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Fig. 5. The distribution of peak load hour at Feeder #1224 and its comparison
with RPU’s system-wide peak load hours: (a) winter; (b) summer.

• Second, the peak load at the feeder level for Feeder #1224
at Hunter substation does not coincide with the typical
peak hours that are identified by RPU for its overall
system load. As a result, RPU’s existing demand response
programs that are set to curtail the load during peak hours
do not contribute to peak load shaving at Feeder #1224.

The second issue above is better understood by examining
the feeder load profiles over several months and comparing
them with RPU’s seasonal peak hours. The results are shown
in Fig. 5. The analysis of the Summer peak is based on the data
from June 1, 2015 to September 30, 2015; and the analysis of
the Winter Peak is based on the data from March 12, 2015 to
May 30, 2015 and October 1, 2015 to October 11, 2015. We
can see that typical Winter peak hour at Feeder #1224 is very
different from the typical peak hour across the RPU system.
This could be due to the fact that Feeder #1224 is connected
to mostly commercial buildings, where the peak load almost
always occurs during business hours. This further confirms the
goal of our project to conduct peak load reduction at feeder-
level through a localized solution, rather than a system-wide
solution. It also shows the conflict between the best ways to
run the battery as a financial asset at CE-CERT to lower its
own electricity bill versus the best ways to run the battery to
contribute to feeder-level peak load reduction.
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III. OPTIMAL BATTERY OPERATION

Throughout this section, we assume that the charge and
discharge schedules of the batteries can be controlled on
intervals of length 15 minutes. That is, to avoid excessive
use of batteries, we may not switch from a charge cycle to a
discharge cycle or vise versa in a time period earlier than 15
minutes. Accordingly, time is divided into time slots of length
15 minutes. The charge and discharge status of the batteries
at time slot τ is denoted by x[τ ], where τ can take a number
between 1 to 96 to span an entire day. We also denote the
average load at time slot τ by l[τ ], where l[τ ] = 1

15

∑15
t=1 l(t).

Here, l(t) is the feeder load at minute t, matching the time
resolution in RPU’s SCADA system. Both l[τ ] and l(t) are
random variables. In contrast, x[τ ] is a decision variable.

A. Offline Optimization

In this paper, we refer to a design as offline, if the decisions
on charging and discharging are made once at the beginning
of each day based on historical data and such decisions are
not updated as more data becomes available during the day.
Since our approach is optimization-based, next, we separately
discuss the objective function(s) and the constraints.

1) Objective Function: The primary goal of this project is
to exploit CE-CERT batteries for peak load reduction at Feeder
#1224. Nevertheless, we note that there are three distinct
objectives that one could take into account while formulating
an optimization problem in the context of this paper:

• Feeder Peak Load
• Battery Health and Longevity
• Customer Utility Bill

Next, we start off by formulating an objective function that
addresses the primary goal of minimizing the feeder peak load:

minimize
x

max
1≤τ≤96

E{l[τ ] + x[τ ]}, (1)

where E denotes mathematical expectation. Here, we seek
to minimize the maximum feeder load, i.e., the peak load
across all 96 time slots during the day. Note that, x[τ ] takes
a positive value if we charge the battery and a negative value
if we discharge the battery. The expected value is calculated
based on historical data by applying a weighted average to
the past 10 weekdays, i.e., the past two weeks. The weights
are selected proportional to the cross-correlation among the
seasonal historical data on different days, as shown in Fig. 6.

Due to the use of max function, there are infinite solutions
to problem (1), however, to improve battery health, we would
like to narrow down the solution space to include only those
solutions in which the battery is exercised as little as possible.
To this end, we can add a new term to the objective function:

minimize
x

max
1≤τ≤96

E{l[τ ] + x[τ ]}+ ε

96∑
τ=1

|x[τ ]|, (2)

where ε is a small positive number. The second term is to
penalize any battery activity, whether charging or discharging.
If we increase ε, then it starts creating a trade-off between
peak-load reduction and battery health considerations.
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Fig. 6. The correlation of any weekday to weekdays over the past two weeks.

Finally, we can combine the objectives on feeder peak load
reduction and customer utility bill reduction as follows2:

minimize
x

max
1≤τ≤96

E{l[τ ] + x[τ ]}+ ε1
∑

On-Peak

x[τ ]

+ε2
∑

Mid-Peak

x[τ ],
(3)

where ε1 > ε2 > 0. The new terms tend to penalize
charging during on-peak and mid-peak hours. They act as
knobs to control the trade-off between lowering CE-CERT’s
own electricity bill versus reducing peak load at feeder-level.
Note that, one may choose ε1/ε2 equal to the ratio of the
electricity prices during on-peak hours and mid-peak hours.

2) Constraints: Several constraints need to be considered in
order to assure proper operation of the battery systems. Some
of these constraints are imposed by physical systems, while
some others are required due to some operational considera-
tions. Next, we mathematically model different constraints.

Let SoC[τ ] denote the state-of-charge at the end of time slot
τ . We can model the changes in state-of-charge as follows:

SoC[τ ] = SoC[τ − 1] + x[τ ]/4 τ = 1, . . . , 96, (4)

where SoC[0] denotes the initial state-of-charge at the be-
ginning of the day. The second term is the energy that is
charged into or drawn from the battery during the time slot. It
is obtained by dividing charging or discharging power x[τ ] in
kW by four, which is the number of time slots in each hour.

For the model in (4), we implicitly assumed that the batteries
are ideal. Next, suppose σ ≤ 1 and δ ≥ 1 denote the charge
efficiency and discharge efficiency parameters of the batteries,
respectively. Under ideal efficiency, we have δ = σ = 1. We
can capture the impact of non-ideal efficiency as follows:

SoC[τ ] = SoC[τ − 1] + σxc[τ ]/4− δxd[τ ]/4, ∀τ, (5)

where xc[τ ] ≥ 0 is the scheduled charge rate and xd[τ ] ≥ 0
is the scheduled discharge rate. The following constraints can

2The fixed, i.e., uncontrollable, part of the CE-CERT load is not considered
in the optimization objective because it does not have impact on the solution.
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capture the relationship between x[τ ], xc[τ ], and xd[τ ]:

x[τ ] = xc[τ ]− xd[τ ] (6)
0 ≤ xc[τ ] ≤ θ[τ ]xmax (7)

0 ≤ xd[τ ] ≤ (1− θ[τ ])xmax, (8)

where θ[τ ] is an auxiliary binary variable and xmax is the
maximum charge and discharge rate of the battery inverters.
Since θ[τ ] takes only 0 or 1, it can force the batteries to be
either charging (θ = 0) or discharging (θ = 1), but not both.

Another constraint is about the charge and discharge rates:

−xmax ≤ x[τ ] ≤ xmax, ∀τ. (9)

For the battery inverters at CE-CERT, xmax = 200 kW.
In practice, the state-of-charge for batteries should be kept

within certain ranges that assure the health of the battery:

Cmin ≤ SoC[τ ] ≤ Cmax ∀τ, (10)

where 0 ≤ Cmin ≤ Cmax ≤ C full. For the batteries at CE-
CERT, we have Cmin=0.2, Cmax=0.9, and C full=1 MWh.

Recall from Section III.A. that the considerations with
respect to reducing the customer utility bill could be addressed
by adding the two new terms into the objective function in (4).
However, one may still want to restrict the charging of the
batteries to hours other than RPU’s system-wide peak-hours.
This can be achieved by imposing the following constraints:

x[τ ] ≤ 0 ∀τ ∈ Peak Hours. (11)

Finally, we may enforce the following constraint to keep
the state-of-charge at the end of each day to always be above
a minimum level to assure energy availability:

SoCmin ≤ SoC[96], (12)

where SoCmin ≥ Cmin is a design parameter.

B. Online Optimization

In an online design, the charge and discharge schedules are
updated as more data becomes available during the day. To
do so, we propose to replace the expected values in (1)-(3)
with conditional expected values, where the conditions are
with respect to the new data that becomes available during
the day. For example, suppose we are at time slot κ, where
κ = 1, . . . , 96. Accordingly, we know the realizations of
random variables l[1], . . . , l[κ−1]. We have also already imple-
mented the charge and discharge schedules x[1], . . . , x[κ−1].
Next, we want to select the charge and discharge schedules
x[κ], . . . , x[96]. We still need to obtain the expected values
of l[κ], . . . , l[96], but subject to observations l[1], . . . , l[τ −1].
Mathematically, we can rewrite (1) as follows:

minimize
x

max
κ≤τ≤96

E{l[τ ] + x[τ ] | l[1], ..., l[κ− 1]}. (13)

The objective functions in (2) and (3) can be reformulated
similarly. For κ = 1, the objective function in (13) reduces to
(1). However, the two formulations are different for κ > 1.

The online optimization method works as follows. Initially,
i.e., right after midnight, the charge and discharge schedule
is set according to the solution of problem (1). Then, at 15

minutes past midnight, the charge and discharge schedule is
updated for the remaining 95 time slots based on the solution
of problem (13) for κ = 1. After that, at 30 minutes past
midnight, the charge and discharge schedule is updated for
the remaining 94 time slots based on the solution of problem
(13) for κ = 2. This process continues throughout the day.

We use cross-correlation to calculate conditional expected
values. At each time slot τ , we obtain the cross-correlation
between l[1], . . . , l[κ] and the feeder load during the same
time frame on a previous day. The historical data from such
previous day is included in the calculation of the expected
value only if the correlation is above a threshold τth = 0.75.

Last but not least, please note that the choices of constraints
are not different for our proposed online and offline designs.

IV. EXPERIMENTAL AND NUMERICAL RESULTS

A. Experimental Results

The experimental results for implementing the proposed
design at the CE-CERT / RPU test site are shown in Figs.
7 and 8. Here, the operation of the batteries at CE-CERT was
scheduled during the whole day on November 2, 2015 based
on the optimal solution of problem (1), subject to equations
(4), (9), (10), (11), and (12). The optimization was done in
an offline fashion, i.e., the charge and discharge schedule was
decided right before mid-night and it was not altered during
the day. From the results in Fig. 7, our proposed design was
able to reduce the peak-load on the feeder by 97 kW, which is
very promising considering the relatively small power rating
of the battery inverters and also the randomness in feeder load.

As for the results in Fig. 8, we can make some interesting
observations. First, the SoC for the second battery suddenly
droped to Cmin at 4 PM. This is due to the nature of Lithium
Ion batteries and the way the Battery Management System
(BMS) operates. Unless the battery is fully charged or fully
discharged, the SoC that the BMS reports is an estimation.
Without regular calibration, the reported and actual SoC can
drift apart over time. At Event 1, the true SoC was much
lower than what the BMS reported. As the battery reached a
very low SoC, the BMS was able to recalibrate, updating the
value. Since the SoC was lowered to below Cmin, the battery
then stopped discharging. Therefore, in practice, the SoC must
be carefully calculated and the drift must be accounted for.

The second observation is about the gradually increasing
difference between the experimental SoC and the analytical
SoC. This is due to the non-ideal efficiency of the battery
and inverter. This leads to the SoC slowly drifting downward
throughout the day. This can be taken into account by using
the system efficiency constraints in (5)-(8) in the optimization.

B. Numerical Results

The experimental results in the previous section are promis-
ing and show how the proposed approach can result in
reducing the peak load at distribution feeder. However, in order
to make solid conclusions about the proposed schemes, one
needs to conduct similar experiments for several weeks and
months and also for different choices of objective functions
and constraints. While this is what we intend to ultimately do
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Fig. 7. Experimental result for peak feeder-load reduction on 11/2/2015.
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Fig. 8. Experimental results for operation of two battery modules on
11/2/2015: (a) charge and discharge powers; (b) state-of-charge.

in this project in the future, at this point, we can still benefit
from conducting numerical studies based on the historical
SCADA data that RPU has collected at Feeder #1224.

The results are shown in Fig. 9. Here, we compare nine
different design combinations. On one hand, a design can be
offline, online, or ideal. An ideal design is when we know the
feeder load profile in advance, which serves as an upper-bound
on the best performance possible. On the other hand, a design
can be based on the different objective in (1), (2), or (3). Next,
we summarize multiple interesting observations that we made.

First, an online design outperforms an offline design. This is
because an online design makes corrective actions in operating
the batteries. Recall from Section III.B. that such corrective
actions are made systematically within the framework of con-
ditional expectation and cross-correlation analysis. Therefore,
statistically, we expect better results for an online design once
we implement it in the experiment in Section IV.A.

Second, the resource bottleneck is the power rating of the
inverters, but not the energy rating of the batteries. This is
because almost always, the ideal design could reduce the
feeder peak load by 200 kW. The only exception was one
single day in Summer when the peak time lasted for multiple
hours and the energy rating of the battery became binding as
well. Therefore, it is safe to argue that we can significantly
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Fig. 9. Comparing different methods in reducing the feeder peak load.

increase the peak load shaving capability of the batteries at
CE-CERT if we only upgrade the grid-connected inverters.

Third, the Summer peak reduction is more than the Winter
peak reduction. Due to the conflict between the system- and
feeder-level peak hours, see Fig. 5, the constraints in (11) are
more restrictive in Winter. In contrast, in Summer, the peak
system load and the peak feeder load coincide, allowing the
battery to be utilized more freely for feeder peak load shaving.

V. CONCLUSIONS

An analytical stochastic optimization framework together
with experimental and numerical results from a utility-scale
testbed were presented to design, implement, and test the idea
of conducting peak load reduction at a distribution feeder using
batteries. Both offline and online optimization approaches
were discussed. The latter resulted in better peak load reduc-
tion as it takes better advantage of a minute-by-minute data
stream from the feeder’s SCADA system to the battery system
controller. It was also shown that the feeder peak load and
the utility-defined peak hours may not be aligned, confirming
the need for a localized solution for feeder-level peak load
reduction, rather than a system-wide solution. The real-world
experiment of the design platform showed considerable reduc-
tion of the feeder peak. It also showed many operational issues
that were not foreseen in the numerical analysis, such as the
need to carefully calibrate BMS state-of-charge estimates and
to take into account operational efficiency/SoC drift.
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