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• We covered measuring voltage and current in the previous chapters, 
whether through RMS representation (Chapter 2), phasor representation 
(Chapter 3), and raw waveform representation (Chapter 4). 

• In this chapter, we will discuss measuring power and energy. 

• This is an important topic; because many components in the power grid 
are currently monitored based only on measuring their power and energy 
consumption/generation, such as the load of most utility customers. 

• Further, there are some smart grid components that are characterized 
only (or primarily) based on their power and energy characteristics. 

• Further, there are smart grid applications that only use power and energy 
measurements, even if voltage and current measurements are available.
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• Therefore, it is important to know: 

1) How power and energy are measured; 

2) How the measurements of power and energy can be 
used in various smart grid applications, either when they 
are the only type of available measurements or when they 
are available together with other types of measurements.
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• In this chapter, we discuss the fundamentals of measuring power and 
energy and several applications of power and energy measurements.
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• The instrument to measure electric power is the wattmeter.

• Recall from Section 1.2.4 in Chapter 1 that the instantaneous power is 
obtained by multiplying voltage and current. In an analog wattmeter, this 
multiplication is done implicitly by using a current coil that is connected in 
series to the circuit, the top coil in Figure (a), and a potential coil that is 
connected in parallel to the circuit, the bottom coil in Figure (a).
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• In a digital wattmeter, the multiplication is done rather explicitly, by 
measuring voltage using a voltmeter subsystem and measuring current 
using an ammeter subsystem, then conducting the multiplication. 

• The symbol for wattmeters may not always show its internal sub-
systems, such as the symbol in Figure (b) on the previous slide.

• Depending on the current rating of the wattmeter and the voltage rating 
of the wattmeter, we may need to use CTs to step down current and/or PTs 
to step down voltage to the levels that work for the wattmeter.

Hamed Mohsenian-Rad Chapter 5: Power and Energy Measurements and Their Applications



5.1. Measuring Power

Cambridge University Press  9

• Example 5.1: Consider the voltage and current waveforms in Example 
3.1 in Chapter 3. Recall that we have:

• The instantaneous power that is delivered to the load is obtained as

• The above instantaneous power waveform is purely sinusoidal. Its 
frequency is 120 Hz, which is twice the frequency of 𝑣(𝑡) and 𝑖(𝑡).
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𝑣 𝑡 = 120 2 cos 𝜔𝑡

𝑖 𝑡 = 1.63 2 cos 𝜔𝑡 − 0.7532

𝑝 𝑡 = 𝑣(𝑡) 𝑖(𝑡)

= 391.2 cos 𝜔𝑡 cos 𝜔𝑡 − 0.7532

= 142.69 + 195.6 cos 2𝜔𝑡 − 0.7532 .
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• Example 5.1 (Cont.): Next, consider the voltage and current waveforms 
in Example 4.1 in Chapter 4. Recall that 𝑣 𝑡 is the same but we have:

• The instantaneous power that is delivered to the load is obtained as

• The above instantaneous power waveform is non-sinusoidal but 
periodic, and its frequency is again 120 Hz.
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𝑖 𝑡 = 1.60 2 cos(𝜔𝑡 − 0.7532)

+ 0.27 2 cos(3𝜔𝑡 − 0.4323)

+ 0.15 2 cos(5𝜔𝑡 + 3.3058).

𝑝 𝑡 = 𝑣(𝑡) 𝑖(𝑡)

= 384 cos 𝜔𝑡 cos 𝜔𝑡 − 0.7532
+ 64.8 cos 𝜔𝑡 cos 3𝜔𝑡 − 0.4323
+36 cos 𝜔𝑡 cos 5𝜔𝑡 + 3.3058 .
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• Example 5.1 (Cont.): The instantaneous power waveforms in these two 
examples are shown below. Note that, in both examples, 𝑝(𝑡) has 
negative values at certain sub-intervals. This is due to the partly inductive 
(and partly resistive) nature of the motor load in both examples.
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5.1.1. Active Power 

• Measuring instantaneous power is rarely of practical use. A wattmeter 
rather reports the average of the instantaneous power across one or 
multiple cycles, i.e., it measures active power; see (1.21) in Chapter 1:
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where 𝑇 = 1/𝑓. In Example 5.1, we 
have 𝑃 = 142.7 𝑊 for the 
instantaneous power in the first case; 
and 𝑃 = 140.1 𝑊 in the second case.

𝑃
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5.1.1. Active Power 

• In practice, the average power itself varies over time. This happens due 
to the changes in current and/or voltage waveforms. Here is an example.
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5.1.1. Active Power 

• The voltage waveform does not change in this example. But there are 
changes in the current waveform. The average power changes accordingly.
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5.1.1. Active Power 

Relationship to Voltage and Current Phasors

• Under steady-state conditions, the active power can be obtained for 
purely sinusoidal voltage and current waveforms based on the voltage 
and current phasor measurements, see (1.22) in Chapter 1:

where the voltage phasor measurement is denoted by and the 
current phasor measurement is denoted by          . 
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5.1.1. Active Power 

Relationship to Voltage and Current Phasors

• We can also obtain the average power for voltage and current waveforms 
that contain steady-state harmonic distortions based on the voltage and 
current harmonic phasor measurements; see Section 4.1.1 in Chapter 4:

where at each harmonic order ℎ, the voltage harmonic phasor 
measurement is denoted by and the current harmonic 
phasor measurement is denoted by              .
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5.1.1. Active Power 

Reporting Rate

• The reporting interval of wattmeters is often much longer than one AC 
cycle; therefore, active power is averaged across several cycles. 

• Power measurements are typically reported once every few seconds to 
once every few minutes (e.g., every five minutes or every 15 minutes).

• Example 5.2: The figure on the next slide shows the power consumption 
measurements based on different reporting rates at a house during a day.

• See the figure on the next slide.
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5.1.1. Active Power 

Reporting Rate

• Example 5.2 (Cont.): 
A higher reporting rate 
is more informative and 
can show more details 
about power usage: (a)
one reading per minute 
[268]; (b) one reading 
per 15 minutes; (c) one 
reading per hour.
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5.1.2. Power Profile 

• It is informative to examine the daily profiles ofn power measurements.

• Figure (a): the daily profile for power consumption at one appliance, 
which is an oven. The appliance operates only once in late afternoon. 

• Figure (b): the daily profile for power consumption at a house. It is 
essentially the aggregation of the power profiles for all appliances.
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5.1.2. Power Profile 

• Figure (c): the daily profile for power consumption at a commercial 
building on a weekday. The load highly increases during business hours. 

• Figure (d): the daily profile for power generation at a solar power 
generation unit during a partially cloudy day. Power generation varies due 
to the variations in solar irradiance and the movement of the clouds.
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5.1.2. Power Profile 

• Figure (e): the daily profile for a mix of power consumption and power 
generation at a commercial building with on-site solar power generation. 
The building acts as a load at night and as a generator during the day. 

• Figure (f): the daily profile for power generation at a wind turbine, which 
varies based on weather conditions and the direction and speed of wind. 
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5.1.2. Power Profile 

• Figure (g): the daily profile based on the charge and discharge cycles of 
a grid-connected battery energy storage system. 

• Figure (h): the daily profile for the power flow at a power distribution 
line. The variations are due to the changes in the load of the feeder.
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5.1.2. Power Profile

Load Factor

• Given a power consumption profile, its load factor is obtained as: 

• For example, if the peak load and the average load of a customer 
during a day is 4 kW and 1.6 kW, respectively, then the customer’s load 
factor is 2.5. Load factor indicates how balanced (over time) the load 
power profile is during a given time-period of interest. 

• Load factor of 1 means a flat load profile.
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• The (traditional) instrument to measure reactive power is a varmeter. 

• Given the measurements of active power (from a wattmeter) and 
reactive power (from varmeter), one can calculate power factor. 

• However, to increase accuracy, a separate electromechanical 
instrument, called a power factor meter, is used to measure power factor. 

• These instrumentation distinctions are of concern mainly in 
electromechanical instruments. A single digital sensor is often capable 
of serving as a wattmeter, a varmeter, and a power factor meter. 
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Relationship to Voltage and Current Phasors

• Both reactive power and power factor are primarily defined based on 
purely sinusoidal voltage and current waveforms under steady-state
conditions; see Section 5.2.3 for the non-sinusoidal case. 

• From (1.25) in Chapter 1 we have:
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Relationship to Voltage and Current Phasors

• If the voltage or current waveforms are distorted, i.e., not purely 
sinusoidal, then the common approach is to obtain 𝑄 and 𝑃𝐹 based on 
the fundamental components of the voltage and current waveforms:

where              and             are the phasors of the fundamental 
components of the voltage and the current waveforms, respectively. 

• There is also an alternative approach to work directly with the distorted 
voltage or current waveform that we will see in Section 5.2.3.
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Relationship to Voltage and Current Phasors

• In Example 5.1 (Slide 10), we have:

Therefore, the fundamental component of the current waveform is

1.60 2 cos(𝜔𝑡 − 0.7532). Therefore, we have 𝐼1∠φ = 1.6 ∠ − 0.7532. 
Since the voltage is purely sinusoidal, we have 𝑉1∠𝜃1 = 120∠0.

Therefore, we can obtain: 

𝑄 = 131.3 VAR and  𝑃𝐹 = 0.7295.
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𝑖 𝑡 = 1.60 2 cos(𝜔𝑡 − 0.7532)

+ 0.27 2 cos(3𝜔𝑡 − 0.4323)

+ 0.15 2 cos(5𝜔𝑡 + 3.3058).

1
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5.2.1. Reactive Power and Power Factor Profiles 

• The daily profiles of reactive power and power factor can often reveal 
useful information about the operation of the power system. 

• For instance, recall the events that we had identified in Example 2.9 in 
Chapter 2 in the daily RMS voltage and current profiles at a power 
distribution feeder. The voltage profile is copied here for your reference:

Distribution
Substation

Grid

𝑉rms
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5.2.1. Reactive Power and Power Factor Profiles 

• Similar (or additional) information can be extracted also from the daily 
reactive power profile or daily power factor profile. 

• Example 5.3: The daily reactive power load profile on the same day and 
at the same feeder as in Example 2.9 in Chapter 2 is shown below.
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5.2.1. Reactive Power and Power Factor Profiles 

• Example 5.3 (Cont.): The daily power factor profile is also shown below.

• The causes for events 3 and 7 are now clear. At event 3, there is a sudden 
increase in the power factor of the feeder (due to the supply of reactive 
power by turning on a capacitor bank on the feeder). At event 7, there is a 
sudden decrease in power factor (due to turning off the capacitor bank). 
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5.2.2. Apparent Power 

• Apparent power can be measured in different ways: 

- Measuring the RMS voltage (voltmeter) and RMS current (ammeter):

- Measuring active power (wattmeter) and reactive power (varmeter):

- Measuring active power (wattmeter) and power factor (power factor 
meter) as well measuring reactive power (varmeter) and power factor: 
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5.2.3. True Power Factor 

• If the voltage or current waveforms are distorted, then one option is to 
define power factor based on the fundamental component of the distorted 
voltage or current. We already saw this definition on Slide 28: 

• The above is often referred to as the displacement power factor (DPF).

• We can also measure the true power factor (TPF), which is obtained as:

Average Power

𝑉rms 𝐼rms
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5.2.3. True Power Factor 

• Example 5.4: Consider the voltage and current waveforms in Example 4.1 
in Chapter 4. Recall that the current waveform is distorted. We have:

• The average power in this example is P = 140.1 W. Therefore, we have:

• We can see that TPF is smaller than DPF, which is 0.7295 in this example.
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5.2.3. True Power Factor 

• In practice, harmonic distortion is very small in voltage compared to in 
current. Thus, the contribution of the harmonics to the delivery of active 
power is not significant. Thus, it is reasonable to approximate 
and                                           . From these, together with the relationship 
between 𝐼1, 𝐼rms, and THD in (4.6) in Chapter 4, we can derive:

where THD is associated with the current waveform

From the above relationship, we can show that TPF is always less than or 
equal to DPF. If THD = 0, i.e., if there is no distortion, then TPF = DPF.
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5.2.3. True Power Factor 

Distortion Power: There are different ways to define reactive power in 
presence of non-sinusoidal voltage and current signals. 

For example, six different definitions for reactive power in this context 
are surveyed in [270, Section 2.4]. One option is to follow the definition 
of active power on Slide 16 and define reactive power as

The triangular equality does not hold among 𝑆, 𝑃, and 𝑄. In fact, we can 
show that 𝑆2 is always greater than or equal to 𝑃2 + 𝑄2; see Exercise 5.5.
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5.2.3. True Power Factor 

Distortion Power: Therefore, a quantity named distortion power, 
denoted by D, is defined as follows:

which yields the equation 𝑆2 = 𝑃2 + 𝑄2 + 𝐷2. If the voltage and current 
waveforms are purely sinusoidal, then 𝐷 = 0 and 𝑆2 = 𝑃2 + 𝑄2.
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• The instrument to measure electric energy is a watthour meter.

• Energy is measured over a certain time interval by taking the integral 
of instantaneous power on the interval of interest. The time interval 
can be one hour, one day, or one month. For the interval between 
time 𝑡1 and time 𝑡2, energy 𝐸 is calculated as the integral of 
instantaneous power 𝑝(𝑡) from 𝑡 = 𝑡1 to 𝑡 = 𝑡2, as shown below:
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• In a traditional analog watthour meter, the integral is taken implicitly 
by counting the rotations of a metal disc, which is made to rotate at a 
speed proportional to the power passing through the meter. 

• In a digital watthour meter, the integral is calculated explicitly, by 
measuring power and using discrete summation while taking into 
account the sampling rate for accurate computation.

• The unit of measuring 𝐸 is watt hour. 

• For the two scenarios in Example 5.1, the energy that is delivered to 
the motor load over a one-minute interval is obtained as 2.38 Wh and 
2.34 Wh, respectively. The energy that is delivered over a one-hour 
interval is obtained as 142.8 Wh and 140.4 Wh, respectively.
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Reporting Interval: The reporting interval for measuring energy could be 
fixed, or it could vary. This is because the energy measurements can be 
reported in fixed intervals, or they can be reported in fixed increments. 
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5.3.1. Fixed Intervals

• It is typical for energy 
measurements to be 
reported in fixed intervals.

• For instance, suppose the 
minute-by-minute energy 
usage of a building over a 
period of 20 minutes is as 
shown in the Table. 
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5.3.1. Fixed Intervals

• Suppose the watthour meter reports the measurements once every 
five minutes. Figure (a) shows the reported measurements. 

• The location of each arrow indicates when each measurement is 
reported. The number above each arrow indicates the energy 
measurement that is reported by the watthour meter. The amount that 
is reported can vary, but the reporting is done at fixed intervals.

1 4 8

Time (min)

72 3 5 6 9 10 11 12 13 14 15 16 17 18 19 20

2622 W 1397 W 1432 W 3549 W

(a)
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5.3.2. Fixed Increments

• Some watthour meters operate as pulse meters and report energy 
usage in fixed increments. Each pulse corresponds to a certain amount 
of energy in kWh. Accordingly, one can calculate the amount of energy 
usage by counting the number of pulses in an interval of interest. 

• Again, consider the minute-by-minute energy usage on Slide 43. 
Suppose the watthour meter reports the measurements once every 3000 
W, i.e., at fixed increments. Figure (b) shows the reported measurements. 

1 4 8

Time (min)

72 3 5 6 9 10 11 12 13 14 15 16 17 18 19 20

3000 W 3000 W 3000 W

(b)
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5.3.1. Fixed Intervals

• Let us now compare the two graphs on slides 44 and 45. In each case, 
the location of each arrow indicates when each measurement is reported. 

• The number above each arrow indicates the energy measurement that 
is reported by the watthour meter. The amount that is reported in Figure 
(b) is always fixed, but the reporting is done at varying intervals. 

1 4 8

Time (min)

72 3 5 6 9 10 11 12 13 14 15 16 17 18 19 20

1 4 8

Time (min)

72 3 5 6 9 10 11 12 13 14 15 16 17 18 19 20

3000 W 3000 W 3000 W

2622 W 1397 W 1432 W 3549 W

(a)

(b)
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5.3.1. Fixed Intervals

• Notice that, based on the Table of Slide 43:

• The sum of the energy usage during the first 6 minutes is 3000 W. 

• The sum of the energy usage during the next 10 minutes is 3000W. 

• The sum of the energy usage during the last 4 minutes is 3000 W.
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5.3.2. Fixed Increments

• Recall from Figure (e) on Slide 21 in Section 5.1.2 that a building with 
behind-the-meter solar power generation sometimes acts as a power 
consumer and at other times acts as a power producer. 

• The consumers who also produce and share surplus energy with the 
power grid are often referred to as prosumers; e.g., see [271–273].
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5.3.3. Net Energy Metering and Feed-In Energy Metering

• Measuring energy for prosumers can be done in two different ways. 

• One option is net energy metering (NEM). 

• In this option, energy measurement is bidirectional. 

• Energy measurement is positive when energy is consumed by the 
prosumer; and it is negative when energy is produced by the prosumer. 

• Energy measurements from NEM can be used to bill prosumers. In this 
scenario, when the prosumer acts as an energy “producer”, it is credited 
by the utility for its excess energy generation at the same price that the 
it is charged for its energy consumption when it acts as a “consumer”.



5.3. Measuring Energy

Cambridge University Press  50Hamed Mohsenian-Rad Chapter 5: Power and Energy Measurements and Their Applications

5.3.3. Net Energy Metering and Feed-In Energy Metering

• Another option is feed-in energy metering (FIEM). 

• In this option, energy measurement is unidirectional; energy usage is 
measured separately, and energy generation is also measured separately. 

• This option often requires using two watthour meters, one to measure 
energy usage and one to measure energy generation. The second watthour 
meter is installed at the local source of energy generation. 

• FIEM can be used to bill prosumers based on Feed-in Tariffs (FIT). 

• In this billing scenario, the prosumer is credited by the utility for its excess 
energy generation at a price that is different from the price that the 
prosumer is charged for its energy consumption; e.g., see [275].
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5.3.3. Net Energy Metering and Feed-In Energy Metering

• Example 5.5: A prosumer consumes 298.7 kWh energy during one day. 
On that same day, this prosumer generates 384.1 kWh solar energy. 

First, suppose the prosumer is charged at 12 ¢/kWh for its energy usage 
and it is credited at the same price for its energy generation. By using net 
energy metering, this prosumer is credited (384.1−298.7)×0.12 = $10.25. 

Next, suppose the prosumer is charged at 12 ¢/kWh for its energy usage 
and it is credited at 27 ¢//kWh for its energy generation [276]. By using 
feed-in energy metering, this prosumer is credited 
384.1×0.27−298.7×0.12 = $67.86. In this example, an FIT pays more than 
the retail electricity rate for renewable power generation; which is 
intended to provide incentives to consumers to install solar panels.
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• Electric meters are watthour meters that are used by utilities to 
measure the amount of electric energy consumed by a customer, such as 
a residence or a business, for billing purposes. 

• Traditionally, electric meters have been read manually by the utility 
personnel, once per billing period, such as one every month.

• The next generation of electric meters are called “smart meters”. 

• Smart meters are digital energy meters that record customer energy 
usage much more frequently, such as once every 15 minutes, and may 
they also provide near real-time automated meter reading (AMR) to the 
utility, through a two-way communications infrastructure.
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• Smart meters record not only the energy usage but also the time and 
date of energy usage (i.e., they provide time-stamped energy usage). This 
is in sharp contrast to traditional mechanical meters that record only the 
incremental electricity usage and do not record the time or date of usage. 

• In addition to measuring energy usage, some smart meters also 
measure RMS voltage, RMS current, power factor, and power quality.

• Greater clarity on their consumption behavior for customer

• Helping the utility with enhanced system monitoring and the ability to 
implement different billing mechanisms, such as time-of-use pricing.

• Smart meters are a widely deployed smart grid technology to date. 
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5.4.1. Price-Based Demand Response

• Demand response (DR) programs enable consumers to reduce their 
electricity usage during peak periods, or shift part of their usage to off-
peak periods, in response to time-of-use rates or other financial incentives. 

• Two categories of DR programs: 1) price-based; and 2) incentive-based. 

• Smart meters enable DR programs in both categories.

• In this section, we discuss the use of smart meters to facilitate price-
based DR. We will discuss incentive-based DR in Section 5.4.2.
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5.4.1. Price-Based Demand Response

• Time-of-Use Pricing: Traditionally, utility customers have been charged 
with flat rates. If a flat rate is used, then all its usage during a given period 
of time, such as a monthly billing cycle, is charged with the same rate. 

• For instance, if the flat rate is 12 ¢/kWh, and the customer’s usage is 914 
kWh in one month, then this customer is charged 914 × 0.12 = $109.68. 

• It does not matter at what time during the day or night the energy was 
consumed. It also does not matter whether the energy consumption 
occurred during weekdays or weekends. The rate is the same in all cases. 
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5.4.1. Price-Based Demand Response

• Time-of-Use Pricing (Cont.): However, flat rates do not reflect the 
variations in the cost of electricity generation, such as the higher cost of 
generation during peak demand hours [279].

• Smart meters can keep track of the energy usage during different times 
of a day and different days of a week. Therefore, they can facilitate billing 
customers based on time-of-use (ToU) pricing. 

• Under a ToU rate plan, price of electricity varies depending on the time 
of day, day of week, and season. Prices are higher during peak demand 
hours and lower during low demand hours.
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5.4.1. Price-Based Demand Response

• Time-of-Use Pricing (Cont.): Here are the rates for a real-world 
example for ToU prices that was used by a utility in California [280]:

• On-Peak Hours: 10.33 ¢/kWh
• Mid-Peak Hours: 8.28 ¢/kWh
• Off-Peak Hours: 7.27 ¢/kWh.

• Notice that the price of electricity is 42% higher during on-peak hours 
compared to the prices during the off-peak hours. 
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5.4.1. Price-Based Demand Response

• Figures (a) and (b) show the on-peak, mid-peak, and off-peak hours for 
this utility during winter and during summer, respectively.

12 AM 8 AM 5 PM 9 PM 12 AM

12 AM 8 AM 12 PM 6 PM 10 PM 12 AM

Off Mid On Off

Off Mid On Mid Off

(a)

(b)
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5.4.1. Price-Based Demand Response

• Example 5.6: Suppose the hourly electricity usage of a utility customer 
is reported by a smart meter during a day in summer, as shown below:

• The customer is charged based on the ToU rates on slides 59 and 60. 
The energy use of this customer during the on-peak hours is 12.173 kWh, 
which is the sum of its hourly usages at hours 13, 14, 15, 16, 17, and 18. 
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5.4.1. Price-Based Demand Response

• Example 5.6 (Cont.): The energy usage during the mid-peak hours is 
10.608 kWh. The energy usage during the off-peak hours is 6.321 kWh. 
Based on the information on Slides 59 and 60, the energy usage charges 
during different periods of the day are obtained as follows:

• Accordingly, the total energy usage charge to this customer during this 
day is obtained as $2.60 dollars, i.e., the sum of the above numbers.
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5.4.1. Price-Based Demand Response

• Time-Shiftable Loads: ToU pricing encourages customers to shift their 
energy use from on-peak hours to off-peak or mid-peak hours. 

• If customers have energy usage that can be shifted from peak hours to 
off-peak hours, then they can reduce their energy bill.

• Example 5.7: An electric vehicle (EV) is parked at home and plugged in 
to an EV Charger from 4:00 PM till 6:00 AM. This EV needs 75 kWh to be 
charged. The rate of charge is 7.7 kW and the charge efficiency is 95%. 
Accordingly, this EV needs to be charged for

• (75/0.95)/7.7 = 10.25 hours, i.e., 10 hours and 15 minutes.
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5.4.1. Price-Based Demand Response

• Example 5.7 (Cont.): If the customer 
is charged for its energy usage at a 
flat rate, then it is natural  for the 
customer to start charging as soon as 
the EV is plugged in. In this scenario, 
the EV is charged from 4:00 PM till 
2:15 AM; see Figure (a).

However, if the customer is charged for its energy usage based on ToU
rates, then the customer can schedule charging the EV to lower its cost.
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5.4.1. Price-Based Demand Response

• Example 5.7 (Cont.): If the customer is charged for its energy usage at
a flat rate, then it is natural  
for the customer to start 
charging as soon as the EV is 
plugged in. In this scenario, 
the EV is charged from 4:00 
PM till 2:15 AM; see Figure (a). 
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5.4.1. Price-Based Demand Response

• Example 5.7 (Cont.): Suppose the ToU rates are 10.33 ¢/kWh, 8.28 
¢/kWh, and 7.27 ¢/kWh during the on-peak, mid-peak, and off-peak 
hours, respectively. Suppose the on-peak, mid-peak, and off-peak
hours are as in the top figure on 
Slide 60, which indicates operation 
during the winter. The energy usage 
cost to charge this EV is minimized 
if the charging is scheduled in two 
intervals, first from 4:00 PM till 
5:15 PM, and then from 9:00 PM 
till 6:00 AM; see Figure (b).
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5.4.1. Price-Based Demand Response

• Example 5.7 (Cont.): In this scenario, the EV is charged for one hour 
during the mid-peak period, for 15 minutes during the on-peak period, 
and for nine hours during the off-peak period. This schedule results in

as the total energy usage cost to charge this EV. 

In contrast, if the EV is charged as soon as it is plugged in, then the total 
energy usage cost of charging becomes:
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5.4.1. Price-Based Demand Response

• An EV is a time-shiftable load, also known as a deferrable load. A time-
shiftable load requires a certain amount of energy within a given time 
period; however, the timing of operation is flexible. 

• Other examples of time-shiftable loads include various home appliances 
such as washing machines, dryers, and dishwashers [281, 282], water 
heaters [283], industrial equipment in process control and manufacturing 
[284, 285], batch processes in data centers and computer servers [286], 
irrigation pumps [287], and swimming pools [288]. 

• Some time-shiftable loads are interruptable, meaning that their operation 
can be interrupted and then later resumed; such as in the case of charging 
EVs as we saw in Example 5.7. Some time-shiftable loads are 
uninterruptable, such as some industrial processes, e.g., see [289].
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5.4.1. Price-Based Demand Response

• Price Elasticity of Demand: The detailed measurements from smart 
meters can help evaluate the impacts of ToU prices in reducing peak load. 

• An example is shown below based on the analysis in [290], which is based 
on different pilot projects. The key parameter here is the ratio between the 
price during on-peak hours and the price during off-peak hours. 
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5.4.1. Price-Based Demand Response

• Price Elasticity of Demand (Cont.): In general, a higher ratio is more 
forceful to encourage customers to shift their load to off-peak hours; thus 
contributing to reducing the overall peak load in the power system. 

• The curve is the result of an approximate curve fitting to the points in the 
figure. The curve shows the price-elasticity of the demand. It shows how 
much load shifting, and thus peak-load reduction, can be achieved by using 
different levels of the price ratio between the on-peak and off-peak hours.



5.4. Smart Meters and Their Applications

Cambridge University Press  71Hamed Mohsenian-Rad Chapter 5: Power and Energy Measurements and Their Applications

5.4.1. Price-Based Demand Response

• Other Pricing Methods: Smart meters can also facilitate using other 
types of pricing methods in price-based demand response. 

• One example is peak-load pricing, which requires customers to pay 
peak-load charges, also known as demand charges, based upon their 
highest amount of power consumption during any given time interval, 
typically 15 minutes, during the  billing period. 

• Another example is real-time pricing. It requires the customers to be 
charged for their electricity usage based on the price of electricity in 
wholesale electricity. See Section 7.3.2 in Chapter 7 for a related discussion.
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5.4.2. Incentive-Based Demand Response

• In incentive-based demand response, customers receive financial 
incentives for their participation in the DR program. 

• Their participation is rather explicit because they are expected to reduce 
their load upon receiving a notification from the utility. In other words, 
customers are paid to be available to reduce their demand when needed, 
i.e., when they are informed that a demand response event has occured. 

• DR events occur occasionally, such as 5–10 times a year. They take place 
at times when wholesale electricity market prices are high or when the 
reliability in the power system is jeopardized. 

• The amount of incentive payments to a customer depends on how much 
the customer is capable of reducing its load when a DR event occurs.
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5.4.2. Incentive-Based Demand Response

• Baseline Calculation: Once a customer that is enrolled to an 
incentive-based DR program receives the notification for a DR event, 
it must curtail its load accordingly. 

• However, it is not easy to calculate how much curtailment the 
customer actually makes in response to the DR event. The process of 
making such a calculation is called baseline calculation. 

• The key in baseline calculation is to compare the load of the customer 
with a baseline load, also known as the “business as usual” load, which 
is the load that the customer would have in case the customer had not 
responded to the DR event.
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5.4.2. Incentive-Based Demand Response

• Baseline Calculation (Cont.): An illustrative example is shown below. The 
DR event occurs at 10:25 AM. It lasts for four hours, ending at 2:25 PM.

It is clear that the customer did respond to the DR event. However, due to 
its inherent volatility, the customer’s load fluctuates during the DR event. 
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5.4.2. Incentive-Based Demand Response

• Baseline Calculation (Cont.): To evaluate the customer’s 
performance during the DR event, we need to figure out how much 
of the customer’s new load was the result of its curtailment efforts, 
and how much was due to its normal load variations. 

• Therefore, it is necessary to establish a baseline load profile for the 
duration of the DR event, as shown in the figure. 

• On the previous slide, Δ𝑃 is meant to indicate the actual curtailment in 
the customer’s load during the DR event.
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5.4.2. Incentive-Based Demand Response

• Baseline calculation is done often by examining the load of the 
customer over the past few days, i.e., over the baseline window. 

• In this regard, the baseline window is defined as the window of time 
prior to the DR event, typically a number of days, over which the 
customer load data is collected in order to establish the baseline. 

• A common choice in practice for the baseline window is the previous 10 
(non-event) business days [291]. Using a 10-day time window is considered 
an appropriate choice because it is short enough to account for near-term 
trends and long enough to limit opportunities for gaming the system [292].
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5.4.2. Incentive-Based Demand Response

• High 5 of 10 Method: A class of baseline calculation methods look 
only at a few highest load days within the baseline window. 

• For example, in the “High 5 of 10” method, baseline is calculated based 
only on the five days, out of the 10 days in the baseline window, that have 
the highest average load for the corresponding duration of the DR event. 

• The other five days are excluded from baseline calculation [291].
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5.4.2. Incentive-Based Demand Response

• Example 5.8: Consider a customer that is enrolled in an incentive-
based DR program. Suppose a DR event occurs at 1:15 PM and lasts for 
90 minutes. It ends at 2:45 PM. Table below provides the average power
usage of this 
customer during 
15-minute 
intervals from 
1:15 PM till 2:45 
PM over the 
past 15 days.

Yesterday
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5.4.2. Incentive-Based Demand Response

• Example 5.8 (Cont.): After we exclude the four weekends and also the 
day of the previous DR event, we obtain the baseline window which 
includes the following ten days: 1, 2, 3, 4, 8, 9, 10, 11, 14, 15. 

• Next, consider the average power usage across all of the six intervals, 
i.e., the number on the second to the last column. The following five 
days have the highest average power usage within the baseline 
window: 1, 9, 10, 11, and 14. Accordingly, we can obtain the baseline as
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5.4.2. Incentive-Based Demand Response

• Example 5.8 (Cont.): Suppose the load of this customer during the DR 
event period of interest is as follows:

• By subtracting the above numbers from the corresponding numbers 
on the previous slide, we estimate that the customer curtailed 19 kW, 
19 kW, 17 kW, 16 kW, 18 kW, and 17 kW at intervals 1–6, respectively.
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5.4.2. Incentive-Based Demand Response

• Other Baseline Calculation Methods: It is generally preferred to have 
a baseline calculation method that is simple and therefore easy to 
understand by the customer. However, given the challenges in 
calculating the baseline load profile, there are also many advanced 
methods that use statistical and machine learning techniques to 
calculate baseline load profiles, e.g., see [293–296]. 

• Of course, in all these methods, ultimately the key to success is having 
access to detailed power and energy usage data, i.e., the type of 
measurements which are provided by smart meters.
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5.4.3. Energy Usage Clustering

• The load profiles that are obtained by smart meters can be used by 
utilities to do customer energy usage clustering, also known as usage 
segmentation, i.e., classifying customers based on their load profiles 
[297, 298]. The results can be used, for example, to calculate 
baselines in demand response programs, see Section 5.4.1; or to 
enhance accuracy in load forecasting, e.g., see [299–301].
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5.4.3. Energy Usage Clustering

• k-Means Clustering: Classification of load profiles can be done by 
using techniques such as k-means clustering. 

• As an example, consider the n = 9 hourly load profiles in the figure 
below that are reported by nine smart meters on the same day. 
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5.4.3. Energy Usage Clustering

• k-Means Clustering: Classification of load profiles can be done by 
using techniques such as k-means clustering. 

• As an example, consider 
the 𝑛 = 9 hourly load 
profiles in the figure that 
are reported by nine smart 
meters on the same day. 

• We seek to divide these 
nine load profiles into 
𝑘 = 2 clusters, based on 
their similarities.
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5.4.3. Energy Usage Clustering

• k-Means Clustering (Cont.): The first step is to introduce adequate 
features to quantitatively represent each load profile. Suppose we 
define two features for each load profile:

• Feature 1: Peak-to-average magnitude divided by 3.
• Feature 2: Peak-time hour divided by 24.

• The features are normalized by 3 and 24 in order to take values 
around the same range. For instance, for the first load profile, the 
peak-to-average magnitude is 2.3472 and the peak hour is 14; thus, 
Feature 1 is 0.7824 and Feature 2 is 0.5833. 
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5.4.3. Energy Usage Clustering

• k-Means Clustering (Cont.): The features of all nine load profiles 
that we saw in the figure on Slide 84 are given in the table below.
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5.4.3. Energy Usage Clustering

• k-Means Clustering (Cont.): Let 𝐱𝑖 denote the 2 × 1 vector of features 
for load profile 𝑖, that is:

• We seek to partition 𝑛 = 9 load profiles into 𝑘 = 2 sets, denoted by 𝑆1
and 𝑆2, so as to minimize the within-cluster sum-of-squares:

where 𝝁𝑆1and 𝝁𝑆2denote the average vectors of set 𝑆1 and set 𝑆2. 



5.4. Smart Meters and Their Applications

Cambridge University Press  88Hamed Mohsenian-Rad Chapter 5: Power and Energy Measurements and Their Applications

5.4.3. Energy Usage Clustering

• k-Means Clustering (Cont.): Once we apply the k-means clustering 
method to the features in the table on Slide 86, we can classify the 
nine load profiles into the following two sets:

• The corresponding average vectors for the two clusters are obtained as

• The within-cluster sum-of-squares is 0.0881 and 0.1125, respectively.
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5.4.3. Energy Usage Clustering

• k-Means Clustering (Cont.): The proper choice of features is critical 
in order to have an effective clustering. In fact, feature extraction and 
feature selection often require statistical characterization of the load 
profiles and also considering external factors; e.g., see [302].

• The above classification method that is based on clustering is 
considered an unsupervised learning method in the field of machine 
learning. Here, we do not need to first manually label a few training 
samples into set 𝑆1 or set 𝑆2. In contrast, in classification methods that 
are based on supervised learning; we must do prior manual labeling. 
An example for supervised learning is classification based on support 
vector machines; see Section 3.7.2 in Chapter 3 for more details.
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5.4.3. Energy Usage Clustering

• Baseline Calculation by Using Load Clustering: Recall from Section 
5.4.2 that the baseline for a customer that participates in an incentive-
based DR program is to look at the recent load of that same customer.  
Alternatively, one can calculate the baseline by looking at the recent 
load of not only the customer in question itself but also the other similar 
customers. This can be done by using customer clustering. 

• For instance, suppose we would like to calculate the baseline for 
Customer #1. From Slide 88, the load profile of this customer is classified 
to be in set S1. Thus, we may calculate the baseline for Customer #1 by 
looking at the recent load of not only Customer #1, but also Customers 
#3, #4, #5, and #9, since they belong to the same class of loads. In this 
option, we can select the five days with the highest average power 
usage based on the load of all five of these customers [291].
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5.4.4. Other Applications of Smart Meter Measurements 

• Besides what we have discussed so far, smart meter 
measurements may support many other smart grid applications. 
Next, we briefly discuss some of those applications.

• Remote Service Connection and Disconnection: In addition to the 
ability to read the smart meter measurements remotely, utilities can 
also remotely connect or disconnect service through smart meters, 
without the need to send their crew to the customer location [303].
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5.4.4. Other Applications of Smart Meter Measurements 

• Outage Notification and Outage Management: Many smart 
metering systems offer a “last gasp” message transmission capability 
to tell the utility that the customer has lost power. 

• Therefore, unlike in traditional metering systems, the customer no 
longer needs to call the utility to report the outage. 

• The outage notification is sent by the smart meter when it detects a 
zero voltage event lasting more than a programmed period of time [304]. 

• The outage notifications that are sent by the group of affected smart 
meters can also help the utility’s Outage Management System (OMS) to 
properly respond to outage conditions, such as by helping to identify the 
approximate location of the fault that may have caused the outage [305].
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5.4.4. Other Applications of Smart Meter Measurements 

• Electricity Theft Detection: Non-technical losses, i.e., losses due to 
electricity theft, account for billions of dollars of revenue loss for utilities 
around the world as individuals may tamper with the electric meters to 
slow or stop the accumulation of energy usage [306]. 

• The data from smart meters can be used to detect electricity theft. 

• For example, we may detect electricity theft by detecting abnormal 
energy consumption patterns in the load profile of customers [307]. 

• Another option is to examine the energy losses, i.e., to check the 
balance between the energy that is supplied by the utility transformers 
and the total energy that is consumed by the customers that are served 
by that transformer as reported by the smart meters [308].
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5.4.4. Other Applications of Smart Meter Measurements 

• Identifying Customers with DR Potential: Smart meters are necessary 
to facilitate various demand response programs, as we discussed in 
Sections 5.4.1 and 5.4.2. They can also help identify the customers that are 
good fit to participate in demand response based on their load patterns. 

• This can be done by evaluating factors such as the variability in usage, 
sensitivity of electricity usage to temperature, occupancy status, and 
inter-temporal usage dynamics; see [309–311]. 

• Note that, besides smart meters, other types of sensors can also help 
with the identification and participation of customers in DR programs, 
such as different types of occupancy sensors; see Section 7.2 in Chapter 7.
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5.4.4. Other Applications of Smart Meter Measurements 

• Distribution System State Estimation: The measurements by smart 
meters can help with solving the state estimation problem in distribution 
systems; see [312–315], and also Section 5.9.3.



5.4. Smart Meters and Their Applications

Cambridge University Press  96Hamed Mohsenian-Rad Chapter 5: Power and Energy Measurements and Their Applications

5.4.4. Other Applications of Smart Meter Measurements 

• Topology and Phase Identification: We previously discussed the 
problem of topology identification in power distribution systems in 
Section 4.5.2 in Chapter 4. We also previously discussed the problem 
of phase identification in power distribution systems in Section 2.8.3 
in Chapter 2, and Section 3.6.4 in Chapter 3. 

• Smart meter measurements can help with both applications. 

• For example, see the analysis in [316], where the authors inferred the 
topology of the distribution system from smart meter energy 
measurements. We will discuss the application of smart meter 
measurements in phase identification in Section 5.9.2.
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5.4.4. Other Applications of Smart Meter Measurements 

• Load Modeling and Load Forecasting: Smart meter measurements 
can be used in load modeling, as we will discuss in Section 5.7.1. 

• They can also be used in load forecasting. Load forecasting at the 
customer level can be aggregated to help with the typical system-wide 
operation needs of the utility; they can also be used for the operation 
of a specific substation or a specific distribution feeder [317].
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5.4.4. Other Applications of Smart Meter Measurements 

• Customer Reports: Smart meters provide consumers with greater 
clarity on their electricity bills and also their own consumption behavior. 

• Customer reports can break down the usage of the customer during 
different days and different on-peak, mid-peak, and off-peak hours. 

• Customers may access their detailed load profile on the utility’s website. 

• The customer reports may help the customers identify opportunities 
to reduce their electricity cost, such as by coordinating the operation 
of their programmable communicating thermostats and smart appliances
with the data from smart meters [318].
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• Advanced metering infrastructure (AMI) is an integrated system of 
three main components: smart meters, communications networks, 
and data management systems. These components are shown below. 

• We have already discussed smart meters and their applications in 
the previous sections. In this section, we will briefly discuss the 
communications networks and the data management systems.
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5.5.1. AMI Communications Networks

• The AMI communication system typically includes two basic layers [319]:

• A neighborhood area network (NAN) that provides 
the last-mile communication system between the 
smart meters to meter data collectors.

• A wide area network (WAN) that serves as the backhaul 
communication system between the meter data 
collectors in the field and the head-end system.
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5.5.1. AMI Communications Networks

• Different utilities have different geographical conditions, different 
load densities, and different legacy communication facilities. 

• Therefore, the communication system to be implemented in each 
layer of the AMI system can be different for each utility [319].

• In Europe, power line communication (PLC) is the common choice 
for the communication technology in a NAN. 

• PLC is a wired (as opposed to wireless) communication technology 
that reuses power lines as the media for the purpose of data 
transmission. We will discuss PLC further in Section 6.5 in Chapter 6.

• Also see Section 4.1.2 for a discussion related to PLC. 
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5.5.1. AMI Communications Networks

• In North America, wireless communications are the more popular 
choice for the communication technology in a NAN. 

• Two different architectures are often considered. In the mesh 
architecture, the NAN is in the form of a wireless mesh network (WMN). 
In this architecture, the smart meters that are near the meter data 
collector communicate with the meter data collector directly. However, 
smart meters that are away from the meter data collector use other 
meters as repeaters to communicate with the meter data collector. This 
is due to the short-range communication capability in WMNs, i.e., from 
1 to 5 miles. In the star architecture, all smart meters communicate with 
the meter data collector directly. Different radio frequency (RF) 
technologies are used. RF technologies provide longer-range 
communication capability, i.e., from 5 to 15 miles [319].
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5.5.1. AMI Communications Networks

• Other NAN technologies may include:

• fiber-optic communications, 
• wireless broadband communications, 
• satellite communications (in remote areas).

• The second layer of communications, i.e., the WANs, offer a mix of 
different technologies, such as fiber, microwave, public/private cellular 
networks, and satellite links [320]. In recent years, cellular 
communications have been particularly popular in WANs around the 
world, due to their immediate availability from cellular phone service 
providers. By leveraging the third-party cellular networks, this option 
requires a relatively low capital investment by the utility.
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5.5.2. AMI Data Management Systems

• Meter Data Management System (MDMS) is a database software 
application that interfaces with the AMI head-ends to collect, store, 
and analyze the smart meter readings [321]. 

• MDMS also interfaces with all smart meter applications and other 
smart grid information systems, such as the Consumer Information 
System (CIS), which also includes billing; Geographic Information 
System (GIS); Demand Response Management System (DRMS); 
Distribution Management System (DMS); Distribution Automation 
System (DAS); Outage Management System (OMS); Fault Location 
Isolation and Service Restoration (FLISR); Power Quality Management 
System (PQMS); and Load Forecasting System (LFS) [319].
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5.6.1. Load Disaggregation

• Load disaggregation refers to the problem of extracting the power or 
energy usage of individual appliances from their aggregated power and 
energy usage measurements, such as from the whole-building power or 
energy usage measurements [322]. For instance, consider the load profile 
of a residential customer as shown below, over a period of 30 minutes. 
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5.6.1. Load Disaggregation

• At any point in time, the power consumption of this customer is a 
summation of the power consumption of multiple appliances.

• For example, at point 1  , the total load is the summation of the load of 
the oven, the load of the stove burner, and some other background loads. 

• As another example, at point 2  , the total load is the summation 
of the load of the dishwasher, the load of the refrigerator, and some 
other background (smaller) loads. 

• In load disaggregation, we seek to identify the load of each of these 
major appliances without having direct access to those appliances. 
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5.6.1. Load Disaggregation

• Load disaggregation is a non-intrusive technique to monitor 
appliance-level loads because this technique does not require placing 
sensors on individual appliances in the customer’s property [323]. 

• The alternative is sub-metering, which is an intrusive technique. We 
will discuss sub-metering in Section 5.6.3.

• Applications of load disaggregation may include:

• demand response [324], load forecasting [301], appliance and 
equipment health monitoring [325], and household appliance 
marketing by the utility or third-party businesses [326, 327].
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5.6.1. Load Disaggregation

• Example 5.9: Consider a residential customer whose total power 
usage is measured by a wattmeter. The power usage of this customer’s 
largest loads are known to be as follows:

• Water Heater: 4500 W
• Central Air Conditioning: 3250 W
• Clothes Dryer: 2300
• Dishwasher: 1700 W
• Oven: 1200 W
• Clothes Washer: 800 W.

• If none of the above major appliances and equipment is on, then the 
power usage of this customer is somewhere between 200 W and 500 W.
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5.6.1. Load Disaggregation

• Example 5.9 (Cont.): Based on this information, we want to 
disaggregate the total load of this customer. 

• First, assume that the total power usage of this customer is 
measured at 13.2 kW. In that case, we can conclude that all the major 
loads, except for the clothes washer, are on; and the load of the 
remaining (non-major) appliances is 250 W:
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5.6.1. Load Disaggregation

• Example 5.9 (Cont.): However, if the total power usage is 
measured at 11.7 kW, then there are two possibilities.

Possibility 1) all the major loads, except for the clothes dryer, are on; and 
the load of the remaining (non-major) appliances is 250 W:

Possibility 2) all major loads, except the dishwasher and clothes washer, 
are on; and the load of the remaining (non-major) appliances is 450 W:
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5.6.1. Load Disaggregation

• The basic idea that we examined in Example 5.9 has been considered in 
the literature, in form of a combinatorial optimization to identify which 
combination of appliances can match the total load; e.g., see the binary 
optimization problem formulation in [323]. 

• However, this approach is not always effective and it can be prone to 
uncertain solutions, as we saw in the second case in Example 5.9. 

• We could not decide which option (1 or 2) is correct.
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5.6.1. Load Disaggregation

• Analysis of Load Signatures: Another approach is to identify the 
signatures of different types of appliances, when they switch on or off.

• Accordingly, in this approach, the focus is on load switching events. 

• For instance, again consider the load profile on Slide 109. 

• If we focus on the sharp edges in the total load, they correspond to the 
switching events of the individual appliances. 

• A positive sharp edge indicates that a major appliance switches on; 

• A negative sharp edge indicates that a major appliance switches off.
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5.6.1. Load Disaggregation

• Analysis of Load Signatures (Cont.): Three examples of such events are 
shown below. When the refrigerator switches on, the total load suddenly 
increases by 0.29 kW; see Figure (a). When the stove burner switches on, 
the total load increases by 0.53 kW; see Figure (b). When the oven element 
switches off, then the total load decreases by 2.13 kW; see Figure (c).
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5.6.1. Load Disaggregation

• Analysis of Load Signatures (Cont.): Once we identify which appliance 
switches on at each positive sharp edge and which appliance switches off
at each negative sharp edge, we can identify all the appliances that are 
“on” at any time, thus solving the load aggregation problem.

• The analysis of load signatures during load switching events is in 
principle similar to the analysis of other types of events that we have 
studied throughout this book. For example, we can detect a switching 
event in power measurements by using similar methods that we 
learned for event detection in Section 2.7.2 in Chapter 2.
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5.6.1. Load Disaggregation

• Features - Active and Reactive Power: The changes in the total active 
power and total reactive power are among the most common features 
that are looked at when load disaggregation is done based on the 
analysis of load signatures. Figure below shows the scatter plot for these 
two features for several appliances in a house [328]. The points that are 
due to the switching of the major appliances are marked from 1 to 8.
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5.6.1. Load Disaggregation

• Features - Active and Reactive Power (Cont.): While the smaller loads 
are difficult to distinguish, the larger loads have distinct signatures in the 
active and reactive power measurements that can help identify them. 

• The dehumidifier and the dishwasher have similar active power
consumption, but they have different reactive power consumption.

• This can help distinguish them. 

• Also, the clothes washer and the vacuum cleaner have similar reactive 
power consumption, but they have different active power consumption.

• This can help distinguish them.
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5.6.1. Load Disaggregation

• Features - Instantaneous Power and Harmonics: Instantaneous power 
waveform can serve as another feature in load disaggregation. 

• A few examples are shown below during one cycle of the AC power 
signal at 60 Hz. Recall from Section 1.2.4 in Chapter 1 that the frequency 
of the instantaneous power waveform is twice the frequency of the 
voltage and current waveforms. That is why we see two cycles of the 
instantaneous power waveform within 1/60 Hz = 16.667 msec.
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5.6.1. Load Disaggregation

• Features - Instantaneous Power and Harmonics (Cont.): The shape 
of the instantaneous power waveform is very different among the 
three types of loads that are shown in this figure. 

• If the instantaneous power waveform measurements are available, 
then we can detect when these load types switch on, as soon as we 
notice the presence of these specific instantaneous power waveforms; 
and detect when these load types switch off, as soon as we notice the 
absence of these specific instantaneous power waveforms.
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5.6.1. Load Disaggregation

• Features - Instantaneous Power and Harmonics (Cont.): If 
instantaneous power waveform measurements are not available, then 
we may still use harmonics in current measurements. 

• The induction cooker in the example on Slide 121 generates the 89th 
and 91st harmonics in the current; and the television in that example 
generates the 3rd and 5th harmonics in the current. 

• These additional features can help distinguish different load types that 
have similar active and reactive power consumption. 

• For instance, it is quite possible that two load types have similar active 
power and reactive power signatures; but different harmonic signatures.
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5.6.1. Load Disaggregation

• Features - Time, Day, and Other External Factors: The performance of 
load disaggregation may improve by considering various other features. 

• Time and day might add a factor of likelihood of operation. For example, 
an oven is less likely to be operated at 3:00 AM versus at 6:00 PM. 

• The sequence of operation among appliances can also be considered, 
such as the sequence between the clothes washer and the clothes dryer; 
or some likely sequential operation of certain kitchen appliances [330].
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5.6.2. Net Load Disaggregation

• The increasing penetration of behind-the-meter renewable power 
generation resources, such as rooftop PV resources in residential 
customers, has direct impact on the problem of load disaggregation. The 
reason is that the utility’s meters measure the net aggregate of the 
customer’s load, i.e., the customer’s load minus the customer’s generation.
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• An example is shown in the figure: a 
commercial building with a behind-the-
meter solar power generation unit. What 
the utility measures at its meter is
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• This new paradigm is transforming the traditional load disaggregation 
problem (Section 5.6.1) into the new problem of net load disaggregation.

5.6.2. Net Load Disaggregation

• The net load measurements in 
this example would include the 
inherent impact of the solar 
generation at the building (notice 
the major decrease in the net load 
during the middle of the day). 
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5.6.2. Net Load Disaggregation

• Apart from the initial goal of identifying the appliance-level load of a 
customer, net load metering can also help with estimating the 
customer’s behind-the-meter renewable power generation. 

• This by itself is an important task, in particular, when it comes to 
estimating behind-the-meter solar power generation. This task is often 
referred to as solar generation disaggregation [331, 332].
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5.6.2. Net Load Disaggregation

• The disaggregated
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5.6.2. Net Load Disaggregation

• Two events in form of sudden increases in the net load of the customer 
are marked in Figure (b) with numbers 1 and 2. 

• These two events have two different causes. The first event was caused 
by a sudden increase in the load of the customer, as marked in Figure (c). 

• The second event was caused by a sudden decrease in solar power 
generation, as marked in Figure (d). The sudden decrease in solar power 
generation could be due to cloud passing. Therefore, the variations in 
solar power generation can create their own events in the net load, which 
may not be easy to distinguish from the signature of loads.
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5.6.2. Net Load Disaggregation

• Proxy Measurements: One option to consider in solar generation 
disaggregation, e.g., in [332, 333], is to use proxy measurements. 

• A PV proxy is a PV system that is in a close-by location, and its power 
generation is measured directly. The solar power generation at the PV 
proxy can be used to estimate the solar power generation portion of a 
net load at the location where we need net load disaggregation.
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5.6.2. Net Load Disaggregation

• Proxy Measurements (Cont.): For example, consider the PV on Slide 
128. Another PV is located about two miles away from this customer, as 
shown in Figure (a), and its solar power generation is measured directly. 

• Therefore, this other PV system can be used as a PV proxy. Figure (b) 
shows the solar power generation at the original PV system and also at 
the solar power generation at the proxy PV system.
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5.6.2. Net Load Disaggregation

• Proxy Measurements (Cont.): Overall, the two power generation profiles 
are similar, because the two locations are close to each other. 

• Two points, denoted by 1   and   2  , are marked on this figure at the 
times when solar power generation is volatile. 

• There are some considerable 
differences at 1  , but the two 
solar power generation profiles 
are mostly similar at   2  .
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5.6.2. Net Load Disaggregation

• Proxy Measurements (Cont.): We can disaggregate the net load as

• This is a very rough approximation based on the proxy measurements. 

• The accuracy of the above approximate may improve by factoring in 
some physical characteristics of the two PV systems, taking into account 
the information about clouds movement in the region [334], or training a 
model to use a proper mixture of measurements from multiple PV proxies.
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5.6.2. Net Load Disaggregation

• Other Methods: Different methods have been proposed in the 
literature to solve the solar generation disaggregation problem. 

• Some methods use fundamental physical models and take into 
account relationships between location, weather, physical 
characteristics, and solar irradiance; e.g., see [331]. 

• Some other methods use data-driven and statistical models, 
such as extracting features to describe load profiles with PVs and 
load profiles without PVs; e.g., see [335]. 

• Some methods also use a combination of physical models and 
statistical models, such as in [336].
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5.6.3. Sub-Metering 

• The discussions in Sections 5.6.1 and 5.6.2 are concerned with non-
intrusive disaggregation. They are called non-intrusive because they 
do not require placing sensors on individual appliances, individual 
equipment, or individual PV units. 

• The alternative to non-intrusive disaggregation is sub-metering. 

• In sub-metering, we install a separate meter to measure power or 
energy usage or power or energy generation of a subsystem or a 
component of interest; e.g., see [268, 337].
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5.6.3. Sub-Metering 

• Sub-metering has recently received a technology boost due to the 
advent of Internet-of-Things (IoT) and their related technologies. 

• IoT technologies have lowered the cost of sensor installation and 
sensor data collection (e.g., in buildings). They can help enhance 
energy efficiency and facilitate participation in demand response. 

• An IoT-based sub-metering system in a building may include 
hundreds of meters at every lighting fixture, every power outlet, and 
every variable-air-volume valve, compressor, or other subsystems of 
the heating, ventilation, and air conditioning system [338–340].

• An example is given in Section 7.2.1 in Chapter 7.
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• Load modeling is essential to power system analysis, planning, and 
operation. The purpose of load modeling is to understand the behavior 
of the load, such as in response to changes in voltage or frequency. 

• Load modeling can be done at the transmission level to model the 
aggregate load at different locations on an interconnected power 
system, e.g., see [341]; or it can be done at the distribution level to 
model the load of a power distribution feeder, the load of a single 
customer, or even the load of a single appliance, e.g., see [342–344].

• Load modeling can be component-based, where the knowledge of 
physical behavior of the load components, such as the physical parameters 
of a motor load, are used to model the functioning of load devices [345].

• This approach is not our focus in this section. 
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• Load modeling can also be measurement-based, to use measurements 
from various sensors in order to capture the behavior of the load. 

• Measurement-based load modeling has several advantages over 
component-based load modeling. 

• For example, it can be applied to a load, even when we have no prior 
knowledge about the physical behavior or physical parameters of the load. 

• Moreover, measurements-based load modeling can update the model 
over time in order to capture the changes in the load.
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• In this section, we discuss only measurement-based load modeling. A 
detailed review of different load modeling techniques is available in [347].

• There are two types of measurement-based load models:

• Static load models

• Dynamic load models

• Static load models will be discussed in Section 5.7.1.

• Dynamic load models will be discussed in Section 5.7.2.
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5.7.1. Static Load Model

• ZIP Model: It is a popular measurement-based load model. It represents 
the relationship between (active and reactive) power consumption and 
voltage in a polynomial equation that combines constant impedance (Z), 
constant current (I), and constant power (P) components of the load:

where 𝑉 is the operating voltage; and 𝑃0 and 𝑄0 are active power and 
reactive power consumption at rated voltage 𝑉0, respectively.
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5.7.1. Static Load Model

• ZIP Model (Cont.): A ZIP model has six parameters: 

• 𝛼𝑍, 𝛼𝐼, 𝛼𝑃 are the coefficients for the model for active power; 

• 𝛽𝑍, 𝛽𝐼, 𝛽𝑃 are the coefficients for the model for reactive power.
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5.7.1. Static Load Model

• ZIP Model (Cont.): Suppose 𝑃𝑖 and 𝑉𝑖 denote the measured active power 
and the measured voltage at the load that we seek to model, where 𝑖 =
1, . . . , 𝑛, and 𝑛 is the total number of measurements. 

• We can obtain the unknown coefficients of the ZIP model for active 
power by solving the following least square (LS) optimization problem:

where the unknown coefficients are: 
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5.7.1. Static Load Model

• ZIP Model (Cont.): The parameters in this LS optimization problem are:

which are obtained from the 𝑛 measurements. 
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5.7.1. Static Load Model

• ZIP Model (Cont.): We can solve the above LS problem by using a Least 
Square solver; such as 𝑙𝑠𝑞𝑙𝑖𝑛 in MATLAB [102]. 

• Alternatively, we can obtain the solution in closed-form as [103]:

• Given 𝑄𝑖 and 𝑉𝑖 as the measured reactive power and the measured 
voltage at the load, where 𝑖 = 1, . . . , 𝑛, we can obtain the coefficients 𝛽𝑍, 
𝛽𝐼, and 𝛽𝑃 by formulating and solving a similar LS optimization problem.
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5.7.1. Static Load Model

• Example 5.10: Voltage, active power consumption, and reactive 
power consumption are measured at a load. 

• The measurements are shown below, where 𝑛 = 20.
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5.7.1. Static Load Model

• Example 5.10 (Cont.): The rated voltage, the rated active power, and 
the rated reactive power of the load are 𝑉0 = 120 𝑉, 𝑃0 = 1109𝑊, 
and 𝑄0 = 487 𝑉𝐴𝑅, respectively [348]. By solving the LS optimization 
problem that we introduced on Slide 144, we can obtain:

• Similarly, we can obtain:



5.7. Load Modeling

Cambridge University Press  149Hamed Mohsenian-Rad Chapter 5: Power and Energy Measurements and Their Applications

5.7.1. Static Load Model

• If 𝑃 = 𝑃0 and 𝑉 = 𝑉0, then from the model on Slide 142, we have:

• The above equation is sometimes added to the minimization 
problem on Slide 144 as a constraint; e.g., see [348].
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5.7.1. Static Load Model

• Exponential Model: The ZIP load model may also be represented in 
exponential form, with the following formulation:

where 𝛾𝑃 and 𝛾𝑄 are the parameters of the model. These parameters   

vary between 0 and 2. Accordingly, we can identify three special cases:

• If 𝛾𝑃 = 2, then the above model reduces to a constant impedance load. 
• If 𝛾𝑃 = 1, then the above model reduces to a constant current load. 
• If 𝛾𝑃 = 0, then the above model reduces to a constant power load.
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5.7.1. Static Load Model

• Exponential Model (Cont.): If the rated voltage 𝑉0 and the rated power 
𝑃0 are known, then we can measure 𝑉 and 𝑃 to obtain

• If several measurements are available, then we can formulate an LS opti-
mization problem to estimate 𝛾𝑃, such as the following; see Exercise 5.18:

where



5.7. Load Modeling

Cambridge University Press  152Hamed Mohsenian-Rad Chapter 5: Power and Energy Measurements and Their Applications

5.7.1. Static Load Model

• Exponential Model (Cont.): If 𝑉0 and 𝑃0 are not known, then we can 
estimate 𝛾𝑃 with two pairs of voltage and active power measurements, 
such as during a voltage event; e.g., see [343].

• Frequency-Dependant Model: Power consumption of certain types of 
loads can be affected by the frequency of the power system. 

• For example, some motor loads slow down when the frequency of the 
system drops; see a related discussion under the subject of frequency 
response of interconnected power systems in Section 2.9 in Chapter 2.
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5.7.1. Static Load Model

• Frequency-Dependant Model (Cont.): Both the ZIP model and the 
exponential model can be extended to incorporate the impact of 
frequency. The ZIP model can be extended to:

where 𝛼𝑓 and 𝛽𝑓 are the coefficients of the model, 𝑓 is the operation 

frequency, and 𝑓0 is the nominal frequency. Parameter 𝛼𝑓 is positive; 

but parameter 𝛽𝑓 can be positive or negative [349].
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5.7.1. Static Load Model

• Frequency-Dependant Model (Cont.): We can similarly extend the 
exponential model to incorporate the impact of frequency:
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5.7.1. Static Load Model

• Example 5.11: Consider an agricultural pump with 𝛼𝑓 = 5.6 and 𝛽𝑓 =

4.2 [349]. If the frequency drops by 0.09 Hz (as in Example 2.23 in 
Chapter 2), then we can obtain the frequency term in the load model as

• Active power load drops by 50%, and reactive power load drops by 38%. 

• Such load reduction (as a result of drop in frequency) can contribute to 
the inertial response of the system, as we saw in Example 2.23.
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5.7.2. Dynamic Load Model

• Static loads are static functions of voltage and/or frequency. 

• The power consumption of a static load at any instant depends on 
only the voltage and/or frequency at that same instant. 

• Accordingly, static load models are in form of algebraic equations, 
such as in the formulations that we discussed in Section 5.7.2. 
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5.7.2. Dynamic Load Model

• Dynamic loads, such as induction motors, on the other hand, take some 
time in transient conditions before they reach steady-state conditions. 

• This is because the power consumption of a dynamic load at any instant 
depends on not only the voltage and/or frequency at that same instant, 
but also the internal state variables of the load at previous instances. 

• Accordingly, dynamic loads are modeled as a combination of algebraic 
equations and also differential equations [350, 351].
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5.7.2. Dynamic Load Model

• Recovery Model: This model is a popular model in voltage stability 
analysis [352]. It captures the recovery response of a load to a sudden 
voltage drop. That is, it captures how the active power consumption and 
the reactive power consumption of the load changes before it reaches 
steady-state conditions. This model is illustrated in the figure below.
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5.7.2. Dynamic Load Model

• Recovery Model (Cont.): In the figure on the previous slide:

• Voltage suddenly drops at time 𝑡0 = 0 from 𝑉Old = 117 𝑉
to 𝑉New = 112 𝑉; see Figure (a) on the previous slide.

• In response, the active power consumption of the load drops 
from 𝑃Old = 1.92 𝑘𝑊 to 𝑃Transient = 1.72 𝑘𝑊; and then it 
gradually increases to 𝑃New = 1.79 𝑘𝑊, see Figure (b).

• The primary focus of the recovery model is to capture the transient 
response of the load that takes place due to the dynamics of the load.
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5.7.2. Dynamic Load Model

• Recovery Model (Cont.): The recovery mode is described by the 
following combination of algebraic and differential equations [352]:

• Here, 𝑥(𝑡) is the state-variable of the load; 𝛾𝑃 is the static coefficient, 
which is the same parameter as in the exponential load model; 𝜁𝑃 is the 
transient recovery coefficient; and 𝑇𝑃 is the recovery time constant. 

• We can obtain a similar recovery model for reactive power consumption.
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5.7.2. Dynamic Load Model

• Recovery Model (Cont.): We can measure parameters 𝑉Old, 𝑉New, 
𝑃Old, 𝑃Transient, and 𝑃New. If the rated voltage 𝑉0 and the rated active 
power consumption 𝑃0 are known, then we can obtain:

• Notice that 𝛾𝑃 is obtained in the first line by placing 𝑃(𝑡) = 𝑃New, 
𝑉(𝑡) = 𝑉New, and 𝑑𝑥(𝑡)/𝑑𝑡 = 0 in the model on Slide 160. 

• Also, 𝜁𝑃 is obtained by placing 𝑃(𝑡) = 𝑃Transient, 𝑉(𝑡) = 𝑉New, and 
𝑥(𝑡) = 0 in the first line in the model on Slide 160.
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5.7.2. Dynamic Load Model

• Recovery Model (Cont.): Parameter 𝑇𝑃 can be obtained by determining 
the time instance at which 𝑃(𝑡) in Figure (b) crosses the 63% threshold

line during its recovery from 
𝑃Transient to 𝑃New. This 
threshold is based equation 
on Slide 160 and the fact that 
100 × (1 − exp(−1)) = 63%; 
see [352] for more details. 
For the example in Figure (b), 
we have 𝑇𝑃 = 0.824. 
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5.7.2. Dynamic Load Model

• Other Dynamic Load Models: Other dynamic load models that are 
used in measurement-based load modeling include: 

• the induction motor (IM) model [353], 
• a combination of the ZIP model and the IM model [354], 
• and load models that are based on training neural networks [355].
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• We previously discussed the state estimation problem in Section 3.8 
in Chapter 3, where we assumed that the measurements are voltage 
and current synchrophasors that are obtained by PMUs. 

• Recall that a common choice for the states of a power system is the 
voltage magnitudes and voltage phase angles at all buses. 

• Therefore, when synchrophasor measurements are available, we are 
able to directly measure a subset of the state variables. 

• The use of synchrophasor measurements also results in formulating a 
state estimation problem that is inherently linear; see the relationship 
in equation (3.76) in Section 3.8 in Chapter 3.
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• However, prior to the development of PMUs, the states of the power 
system could not be measured directly. In particular, the voltage phase 
angles could be only inferred from the power flow measurements [356]. 

• Accordingly, the traditional state estimation problem is the problem of 
using active power and reactive power measurements to solve the 
power flow equations that we saw in Section 1.3.1 in Chapter 1, so as to 
estimate the voltage magnitudes and voltage phase angles at all buses.
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5.8.1. Basic Nonlinear Formulation

• In this section, we discuss the basic formulation of the traditional state 
estimation problem, which uses active and reactive power measurements. 

• This problem is a nonlinear and non-convex optimization problem. 

• We will solve the original nonlinear problem in this section. 

• We will discuss a linearized approximate formulation of the 
state estimation problem in Section 5.8.2. 

• We will also briefly discuss other formulations in Section 5.8.3.
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5.8.1. Basic Nonlinear Formulation

• Let 𝐱 denote the vector of all states of the power system. Let 𝐳 denote 
the vector of all active and reactive power measurements, whether at 
buses or on power lines. An example is shown below.

• Here, 𝑃𝑖 and 𝑄𝑖 denote the active power and reactive power at bus 𝑖; 
𝑃𝑘 and 𝑄𝑘 denote the active power and reactive power at bus 𝑘; and 𝑃𝑖𝑘
and 𝑄𝑖𝑘 denote the active power and reactive power on line (𝑖, 𝑘).

Pi ,Qi

Bus k

~

Bus i Pik ,Qik

Pk ,Qk
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5.8.1. Basic Nonlinear Formulation

• The vector of state variables and the vector of measurements for the 
example in this figure are:

where 𝑋𝑖∠𝜃𝑖 and 𝑋𝑘∠𝜃𝑘 denote the voltage phasors at buses 𝑖 and 𝑘.
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5.8.1. Basic Nonlinear Formulation

• From Section 1.3.1 in Chapter 1, the following relationships hold between 
the voltage phasors and nodal power injections and line power flows:

where 𝐺𝑖𝑘
busand 𝐵𝑖𝑘

bus denote the real part and the imaginary part of the 
entry in row 𝑖 and column 𝑗 of the Y-bus matrix; see (1.52) in Chapter 1.
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5.8.1. Basic Nonlinear Formulation

• From the equations on the previous slide, we can relate the 
measurements to the state variables as follows:

where 𝐡(𝐱) is the vector of nonlinear functions of the forms on Slide 171; 
and 𝝐 is the vector of measurement noise. The state estimation problem 
can be formulated as the following LS optimization problem:

• The number of state variables is 2𝑛, where 𝑛 is the number of buses; 
and the number of measurements is 𝑚.
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5.8.1. Basic Nonlinear Formulation

• Bus 1 can be assumed to be the reference bus. 

• We assume to know the voltage magnitude at the reference bus. 

• We also set the voltage phase angle at the reference bus to be zero, 
i.e., 𝜃1 = 0. Recall from Section 3.1.2 in Chapter 3 that we can rotate 
the same phasors and represent them differently based on different 
references; therefore, we need to use a reference phase angle in 
order to avoid ambiguity in defining the phase angles.
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5.8.1. Basic Nonlinear Formulation

• The optimization problem in (5.61) is non-convex. 

• There do exist some solvers to deal with non-convex least-square 
optimization problems, such as lsqnonlin in MATLAB [357]. 

• We can also use iterative algorithms such as the Gauss–Newton 
method that we will discuss in the next sub-section. 

• Another option is to solve a linearized approximation of the non-linear 
problem on Slide 172 using the standard LS method; see Section 5.8.2. 

• We will discuss some other problem formulations in Section 5.8.3.
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5.8.1. Basic Nonlinear Formulation

• Gauss–Newton Iterations: As mentioned earlier, the optimization 
problem on Slide 172 is non-convex and generally difficult to solve. 
One option is to use the Gauss–Newton method. Each iteration in the 
Gauss–Newton algorithm is formulated as [358]:

where

is the measurement Jacobian. The entry in row 𝑙 and column 𝑗 of the 
measurement Jacobian matrix 𝐇 is the partial derivative of row 𝑙 of 
function 𝐡(𝐱) with respect to the state variable in row 𝑗 of vector 𝐱.
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5.8.1. Basic Nonlinear Formulation

• Gauss–Newton Iterations (Cont.): The iterations on the previous 
slide start with a given initial value for 𝐱. Note that the phase angle at 
the reference bus should always be kept at zero, i.e., 𝜃1 = 0. The 
iterations continue until the norm of the measurement residues is less 
than a given threshold 𝛿, i.e., until the following inequality holds:

• Note that matrix 𝐇 has to be updated in each iteration.
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5.8.1. Basic Nonlinear Formulation

• Example 5.12: Again, consider the 4-bus transmission network in 
Example 3.20 in Chapter 3. This same network is also shown below.

• Suppose we measure the power injection at each bus. 
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5.8.1. Basic Nonlinear Formulation

• Example 5.12 (Cont.): The true versus measured power values are:
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5.8.1. Basic Nonlinear Formulation

• Example 5.12 (Cont.): But 1 is the reference bus. 

• At the reference bus, the voltage phase angle is assumed to be zero and 
the voltage magnitude is measured directly. The true and the measured 
voltage magnitudes at bus 1 are 1.0332 p.u. and 1.0297 p.u., respectively.
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5.8.1. Basic Nonlinear Formulation

• Example 5.12 (Cont.): The state variables that need to be estimated are 
the voltage magnitude and the voltage phase angle at buses 2, 3, and 4. 
Accordingly, where 𝐱 is a 6 × 1 vector and 𝐳 is a 12 × 1 vector. 

• The measurement matrix 𝐇 is 12 × 6. 

• The initial value for all unknown states is set to one for magnitude and 
zero for phase angle. The Gauss–Newton algorithm is based on the 
iterations on Slide 175. The iterations stop when the norm of the 
measurement residue is less than δ = 0.005 p.u.
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5.8.1. Basic Nonlinear Formulation

• Example 5.12 (Cont.): The state estimation results are obtained as

• The Gauss–Newton algorithm converges after seven iterations. 

• If we rotate all phase angles by 38.8884∘ clockwise, they can be 
presented equivalently as 38.8884∘, 31.4813∘, 37.0588∘, and 
28.2670∘. Note that, these new values are comparable with the 
phase angles that are obtained in Example 3.20 in Chapter 3.
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5.8.1. Basic Nonlinear Formulation

• Other Iterative Algorithms: Other iterative algorithms have been 
used to solve the state estimation optimization problem on Slide 172. 

• Some of these algorithms include the Gauss–Seidel method, the 
Newton-Rophson method, and various decoupling methods; see the 
state estimation textbooks such as in [356, 359–361]. 

• Another important topic that is often discussed in these textbooks 
is about the methods that can detect and discard bad data in the 
state estimation problem, i.e., erroneous measurements, to enhance 
the accuracy of the state estimation solution.
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5.8.1. Basic Nonlinear Formulation

• Using Both Power Measurements and Phasor Measurements: The 
state estimation problem may also involve a combination of both power 
measurements and synchronized phasor measurements. 

• Such a problem can be solved in a way similar to the traditional state 
estimation problem that we have discussed throughout Section 5.8.1.

• However, one challenge is that, while the power flow equations are 
formulated and solved based on a locational reference, where the 
voltage phase angle is zero at a reference bus, synchronized phasor 
measurements are obtained based on a temporal reference, where the 
voltage phase angle is zero for the reference waveform. Therefore, it is 
necessary to choose a reference bus that is equipped with a PMU.
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5.8.2. Linearized Approximate Formulation 

• In this alternative formulation, we define the state estimation problem 
based on the linearized power flow equations in (1.65) and (1.66), instead 
of the original nonlinear power flow equations in (1.56) and (1.57). 

• Accordingly, the following approximate relationships are considered 
between the voltage phase angles and nodal power injections, and the 
line power flows; see Section 1.3.1 in Chapter 1:
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5.8.2. Linearized Approximate Formulation 

• Given the type of equations that are used in this formulation; the state 
variables are defined to include only the voltage phase angles at all buses.

• The magnitude of voltage phasors is assumed to be 1 per unit at all buses; 
see the explanation regarding this assumption in Section 1.3.1 in Chapter 1. 

• As for the measurements, they include only active power measurements. 

• This is because reactive power does not appear in the 
linearized power flow equations in the previous slide.
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5.8.2. Linearized Approximate Formulation 

• The vector of state variables is defined as:

• The vector of measurements is defined as:
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5.8.2. Linearized Approximate Formulation 

• The measurements are related to the state variables as follows:

• The above is a standard LS optimization problem. It can be solved 
by using the command lsqlin in MATLAB [102]. As in the original 
formulation on Slide 172, we assume that the voltage phase angle
at the reference bus is zero. The voltage magnitude is assumed to 
be 1 at all buses, including at the reference bus.
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5.8.2. Linearized Approximate Formulation 

• Example 5.13: We can solve the state estimation problem in Example 
5.12 also by  using the approximate linearized formulation. The vector 
of state variables and the vector of measurements are as follows:
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5.8.2. Linearized Approximate Formulation 

• Example 5.13 (Cont.): The measurement matrix is obtained as
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5.8.2. Linearized Approximate Formulation 

• Example 5.13 (Cont.): The state estimation results are obtained as

• By comparing the above results with those in Example 5.12, we can 
see that the obtained phase angles in the two methods are generally 
similar. If we rotate the above phase angles by 38.8884∘ clockwise, 
then they can be presented equivalently as 38.8884∘, 31.2445∘, 
37.1370∘, and 28.1094∘. These new values are comparable with the 
phase angles that are obtained in Example 3.20 in Chapter 3.
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5.8.3. Convex Relaxation and Other Formulations

• Besides the approximate linearized formulation that we used in 
Section 5.8.2, there are also other methods that use other       
linearization techniques or other approximation techniques in 
formulating and solving the power flow equations. 

• An overview of some of these methods is provided in [362]. 

• In general, any alternative formulation of the power flow equations can 
potentially be used also for formulation of the state estimation problem.
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5.8.3. Convex Relaxation and Other Formulations

• Besides the approximate linearized formulation that we used in 
Section 5.8.2, there are also other methods that use other       
linearization techniques or other approximation techniques in 
formulating and solving the power flow equations. 

• An overview of some of these methods is provided in [362]. 

• In general, any alternative formulation of the power flow equations can 
potentially be used also for formulation of the state estimation problem.
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5.8.3. Convex Relaxation and Other Formulations

• Furthermore, there have been important advancements in 
recent years in the field of power flow analysis by using different 
methods for convex relaxation; e.g., see [363–365]. 

• The idea is to start from the original power flow equations in 
complex domain, such as (1.54) and (1.55) in Chapter 1, and 
formulate the power flow analysis as a nonconvex quadratic 
optimization problem in complex domain. 

• Then use techniques for convex relaxation, such as relaxation of 
the original problem formulation to a semidefinite program (SDP), 
to solve the power flow equations. 
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5.8.3. Convex Relaxation and Other Formulations

• In general, the solutions that are obtained by applying convex 
relaxation techniques are approximate. 

• However, under certain conditions, such as in a balanced 
symmetric radial distribution feeder, the solutions can be exact; 
e.g., see the summary discussions in [366, 367]. 

• These new approaches have already been used in state 
estimation. Some examples include the studies in [368–371].
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5.8.3. Convex Relaxation and Other Formulations

• Before we end this section, it should be noted that the state 
estimation problems that we discussed here and throughout this        
book are about static states, where the state variables at any          
instance depend only on the measurements at that same instance. 

• However, state estimation problems can also be defined with respect to 
dynamic states of the system, such as generator rotor angles and speeds. 

• Tools such as Kalman Filters are used to conduct dynamic 
state estimation; e.g., see [372, 373].
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• The total power in a three-phase power system is the summation of 
the power that is measured separately at each of the three phases:

• Similarly, the total energy in a three-phase power system is the sum      
of the energy that is measured separately at each of the three phases:

• As for apparent power and power factor, they can be measured 
individually on each phase. In general, it is not common to express 
them as overall quantities in three-phase systems. 

• We will further discuss this subject in Section 5.9.4. 
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5.9.1. Two-Wattmeter Method

• If the three-phase power system is balanced, then it is sufficient 
to use only one wattmeter to measure active power on one phase, 
and we can multiply the measurements by three to obtain the total 
active power for the overall three-phase system. 

• However, if the three-phase power system is unbalanced, then we usually 
need three wattmeters to make separate measurements on each phase.
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5.9.1. Two-Wattmeter Method

• In some special cases, we may need fewer sensors. An example is shown 
below. Here, the three-phase load has a three-wire star topology. 

`

W
1

i   (t)A

i   (t)B

v       (t)AC

v       (t)BC
`

W
2

Phase A

Phase B

Phase C

Load A

i   (t)C

Load B
Load C



5.9. Three-Phase Power and Energy Measurements

Cambridge University Press  201Hamed Mohsenian-Rad Chapter 5: Power and Energy Measurements and Their Applications

5.9.1. Two-Wattmeter Method

• In the three-wire star topology, we can measure the total power usage of 
the three-phase load by using only two (instead of three) wattmeters.

• Wattmeter W1 is connected to Phase A and wattmeter W2 is     
connected to Phase B [374]. Unlike in the standard connection in         
Figure (a) on Slide 7, where the potential coil of the wattmeter has a 
ground connection, the potential coils of wattmeters W1 and W2                
in the figure on the previous slide are connected to Phase C. 

• Thus, W1 measures the line-to-line voltage between Phase A and Phase 
C; and W2 measures the line-to-line voltage between Phase B and Phase C.
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5.9.1. Two-Wattmeter Method

• Next, we show why 𝑊1 and 𝑊2 are sufficient to measure the total power.

• The instantaneous power usage that is measured by 𝑊1 is

• Similarly, the instantaneous power usage that is measured by 𝑊2 is

• The sum of the instantaneous power that is measured by 𝑊1 and 𝑊2 is
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5.9.1. Two-Wattmeter Method

• However, we know that in a three-wire star topology, we have:

• By replacing the above equation in the last equation on the 
previous slide, we can see that the sum of the instantaneous power 
usage that is measured by wattmeters 𝑊1 and 𝑊2 is equal to the 
total instantaneous power usage across all three phases:
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5.9.1. Two-Wattmeter Method

• It should be noted that the above two-wattmeter method can also be 
applied to a three-phase load with delta connections; see Exercise 5.21.

• Also, if we replace the two wattmeters with two varmeters or two 
watthour meters, then we can similarly measure the total reactive 
power usage or the total energy usage of this three-phase load, 
respectively, still using only two sensors in each case.
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5.9.2. Phase Identification by Power and Energy Measurements

• A fundamental problem in any three-phase system is phase identification.

• We previously discussed solving the phase identification problem in 
power distribution systems by using different types of measurements: 

• using voltage or current measurements in Section 2.8.3 in Chapter 2 

• using phase angle measurements in Section 3.6.4 in Chapter 3.

• In this section, we seek to solve the phase identification problem 
by using power and energy measurements.
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5.9.2. Phase Identification by Power and Energy Measurements

• The basic idea is to use the principle of conservation of electric 
charge, i.e., the fact that energy that is supplied by a power 
distribution feeder must be equal to the energy that is consumed 
by the loads, plus losses and measurement errors. 

• Accordingly, one can transform the phase identification problem 
into the problem of identifying the phase connections to minimize 
the mismatch between the measured supplied energy on each 
phase and the summation of the measured consumed energy by all 
the loads that are connected to that phase, as we explain next.
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5.9.2. Phase Identification by Power and Energy Measurements

• Suppose all loads are single phase. 

• Let 𝑁 denote the number of loads. 

• Suppose the energy usage of each load is measured periodically at 
equal-length time intervals, such as once every five minutes. 

• The total number of the measurement intervals is denoted by 𝑇.
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5.9.2. Phase Identification by Power and Energy Measurements

• Let 𝐸𝑛[𝑡] denote the energy usage of load n during time interval 𝑡. 

• For each load 𝑛, let us define 𝜁𝑛
𝐴, 𝜁𝑛

𝐵, and 𝜁𝑛
𝐶 as binary phase 

identification variables corresponding to phases A, B, and C, respectively.

• If load 𝑛 is connected to phase A, then 𝜁𝑛
𝐴 = 1.

• Otherwise 𝜁𝑛
𝐴 = 0. 

• Variables 𝜁𝑛
𝐵 and 𝜁𝑛

𝐶 are defined similarly.
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5.9.2. Phase Identification by Power and Energy Measurements

• Accordingly, the following equality must hold because each single-
phase load must be connected to exactly one phase:

• The total load that is identified on phase A at time interval 𝑡 is obtain as
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5.9.2. Phase Identification by Power and Energy Measurements

• Next, suppose 𝐸𝐴[𝑡], 𝐸𝐵[𝑡], and 𝐸𝐶[𝑡] denote the total energy usage of 
the entire power distribution feeder that is measured at the distribution 
substation during time interval 𝑡 on phases A, B, and C, respectively. 

• If phase identification is done correctly, i.e., if 𝜁𝑛
𝐴, 𝜁𝑛

𝐵, and 𝜁𝑛
𝐶 are set 

correctly for all loads 𝑛 = 1, . . . , 𝑁, then the total load in the second 
equation on Slide 209 would match 𝐸𝐴[𝑡] at all time intervals 𝑡 = 1, . . . , 𝑇. 

• A similar statement is true for phases B and C.
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5.9.2. Phase Identification by Power and Energy Measurements

• In order to identify the unknown phase connections, we seek to select 
𝜁𝑛
𝐴, 𝜁𝑛

𝐵, and 𝜁𝑛
𝐶 for all loads 𝑛 = 1, . . . , 𝑁 such that we minimize the 

following expression subject to the constraint that 𝜁𝑛
𝐴 + 𝜁𝑛

𝐵 + 𝜁𝑛
𝐶 = 1:
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5.9.2. Phase Identification by Power and Energy Measurements

• Hence, we can formulate the phase identification problem as follows:

which is a binary LS problem. 𝐟 is the 3𝑇 × 1 vector of per-phase feeder 
load measurements, 𝛇 is the 3𝑁 × 1 vector of per-load phase identification 
variables, 𝐄 is the 3𝑇 × 3𝑁 matrix of single-phase load measurements. 

• The above constrained binary LS problem can be solved in MATLAB 
by using any convex optimization toolbox that supports binary or 
integer variables, such as CVX [178, 376] or CPLEX [377].
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5.9.2. Phase Identification by Power and Energy Measurements

• Example 5.14: Consider the energy measurements as shown in the 
table below over 𝑇 = 2 time intervals. We would like to identify how 
each of the 𝑁 = 5 loads is connected to a phase. 

• The vector of unknown phase identification variables is formulated as
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5.9.2. Phase Identification by Power and Energy Measurements

• Example 5.14 (Cont.): The other parameters of the phase 
identification problem are as follows:
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5.9.2. Phase Identification by Power and Energy Measurements

• Example 5.14 (Cont.): The solution is obtained as 

𝜁1
𝐴= 𝜁2

𝐴 = 𝜁3
𝐵 = 𝜁4

𝐶 = 𝜁5
𝐶 = 1

𝜁3
𝐴 = 𝜁4

𝐴 = 𝜁5
𝐴 = 𝜁1

𝐵 = 𝜁2
𝐵 = 𝜁4

𝐵 = 𝜁5
𝐵 = 𝜁1

𝐶 = 𝜁2
𝐶 = 𝜁3

𝐶 = 0.

That is, loads 1 and 2 are connected to phase A, load 3 is connected to 
phase B, and loads 4 and 5 are connected to phase C. 

The minimum 𝑙2 norm of the measurement residues is obtained as 
0.3873 kWh, which corresponds to power loss and measurement errors.
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5.9.2. Phase Identification by Power and Energy Measurements

• As the number of loads increases, more time intervals need to be 
considered in order to collect enough information to identify the phases.

• In principle, the above phase identification problem can be formulated 
based on not only active power measurements but also reactive power
measurements to utilize more information. 

• The problem formulation can also be adjusted to include not only 
single-phase but also two-phase and three-phase loads. 

• When the relevant data is available, the above phase identification 
problem can also be reinforced by power measurements at several 
load transformers across the power distribution feeder.
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5.9.3. Other Applications of 3-Phase Power and Energy Measurements

• Many of the applications of power and energy measurements that we 
discussed in this chapter can be extended to three-phase measurements.

• Load Modeling: Load modeling can be done at each of the three 
phases. All the load models that we discussed in Section 5.7 can also be 
used to model two-phase or three-phase loads. For example, for a three-
phase load, we can extend the exponential load model on Slide 150 to:

where the parameters are 𝛾𝐴, 𝑃, 𝛾𝐵, 𝑃, and 𝛾𝐶 , 𝑃.
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5.9.3. Other Applications of 3-Phase Power and Energy Measurements

• Disaggregation: Load disaggregation can also be done at each of the 
three phases, or across a combination of single-phase, two-phase, and 
three-phase loads [323]. The methods that we learned in Section 5.6.1 
can also be used in these cases. For example, switching of a three-phase 
load can be recognized based on its signature on all three phases, i.e., 
the changes that it causes in active power consumption and reactive 
power consumption, as in the figure on Slide 119, but on each phase. 

• Net load disaggregation, such as solar generation disaggregation, can 
also be done at each phase. One potentially helpful note is that, in 
practice, most three-phase PV and wind inverters are balanced, with 
equal power generation per phase across the three phases [378]; 
therefore, we can assume that the generation component of the net 
load is balanced across the three phases, while the load is unbalanced.
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5.9.3. Other Applications of 3-Phase Power and Energy Measurements

• Per-Phase Smart Pricing: Pricing methods are usually designed based 
on system-wide considerations in the power system, such as with 
respect to the overall load profile of the utility and the price of power 
procurement in the wholesale electricity market. 

• However, there is a growing interest in also developing pricing methods 
that reflect the operation challenges at the power distribution level, 
such as with respect to such as voltage regulation, balancing load across 
phases, or integrating distributed energy resources. 

• Depending on the purpose of the pricing mechanism, some of these 
pricing methods are defined on each phase, i.e., they are per-phase 
prices; e.g., see the studies in [379–381].
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5.9.3. Other Applications of 3-Phase Power and Energy Measurements

• Three-Phase DSSE: Three-phase state estimation is often not 
necessary at the transmission level; because the power systems at the 
level of the power transmission are mostly balanced. 

• In contrast, the power system at the level of power distribution 
networks is usually unbalanced; therefore, there is a need in practice 
to develop efficient three-phase DSSE solutions. 

• The convex relaxation methods that we briefly mentioned in 
Section 5.8.3 may not result in exact solutions when the three-phase 
power distribution system is unbalanced. 
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5.9.3. Other Applications of 3-Phase Power and Energy Measurements

• Three-Phase DSSE (Cont.): One option is to approximately 
decompose the three-phase DSSE problem into three separate
single-phase DSSE problems, e.g., by ignoring the mutual          
impedance across different phases of the distribution lines. 

• In that case, each single-phase DSSE problem can be solved 
separately by using a convex relaxation method. 

• Another option is to solve the original three-phase DSSE problem by 
either using the standard methods such as the Gauss–Newton method 
that we learned in Section 5.8.1 [382], or using some advanced 
optimization techniques such as those in [383–385].
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5.9.4. Three-Phase Apparent Power and Power Factor 

• There are different ways to define apparent power in 3-phase systems:

• Arithmetical apparent power [387]:

• Geometrical apparent power, where P and Q are defined on Slide 197 :

• Here is another definition from [388]:

• These different definitions result in different values; see Exercise 5.22.
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5.9.4. Three-Phase Apparent Power and Power Factor 

• As for the power factor, the common approach is either to look at 
the power factor at each phase individually, or to simply use the 
average of the power factors across the three phases. 

• Alternatively, the overall power factor may also be defined by 
dividing the total active power 𝑃 as defined on Slide 198 to 𝑆, where 𝑆
can be any of the definitions of apparent power on the previous slide.
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5.10.1. Accuracy Classes 

• One of the standards that defines the accuracy classes for electricity 
metering is ANSI C12. In this standard, the accuracy is expressed in terms 
of limits on measurement error; which is limited to 0.1%, 0.2%, 0.5%, and 
1% for Accuracy Classes 0.1, 0.2, 0.5, and 1.0, respectively [389]. 

• These accuracy levels are defined at the normal operating load 
current, i.e., between 2 A and 100 A. The error limits are typically 
higher at both low load and high load current conditions.
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5.10.1. Accuracy Classes 

• Two ANSI C12 accuracy classes for power and energy metering are 
compared in the figure below. The accuracy is expressed in terms of limits 
on measurement error, which are shown versus the operating load 
current, ranging from 0.2 A to 200 A on the logarithmic scale. 
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5.10.1. Accuracy Classes 

• Besides providing a better metering accuracy at normal loads, 
an Accuracy Class 0.5 meter is saturated at a higher load current, 
beyond 100 A which is the saturation level at Accuracy Class 1.0; 
it also continues to meter down to 0.1 A, whereas an Accuracy 
Class 1.0 meter may stop metering below 0.3 A.

• See the right side of the figure on the previous slide.
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5.10.1. Accuracy Classes 

• It should be noted that the error limits shown in the figure                 
on Slide 227 are under the assumption that the power factor 
is one, i.e., the load is purely resistive. 

• If the power factor reduces, then error limits may increase. 

• For example, the error for an Accuracy Class 0.5 meter may 
increase up to ±2.5% if the power factor reduces to 0.25. 

• This level of error is much higher than the maximum error limit of 
±1% that we can see in the figure on Slide 227 using unity power factor.
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5.10.2. Meter Accuracy versus System Accuracy

• The accuracy of a power measurement system or an energy 
measurement system depends on the accuracy of all its components, 
which includes the meter itself and any instrument transformer 
that is being used; see Section 2.1 in Chapter 2.

• Instrument transformers can affect the accuracy in measuring voltage 
and current. They can also affect the accuracy in measuring the phase shift 
between voltage and current, i.e., the accuracy in measuring power factor.
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5.10.2. Meter Accuracy versus System Accuracy

• In order to obtain the total accuracy in the metering system, 
it is often assumed that the error that is caused by each 
component in the system has a Gaussian distribution. 

• Therefore, the total accuracy of the system is obtained as [390, 391]:

where 𝜖𝑀, 𝜖𝐶𝑇, 𝜖𝑃𝑇, and 𝜖𝑃𝐹 denote the meter accuracy, the CT accuracy, 
the PT accuracy, and the power factor (phase shift) accuracy, respectively. 

Note that, 𝜖, 𝜖𝑀, 𝜖𝐶𝑇, 𝜖𝑃𝑇, and 𝜖𝑃𝐹 are all expressed in percentage error.
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5.10.2. Meter Accuracy versus System Accuracy

• Example 5.15: A Class 0.5 meter, i.e., with an accuracy level of 
𝜖𝑀 = 0.5%, is used to measure power consumption of a load. A CT 
with an accuracy level of 𝜖𝐶𝑇 = 0.75% is used in this measurement 
system. No PT is used; because voltage level of the load is already 
within the operating range of the meter. Therefore, 𝜖𝑃𝑇 = 0%. 

• The power factor of the load is around 0.75. At this level of power 
factor, the CT can cause 𝜖𝑃𝐹 = 1.16% error in measuring power factor. 

• The total accuracy level of this measurement system is obtained as

• Thus, if the meter indicates 4 kW load, the true load is 4 kW ± 59 W.
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5.10.2. Meter Accuracy versus System Accuracy

• Phase Shift: The error in phase shift is sometimes expressed in 
minutes, where 60 minutes equal one degree and 30 minutes equal 0.5 
degrees. This information is useful because it allows us to obtain the 
accuracy in measuring power factor at different power factor levels. 

• Let 𝜖Shift denote the error level in phase shift. We have [392]:

where θ−φ denotes the difference between the phase angle of 
voltage, i.e., θ, and the phase angle of current, i.e., φ. For instance, 
suppose 𝜖Shift is 45 minutes, i.e., 0.75◦.
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5.10.2. Meter Accuracy versus System Accuracy

• Phase Shift (Cont.): If power factor is 0.75, i.e., θ − φ = 41.41∘, then 
from the equation on the previous slide, we have:

which is the same number that we used in Example 5.15. If power factor 
is 1, then 𝜖𝑃𝐹 = 0.009%; and if power factor is 0.5, then 𝜖𝑃𝐹 = 2.28% [392].
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5.10.2. Meter Accuracy versus System Accuracy

• Revenue Meters: Error in revenue metering is of concern 
because of its impact on billing and financial transactions. 

• Any major error in the recording of energy usage or power 
usage can result in a loss to the utility, when understating, or to 
the customer, when overstating. 

• Of course, higher accuracy metering does cost more in 
equipment and maintenance; however, the higher cost can often 
be justified when compared with the reduced level of uncertainty 
that it can offer in billing, especially for larger customers.
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5.10.2. Meter Accuracy versus System Accuracy

• Example 5.16: Consider a commercial customer that is required 
to pay peak-load charges based on its peak power usage, 
measured in kW, during on-peak hours, mid-peak hours, and off-
peak hours; see the paragraph on Other Pricing Methods in 
Section 5.4.1. The rates for calculating the peak-load charges are

• On-Peak Hours: 6.88 $/kW
• Mid-Peak Hours: 2.74 $/kW
• Off-Peak Hours: 1.31 $/kW.

The revenue meter indicates that the peak power usage is 
11,760 kW during on-peak hours, 10,467 kW during mid-peak 
hours, and 8,732 kW during off-peak hours. 
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5.10.2. Meter Accuracy versus System Accuracy

• Example 5.16 (Cont.): First, assume that a high accuracy power 
measurement system is used, with the following accuracy levels:

• Accordingly, from the equation on Slide 231, the overall 
accuracy of the metering system is 1.01%. This introduces 

0.0101 × 11760 = 119 kW, 
0.0101 × 10467 = 106 kW, 
0.0101 × 11760 = 88 kW 

uncertainty in measuring peak demand during on-peak hours, 
mid-peak hours, and off-peak hours, respectively.
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5.10.2. Meter Accuracy versus System Accuracy

• Example 5.16 (Cont.): This results in a total of

uncertainty in the monthly peak-load charges for this customer. 

• Next, assume that a low accuracy power measurement system is used:

• Thus, the overall accuracy of the metering system is 2.29%.
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5.10.2. Meter Accuracy versus System Accuracy

• Example 5.16 (Cont.): This introduces 269 kW, 240 kW, and 200 kW 
uncertainty in measuring peak demand during on-peak hours, mid-
peak hours, and off-peak hours, respectively.

• This results in a total of

uncertainty in the monthly peak-load charges for this customer. 

The lower accuracy of the second power measurement system 
creates an additional $18,552 uncertainty in the peak-load charges 
for this customer over the course of a year.
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5.10.3. Other Factors that Affect Accuracy 

• The most common mode of failure for the traditional 
electromechanical energy meters is reduced registration. 

• Anything that increases the drag on the rotating disk can cause a 
meter to run slow, resulting in reduced billing amounts. 

• Failure modes also exist that could cause an electromechanical meter 
to run fast, but they are less common. 

• Digital energy meters are also prone to error due to sampling. 
Furthermore, they are susceptible to line voltage transient events. 
Traditional electromechanical meters are generally more immune to 
standard surge events [393].
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5.10.3. Other Factors that Affect Accuracy 

• The accuracy in measuring energy depends also on clock accuracy. 

• Due to cost considerations, the internal clock in customer meters has 
limited accuracy, certainly much less than the time accuracy in D-PMUs. 

• For example, if a meter reports 56 Wh energy usage for the 6:00:00 
PM to 6:15:00 PM time interval, and its internal clock lags the true clock 
by one second, then in reality, the reported 56 Wh was consumed from 
6:00:01 PM to 6:15:01 PM. Such error in time may not cause a major 
issue for billing purposes. However, it may have impact in certain 
applications, such as state estimation and phase identification.
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5.10.3. Other Factors that Affect Accuracy 

• Ambient temperature can also affect measurement accuracy. 

• The accuracy levels that are shown in the figure on Slide 227 are at 
23∘C as the reference temperature. At higher (or lower) temperatures, 
the error limits can be higher [394].


