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Abstract—Distributed load resources are encouraged nowadays
to actively participate in the energy market. As a part of the
distribution system, they affect the power flow pattern of the
network and interact with intermittent renewable generation
in the distribution system. In this regard, one fundamental
challenge, not yet addressed, is to derive an optimal market
participation model, under the demand bidding paradigm, that
systemically accounts for the operational limits of a physical
distribution grid considering uncertainty associated with both the
electricity market and distribution network system. Accordingly,
this paper addresses the optimal demand biding under uncertain
market and distribution system data and network operational
limits. Assuming a price-taker distribution utility with renewable
energy, inflexible and deferrable loads and a two-settlement
market model, we develop a two-stage robust stochastic bidding
formulation solved using a decomposition algorithm. We derive
optimal bid curves that minimize energy procurement cost and
fully comply with the operational standards of the distribution
network. Moreover, novel indexes are proposed to help the utility
evaluate the operational performance of its network with regard
to deferrable loads and renewable resources. Finally, we illustrate
the advantage of the proposed model from a set of numerical
experiments on an example system and the 33-bus system.

Keywords: Demand bidding, deferrable load, renewable re-
source, stochastic programming, two stage robust optimization.

NOMENCLATURE

Ωp(n) Set of the precedent nodes connected to n
Ωd(n) Set of the decedent nodes connected to n
Nb Set of branches
N Set of buses
Ψr Uncertainty set of renewable generation
Nr Number of renewable resource buses
k Index for scenario
K Number of scenarios
n,m Index for distribution nodes
nm, jn Index for branches
0, t, i Indexes for the substation, time step and the

deferrable loads
∆t Duration of time steps t in hour.
πk The probability of scenario k
PR, P

R
the lower and upper limits of power traded in
the real-time market at the substation

λD/R Market price in day-ahead/ real-time market
dn, qn Real and Reactive demand at node n
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γ Equals tg(cos−1(power factor))
α, β The start and end times of deferrable load
e Total energy procurement of deferrable load
rjn, xjn Resistance and reactance of line jn
Un, Un Upper and lower bounds of square voltage

magnitude at bus n
p, q Feeder’s active and reactive capacity limits
Γr/R Uncertainty budget related the renewable gen-

erations/ real-time market prices
ḡrn, ĝ

r
n Upper bound and deviation from it for renew-

able generation at node n
M, ε Sufficient large and small numbers
PD/R Power component bid in the day-ahead/real-

time market at the substation
Q Reactive power at the substation
ddn Active power of deferrable load at bus n
grn Real power of renewable resource at node n
pnm, qnm Active and reactive power flow of line nm
vn Voltage magnitude of bus n
Un Squared voltage magnitude of bus n

I. INTRODUCTION

Deferrable loads and distributed energy resources (DERs)
can help electric utilities reduce their cost in energy trading
and when participating in the electricity market. The benefits
of using deferrable loads and DERs have been the subject of
many recent studies, e.g., [1]–[10]. The idea is to formulate
the bidding optimization problem of a utility, treated as an
energy purchaser, to minimize the cost of energy procurement
and to derive the optimal demand bid.

One fundamental challenge is to derive a utility market
participation model that accounts for the operational constrains
of distribution system considering uncertainty associated with
the electricity market and distribution network system. Recall
that beside cost management, a utility is also concerned with
maintaining its network security and serving customers at
satisfactory operating standards.

Ignoring operational constraints of the distribution system in
the bidding problem can lead to costly or technically infeasible
results not realizable in practice. One such situation can occur
when the peak load hour of a distribution feeder does not
coincide with the peak hour of market price. An example
is shown in Fig. 1, for the case of a distribution feeder in
Riverside, California, along with the price of the day-ahead
market at the node connecting this feeder to the electricity
market. We can see that if the utility shifts its deferrable
loads to low-price hours in an attempt to reduce its costs,
then it may inevitably breaches safety bands of voltage and/or
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current along the feeder. The problem gets even more compli-
cated if the distribution network also serves several renewable
generation units with intermittent generation outputs. This
illustrative example shows only the tip of the iceberg about the
potential issues that may arise at distribution level, if DERs
are scheduled considering only market conditions.

Inspired from the above example, this paper aims to take
a new look at the demand bidding problem. In this view, we
extend the conventional utility optimal bidding problem in the
literature to propose a stochastic robust network-constrained
bidding approach in which the uncertainty of the operating
conditions, market price, and the effect of deploying DERs on
distribution feeders are considered simultaneously. To the best
of our knowledge, there is no prior study to analyze the role
of the distribution network constraints and derive optimal bid
curves considering uncertainty in both distribution networks
and electricity markets. A two-stage optimization problem
is developed, where decision making is carried out in two
steps, before and after uncertainty revelation. For modeling
uncertainty, we use a hybrid stochastic-robust scheme as in
[11], [12] so as to take the advantage of both methods.

A. Summary of Contributions

Given the variability of system loads, renewable energy, and
market price, a deterministic demand bidding model may lead
to undesired results if the randomness of the input parameters
is not considered. Moreover, the role of network operating
conditions and deferrable loads are to be captured in deriving
bidding strategy of the utility. Ensuring the solution robustness
and considering enough modeling details are thus important to
obtain practically feasible and optimal results. This paper aims
to address this specific problem; it presents a two-stage robust
stochastic optimization model for the optimal bidding of a
distribution utility with DERs, inflexible and deferrable loads,
that trades energy in the day-ahead and real-time markets. The
model includes network constraints and uncertainties of dif-
ferent resources mentioned above. The optimization problem
is thus derived and solved using a decomposition method.
In view of the discussion above, our major contributions are:

1) On the modeling aspect, we develop the first robust
stochastic demand bidding model for a distribution
utility that considers uncertainty and captures the op-
erational limits of the distribution network. From this
standpoint, our model contributes to the literature by
adding realism to the bidding process to ensure that
market participation will not jeopardize the quality of
service in the distribution network.

2) We then propose novel indexes that can help the utility
evaluate the operational performance of its distribution
feeders when deferrable loads and intermittent DERs are
deployed. These indexes provide a good measure on how
these new resources affect the operational constraints
of the distribution network while the utility actively
participates in the electricity market. Moreover, those
indexes can show how good a feeder can follow the
electricity market signals using its DERs without adverse
effects on the distribution network constraints.
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Fig. 1. The distribution of the peak load of a real-world feeder in Riverside,
CA and the day-ahead market peak price at its market node in winter 2015.

3) Insightful case studies are presented. First, we show that
ignoring network constraints may result in technically
infeasible solutions or costly bidding strategies in an
uncertain environment. We then analyze the impact of
deferrable load locations and their penetration levels on
the optimal bidding performance.

B. Related Work

In a number of papers published recently on the bidding
problem of a utility (or a virtual power plant), information
gap theory [8], stochastic programming [13], [14], and robust
optimization [15]–[17] have been used. However, previous
studies neglect the potential impact of the DER operation on
the distribution feeder. That is, they did not consider the fact
that demands and DERs are located in the distribution network
and have direct impact on the operational conditions of such
network. Moreover, unlike in [15], [16], where static robust
optimization is applied, we develop a two-stage stochastic
robust program to make our model more flexible and less
conservative. Finally, robust optimization is used in [17] to
hedge against uncertainty and to mitigate financial risks in the
bidding process while the proposed model is concerned with
removing the risk of distribution network operational limit
violations.

In [18]–[20] the distribution network constraints are repre-
sented but they are based on game-theoretic method without
considering uncertainties. In [21], robust optimization is used
for operation of distribution girds.

Finally, although a number of papers have addressed the is-
sue of randomness in the optimal demand bidding problem [7],
[17], [22], no prior report has studied the network constrained
counterpart considering deferrable loads and uncertain inflex-
ible loads and renewable resources in the bidding strategy.

It is worthwhile to mention that no prior work in the demand
bidding problem, to the best of our knowledge, proposed
new indexes or extended the new indexes to evaluate the
feeder performance in response to market conditions under
the uncertain situation and in presence of the deferrable loads
and renewable generations.
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II. PROBLEM FORMULATION

Consider a utility that is responsible for reliable and cost-
efficient operation of a power distribution system and serves a
number of deferrable and a number of inflexible loads as well
as a number of distributed renewable generation resources. The
utility procures energy from a wholesale electricity market by
submitting demand bids. The utility is in charge of scheduling
deferrable loads through a demand response program.

The utility must simultaneously address two challenges. On
one hand, it must participate strategically in the wholesale
electricity market to effectively procure energy at low cost.
On the other hand, it must maintain the reliable operation of
the distribution system. Accordingly, the goal of the analysis in
this paper is to derive the optimal bidding strategy of the utility
in the day-ahead market, together with the optimal schedules
of the deferrable loads, all by considering the loads and
renewable generation uncertainties and network constraints.

A. Electricity Market Model

Consider a two-settlement electricity market, such as Cal-
ifornia ISO, consisting of day-ahead and real-time markets.
The demand bid at each market interval, such as each hour,
has two components, namely, power quantity and price. The
bid is submitted at closest point of participation at the nodal
electricity market, which is substation. We assume a price-
taker market participation scenario, where the price component
of the demand bid is sufficiently large to assure that the bid
is cleared. Accordingly, the cleared nodal market prices at the
substation are taken as external parameters by the utility to
manage its energy procurement cost. Note that, the price-taker
assumption is valid in practice. For example, over 90% of the
current demand bids in the California ISO market are of type
self-schedule, i.e., they are price-taker [23]. In other words,
once the demand MWh bid is determined in the day-ahead
market using the optimization problem, then the utility submits
it to the day-ahead market with a large price component no
less than the predicted price.

Day-ahead market prices can often be forecasted with high
accuracy in practice, c.f. [24]; therefore, they are considered
deterministic in this paper. In contrast, the prices in the real-
time market are uncertain and volatile; therefore, they are
considered stochastic.

The power component of a demand bid submitted to the
day-ahead market is by definition a non-negative quantity,
i.e., PD[t] ≥ 0. However, given the volatile nature of the
real-time market prices, and due to the network operational
constraints, the power component of the bid submitted to the
real-time market can be both positive or negative, where a
negative bid indicates the supply offer for selling energy which
arises from the excessive power generation or excessive power
purchase from the day-ahead market. Accordingly, as a typical
assumption in this context, e.g., see [22], we assume the power
component of the bid submitted to the real-time market at time
interval t has an upper bound and a lower bound in order to
relieve the stress from the utility:

PR[t] ≤ PR[t] ≤ PR[t], ∀t, (1)

We assume in this paper the utility can only purchase
energy from the day-ahead market. However, by increasing
the renewable generation penetration, some utilities may also
sell energy to the market. In such case, the constraint PD ≥ 0
changes to PD ≥ P where a negative P indicates the upper
bound of the supply bid in the day-ahead market [16].

B. Deferrable Load Model

In addition to deciding on its bids, the utility has an extra
degree of flexibility to schedule its deferrable loads to manage
its network condition and the energy cost. Each deferrable
load i is characterized with three parameters αi, βi and ei.
Parameters αi and βi denote the beginning and the end of the
acceptable operating time intervals, where αi < βi. Parameter
ei ≥ 0 denotes the amount of energy that load i needs to
consume during operation period. It is required that

βi∑
t=αi

ddi [t]×∆t = ei, ddi [t] ≥ 0, ∀i, t, (2)

where ∆t denotes the length of the market interval. Some ex-
amples of deferrable loads include: charging electric vehicles,
intelligent pools, and certain industrial equipment [7]. Note
that, if only a portion of the load is deferrable, then we can
conceptually divide the load to deferrable and inflexible.

C. Distribution Network Model

Given the feeder topology and the location of renewable
generators and deferrable loads, the utility must satisfy power
flow constraints. There are various well-known linearized
DistFlows in the literature such as [25], [26] which could be
used for our purpose. Without loss of generality, we use the
linearized DistFlow equations drom [26], which are widely
used in the literatures, e.g. [27]–[29], represented by

∑
m∈Ωd(n)

pnm[t] =

∑
j∈Ωp(n)

pjn[t]− ddn[t]− dn[t] + grn[t] ∀n, t, (3)

∑
m∈Ωd(n)

qnm[t] =

∑
j∈Ωp(n)

qjn[t]− γdnddn[t]− qn[t] + γrng
r
n[t] ∀n, t, (4)

Un[t] =

Uj [t]− 2(rjnpjn[t] + xjnqjn[t]), ∀n, j ∈ Ωp(n), t, (5)

where γdn and γrn are the coefficients converting the active
power of the deferrable load and renewable generator at node
n to their reactive power; and U , v2 is the square of the
voltage. The sets Ωp(n) and Ωd(n) represent the precedent
and the decedent nodes connected to n, respectively, and pjn
shows the branch connecting node j to node n. Moreover, the
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squared voltage magnitude at each node and the flowing power
through each line are restricted to upper and lower limits:

Un ≤ Un[t] ≤ Un, ∀n, t, (6)
p
nm
≤ pnm[t] ≤ pnm, ∀nm ∈ Nb, t, (7)

q
nm
≤ qnm[t] ≤ qnm, ∀nm ∈ Nb, , t. (8)

Note that, obtaining all characteristics of the voltage magni-
tude from the squared voltage magnitude is straightforward.
Finally, the active and reactive power balance must hold at the
substation where active power is purchased from the market:

PD[t] + PR[t] =
∑
0m

p0m[t], ∀t, (9)

Q[t] =
∑
0m

q0m[t], ∀t. (10)

D. Characterization of Uncertainty

In this paper, two different approaches are utilized to
incorporate different sources of uncertainties, depending on
how well they can be predicted and how their variations may
affect power quality level of the distribution network. For
example, the variation in real-time market price may not cause
a problem to the power quality of distribution network, there-
fore, such price uncertainty can be treated as soft constraints.
In contrast, erroneous prediction of the renewable generation
level may affect quality of service and even unexpected service
interruption, which must be treated as hard constraints.

We address the uncertainty pertaining to real-time market
prices and inflexible loads through finite discrete random
scenarios (in the context of stochastic programming), denoted
by λrk and dnk, where k = 1, ...,K is the scenario index.

We also model the randomness in renewable power gener-
ation grnk through continuous uncertainty sets (in the context
of robust optimization) as follows:

Ψr = {grnk = ḡrn − wrnkĝrn, 0 ≤ wrnk ≤ 1,∑
n

wrnk ≤ Γr. ∀ k, ∀ n = 1, ..., Nr}, (11)

The last inequality in (11) is the budget constraint in robust
optimization. Parameter Γr ≥ 0 serves as a budget to control
the maximum number of renewable resources that can deviate
from their nominal values. If Γr = 0, then renewable power
generation is assumed fixed at its nominal value and the
problem is no longer a robust program. If Γr = Nr, then
the system is protected against all the upper-bound deviations
of the renewable resources. Between these two extreme cases,
variable wrk is introduced to define the scaled deviation of the
renewable resource from the estimated value ḡrnk.

It is worth clarifying that, if all the uncertainties are
modeled through robust optimization, then the model may
be too conservative in some cases, as the robust program
considers the worst case scenarios even for soft conditions.
Similarly, if all the uncertainties are modeled through stochas-
tic programming, then we may miss to plan adequately for
those scenarios that may have serious adverse impact on the
distribution network. Moreover, stochastic programming needs
the information of the probabilistic distribution of data which

may not be always available. Therefore, we propose to use a
hybrid approach by considering both stochastic scenarios and
robust formulation to add flexibility to the model.

E. Robust Stochastic Formulation

We formulate the distribution network-constrained optimal
demand bidding problem in the presence of deferrable loads
and uncertain renewable generation resources, as a two-stage
optimization problem, where decision making is carried out in
two subsequent steps, before and after uncertainty revelation.
In the first-stage, the optimal day-ahead energy bid PD[t]
is determined with the goal of minimizing the cost in the
day-ahead market cost and the expected cost in the real-time
market. Next, given the optimal bid in the day-ahead market, in
the second stage, the real-time energy bid P rk [t] is computed.
However, as indicated in Subsection II-D, DER output is not
known and can take any value in the set described in (11).
To protect the utility against the worst case realization of
the DER output, we present the following robust stochastic
network constrained optimal bidding problem:

Min
PD≥0

t=T∑
t=1

(
λD[t]PD[t]∆t+

Max
gr∈Ψr

Min
F

k=K∑
k=1

πk[t]λRk [t]PRk [t]∆t

)
, (12)

where Ψr is defined in (11) and we have

F = {(1)− (10) ∀ k = 1, ...,K}. (13)

The objective function in (12) is the total daily cost of energy
procurement, i.e., the deterministic cost of energy procurement
from the day-ahead market, plus the robust stochastic cost of
energy procurement from the real-time market. Note that, the
uncertainty of the day-ahead market price and its impact on the
bidding problem are discussed in [30]. If needed, our model
can capture uncertainty also in the day-ahead market prices.
This would require slight modification in the objective function
in (12, where different discrete scenarios for the day-ahead
market prices λD should be considered. If needed, notation
PD can also change to PDk . The inner most minimization
problem, which is the second stage decision problem in robust
optimization, treats PD[t] from the first stage as well as the
revealed uncertainty as constant; it accordingly minimizes the
expected cost of energy purchased (sold) in real-time market.
The limit on the day-ahead demand bid is determined in the
first stage, which is PD[t] ≥ 0. Sets Ψr and F are defined in
relationship with the uncertainty set of the renewable resources
and with the distribution network constraints, respectively.

Note that, all constraints in problem (12)-(13) are indexed
by k, meaning they must hold for every scenario. The decision
variable pertaining to the day-ahead market includes PD[t] and
those related to the real-time market are PRk [t], Qk[t], pmnk[t],
qmnk[t], vnk[t], and ddik[t]. Variables grk and wrk are used for
modeling the worst case uncertainty scenario. The formulation
in (12) incorporates both stochastic programming and robust
optimization methods that we discussed in Subsection II-D.
In the former, bidding decisions are made to minimize the



5

expected cost for the utility. In the latter, the worst-case
realizations of renewable production is anticipated. Note that,
variables grk and wrk are used for modeling the worst case
scenario. It is relevant to note that the proposed two stage
robust method is preferred when the utility needs to hedge
against the adverse impacts of the randomness of the DER
output and other network operating conditions [31].

III. SOLUTION METHOD

The multi-stage optimization problem (12) is difficult to
solve [32]. Thus, this section is dedicated to solve problem
(12). First, in order to have a clear presentation, we recast
optimization program (12) in the following compact form:

Min
y≥0

bT y + Max
u∈Ψr

Min
x

∑
k

aTk xk, (14a)

Ay +Bkxk = 0 ∀k, (14b)
Ckxk = uk ∀k, (14c)
Dkxk ≤ fk ∀k. (14d)

Note that, y denotes the vector of all the first stage variables;
and uk and xk denote the recourse variables. For each k,
uk includes the summation of a parameter and variable wk.
Constraints (14b)-(14d) stand for the ones in set F in (13).

In this paper, we propose to solve the min-max-min problem
in (14) using the column and constraint generation (CCG)
method [32]. The idea is to implement the solution procedure
in a master and a subproblem framework. The master problem
is a relaxed version of the original problem in (14) and the
subproblem is the middle-level and bottom-level problems.

A. Subproblem: Obtaining Upper Bound

Given a solution for the top-level variables y? at iteration
l, we solve the following problem in each scenario k:

Max
uk∈Ψr

Min
xk

aTk xk, (15a)

s.t. Ay? +Bkxk = 0 : µ1k, (15b)
Ckxk = uk : µ2k, (15c)
Dkxk ≤ fk : µ3k. (15d)

Dual variables are indicated after each constraints. Since the
feasible set in (15b)-(15d) is a polyhedral and aTk xk is linear,
the inner minimization problem in (15) is a linear program,
for which strong duality holds. Accordingly, we can replace
the inner minimization problem with its equivalent dual op-
timization problem [33, pp 224-227]. Hence, the max−min
structure in problem (15) can be converted to a max−max,
or simply a max, optimization problem. As a result, for each
scenario k, we can reformulate problem (15) as:

Max
u,w,µ

(−Ay?)Tµ1k + (uk)Tµ2k − fTk µ3k, (16a)

s.t.−DT
k µ3 + CTk µ2 +BTk µ1 = ak, (16b)

µ3k ≥ 0, (16c)
uk = ū− wkûk, (16d)

wk ∈ [0, 1]Nr ,
∑
n

wnk ≤ Γr. (16e)

Algorithm 1: solving problem (14)

1 Initialization: LB ← −∞, UB ←∞ and l← 0
2 repeat
3 Solve master problem (17) to obtain (xj?, ξ?, y?).
4 Update LB ← max{LB,Omaster}.
5 Solve subproblem (16) to obtain (u?, w?, µj?).
6 Update UB ← min{UB, bT y? +

∑
k Osub,k}.

7 l← l + 1
8 until UB − LB ≤ ε
9 return UB and (x? = x(j=l)?, u? = u(j=l)?, y?)

Here, we have also explicitly stated the constraints for each
scenario k in uncertainty set Ψr as (16d)-(16e). Problem in
(16) is a bi-linear program, where bi-linearity is due to the
term (uk)Tµ2k in the objective function. Since the uncertainty
set Ψr is a budget set which is polyhedral, the optimal solution
of problem (16) occurs at the extreme points of its uncertainty
set. Thus, the bi-linear program in (16) can be transformed
into an equivalent mixed integer linear program, c.f., [34],
[35] which can be solved effectively for each scenario k.

For use in the next subsection, let Osub,k denote the optimal
objective value of the subproblem for scenario k. Using the
summation of Osub,k over all scenarios k, we can obtain an
upper bound for the global solution in problem (14).

B. Master Problem: Obtaining Lower Bound

Suppose we are at iteration l. Let uj?k denote the optimal
solution of uk that is obtained from subproblem (16) at a prior
iteration j − 1, for all j ∈ 1, ..., l. We formulate the master
problem in problem (14) as:

Min
y≥0,ξ,xj

bT y + ξ, (17a)

s.t. ξ ≥
∑
k

aTk x
j
k ∀j ≤ l, (17b)

Ay +Bkx
j
k = 0 ∀j ≤ l,∀k, (17c)

Ckx
j
k = (ujk)? ∀j ≤ l,∀k, (17d)

Dkx
j
k ≤ fk ∀j ≤ l,∀k, (17e)

where xjk is the vector variables xk corresponding to ujk. Note
that, uj?k for all j <= l and for all k are obtained from the
previous iterations 1, ..., l − 1.

If all extreme points are included in the formulation, then
the master problem is equivalent to problem (14), see [32]
for details. Therefore, at each iteration, the optimal objective
value of the master problem, denoted by Omaster, provides a
lower bound on the optimal objective value of problem (14).

At the beginning, when l = 0, there does not exist any
constraint as part of the expressions in (17b)-(17e). However,
as the iterations evolve, the expressions in (17b)-(17e) generate
and add new constraints to the master problem.

Algorithm 1 shows how the optimal solution of problem
(14) is obtained. Note that, UB and LB indicate the best
upper bound and the best lower bound obtained by running
subproblem (16) and master problem (17); and ε is the
optimality tolerance.
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IV. EXTENSIONS AND REMARKS

So far, the uncertainty of the real-time price was modeled
using a discrete scenario-based method. Nevertheless, as dis-
cussed in [7], the utility may choose to model the uncertainty
of the real-time price also using a set-based method. In that
case, the proposed formulation can be modified accordingly
to incorporate such model, as we describe next.

Suppose the real-time prices vary as follows:

λRk [t] = λ̄R[t]− wRk [t]λ̂R[t], (18a)

0 ≤ wRk [t] ≤ 1. (18b)

Similar to (11), we take ΓR as control parameter, where∑
wRk [t] ≤ ΓR. (19)

The constraints in (18) and (19) can now be added to optimiza-
tion problems (14), (15), and (16). In this case, a represents
the uncertain parameter λR whose optimal value should be
determined. In this setting, a two stage robust program is
formed in which uncertainty appears both in the objective
function and in the constraints.

Using a similar approach outlined in Section III, the new
problem formulation based on set-based real-time price uncer-
tainty modeling can be solved using the CCG algorithm. Ob-
serve that, in this situation a worst case scenario is generated
for both renewable generation and real-time price. Since the
real-time price appears in the constraints of the dual problem
in (16), i.e., in (16b), and the renewable generation outputs
only appear in the objective function, the optimal value of the
renewable generation still happens at the extreme points of
its uncertainty set and we can solve subproblem (16) using
the same procedure outlined in Section III. Simulation results
show that the proposed algorithm converges quickly in only a
few iterations, see Section VI-B.7.

V. RESOURCE FLEXIBILITY INDEXES

A. Market Condition Index

With the growing penetration of DERs, ISOs are willing to
take advantage of the flexibilities that these resources offer, to
enhance quality of service and the electricity market efficiency.
However, these resources often are not dispatched by ISOs,
and in many cases are not directly visible to ISOs.

California ISO, which is our focus in this section, has
recently introduced a new index to help better manage the
energy consumption of flexible and responsive loads according
to the market conditions. This index is known as the Grid State
Indicator (GSI), which is a number between 0 and 10 reflecting
the market conditions into the distribution network [36]. GSI
is calculated based on historical locational marginal prices
(LMPs). A low GSI indicates a good condition for customers
to use energy for purposes such as electric vehicle charging.
A high GSI shows that market conditions have deviated more
from average conditions, and reduction in the use of price-
responsive end-user is recommended.

GSI is calculated based on historical locational marginal
prices (LMPs) and it thus varies significantly from one location
to another and from one time interval to another. However,
the GSI index only reflects the market condition and suggests

the deployment of the flexible loads according to the market
condition.

The main limitation of GSI is as follows: it ignores the
fact that flexible resources are located at distribution networks
and their market participation may have adverse effect on
distribution network constraints. In this regard, there are still
two main questions that need to be answered:

1) What is the risk of the deployment of deferrable loads
on violating the distribution network constraints in the
presence of uncertain on-site renewable resources?

2) What feeders are least affected, in terms of increasing
their cost of power procurement, by mitigating the risk
of constraint violation by not operating deferrable loads?

Here, we aim to answer both questions. We consider not
only the market conditions as in GSI, but also the impact of
the flexible resources on the distribution network constraints.
Specifically, we introduce two new indexes that can help the
utility look beyond the GSI market conditions and identify
feeders with better performance for the operation of deferrable
loads considering system uncertainties. It is also important
for the ISOs that the DERs can actively participate in the
electricity market and could follow the market economic
signals. The two indexes in this paper aim to show how good a
feeder responds to the market signals without having negative
effect on the distribution network.

B. Proposed Local Condition Indexes

In the context of power distribution systems, utilities are
obliged to meet customers load demand within the standard
power quality requirements. Accordingly, the operational con-
straints governing distribution network must be satisfied for
any operating point. Limitations on voltage and line flow are
commonly assumed as operational constraints, see (6)-(8). To
such aim, several power quality indexes are developed in the
literature, mostly structured on two rather broad categories:
violation from constraints and deviation from nominal values.
In this paper, a Power Quality Constraint Violation Index
(PQCVI) is formulated based on the former category, to
quantify possible risks in neglecting such constraints in the
optimal bidding problem. Mathematically, we have:

PQCVI(%) =
∑
k

πk × Ik(Network Constraint

Violation) × 100 , (20)

where, Ik (Network Constraint Violation) is an indicator func-
tion which is 1 if the network constraints are violated and 0
otherwise. If PQCVI is low, then the feeder is likely in a good
condition to take advantage of its flexible resources with a low
risk of violating distribution network constraints.

Index PQCVI is useful to assess the risk of violating the
technical constraints while operating the flexible resources as
the market, if such constraints are ignored. It answers the first
question in Section V-A. But, it does not give any indication
on the impact on financial aspects, i.e., cost savings. Those
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aspects can be taken into consideration by using another index,
Feeder Cost Inflexibility Index (FCII), which is defined as:

FCII(%) =

(
1− Optimal cost without constraints

Optimal cost with constraints

)
× 100.

(21)

This index shows how much additional cost is incurred to
mitigate the likelihood of violations compared to the cost
under ideal distribution network conditions, where there is no
risk of violating network constraints. A lower FCII, such as
2%, means that the difference between the optimal objective
values under constrained and unconstrained bidding problems
is small; thus, one can mitigate technical constraints violations
without significantly affecting the cost savings in optimal
market participation. A higher FCII, such as 50%, means that
it is likely to lose significantly on cost savings under optimal
market participation of the load resources on a feeder in order
to maintain the power quality of that particular feeder. In other
words, FCII shows if the feeder is appropriate for deploying
flexible loads, see the second question in Section V-A.

Note that, while GSI solely depends on the market prices,
FCII depends on not only the market prices, but also on the
distribution grid conditions and load resource parameters.

Both PQCVI and FCII are important indexes and should be
considered simultaneously. PQCVI is related to the extend of
the risk in violating the constraints, while FCII means how
cost-effective it is to remove the risk. If these two indexes
are low (high), then the feeder is more (less) appropriate for
deploying its resources.

VI. CASE STUDIES

A. Small Illustrative Example

A simple 4-node distribution network, shown in Fig. 2, is
used to illustrate the importance of our analysis. We assume
the day-ahead and real-time markets have two time slots. The
day-ahead market prices of each time slot are 15 and 70
$/MWh. The real-time market prices are 16 and 100 $/MWh.
One inflexible demand is located at bus 3 with active and
reactive demand of 3 and 1 MWh and 1 and 0.4 MVarh in
each time slot, respectively. A wind turbine is installed at
bus 2. The deferrable load is located at bus 4 with a total
consumptions of 4 MWh. The power factor is 0.9 for both the
wind generation unit and the deferrable load. We assume that
the utility can only purchase energy in both markets. Three
cases are analyzed as follows:

(a) Case 1: Network is not modeled.
(b) Case 2: Network is modeled and wind generation in

time slots 1 and 2 are 0.5 MW and 1.5 MW, respectively.
(c) Case 3: Similar to Case 2, but with wind generation

being equal to 1 MW at each time slot.
The differences between Cases 1 and 2 would highlight

the importance of considering the network constraints. Also,
the differences between Cases 2 and 3 would highlight the
importance of considering the uncertainties.

The operating conditions are shown in Fig. 2 and the optimal
bids are shown in Fig. 3. First, note that different bid curves are
achieved. The utility objective values in these cases are $90,
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Fig. 2. Network constraints, when the utility bids according to a) Case 1; b)
Case 2 with wind power reduced to that in Case 3. Overloaded feeders and
voltage violations are shown in red. The wind power resource is denoted by
“w” and the deferrable load is denoted by “f” .
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Fig. 3. Optimal bid curves for illustrative example in Section VI-A.

$161.5, and $163.46. The first case yields the lowest objective
value but causes overload and voltage violation. Indeed, in
Case 1, the model suggests to supply all deferrable loads
in time slot 1 because the day-ahead market price is lower.
However, the peak of the inflexible load occurs in time slot
1 and shifting all the deferrable loads to that time slot, to
reduce cost, will overload feeder 1, as shown in Fig. 2(a). If
the results of Case 1 are implemented, then the utility has
to perform corrective actions, probably with high costs, in
order to mitigate or remove violations. For instance, one such
corrective action is to shift some demands to time slot 2 and
purchase from the real-time market at a higher price of 100
$/MWh. Fig. 2(b) also portraits the network conditions when
the utility bids according to Case 2 but wind generation is
changed to Case 3. We observe that voltage violation at bus
4 occurs when wind output changes.

These results clearly indicate that ignoring network con-
straints and/or the randomness of renewable generation lead
to technically infeasible or expensive outcomes.

Finally, if we only consider cases 1 and 2, we see that
PQCVI is 1 and FCII is 44.27%, meaning that, if the utility
only follows the market prices and does not consider its
network constraints, they will be violated. The FCII also says
that the utility may not fully benefit from its deferrable loads
and its cost saving is largely affected by the adverse impact
of deploying deferrable loads on its distribution network. This
feeder may not be a good choice for developing deferrable
loads as the utility cannot take full advantage of them.

B. 33-bus Distribution System

Next, we apply the proposed method to the 33-bus dis-
tribution system. The data is adopted from [37] with some
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Fig. 4. The 33-bus distribution system with renewable resources and de-
ferrable loads. “w” and “f” refer to wind power resource and deferrable load.
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market clearing price daily profile under different scenarios.

modifications. The power and the voltage bases are 100 MVA
and 12.66 Kv. One wind turbine and two PVs were placed at
buses 6, 20 and 23 and five deferrable loads at buses 13, 18, 22,
25, 33, see Fig. 4. The deferrable loads can consume energy
from hour 12 (noon) to hour 21, i.e., T = 10. The total energy
consumption of the deferrable load is 0.0813 pu, equally di-
vided amongst the five deferrable loads. If a load is inflexible,
then its total consumption is divided equally within each time
slot, i.e., 0.00813 pu in each hour. The maximum hourly wind
generation is 0.0024, 0.0028, 0.0030, 0.0032, 0.0033, 0.0034,
0.0052, 0.0053, 0.0052, 0.0069 pu. The maximum hourly
generation for each PV is 0.0025, 0.0025, 0.0016, 0.0008,
0.0002, 0, 0, 0, 0, 0 pu. We allowed up to 15% and 10%
random deviations at each hour for wind generation and each
PV, respectively. We set the maximum amount that the utility
can sell in real-time to 0.0010 pu. Unless stated otherwise,
the uncertainty budget is Γ = 2 and the substation capacity is
0.055 pu. We created 10 scenarios with equal probabilities for
inflexible loads and real-time market prices as shown in Figs.
5 and 6. The scenarios are based on the data in November
2015 for a real-world feeder and the California ISO market
nodal price for a real-world distribution substation where that
feeder is connected to. Without loss of generality, we consider
the price component of the day-ahead market bid to be equal
to the market price, as we consider it deterministic.

In the following, we examine the impacts of several factors
in the bidding problem with and without network model.

1) Different Budget of Uncertainties: Optimization results
for different Γr values are presented in Table I for the
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Fig. 6. The total inflexible load consumption in different scenarios

TABLE I
EXPECTED COSTS OF UNCONSTRAINED AND CONSTRAINED CASES

Γr

Cost ($)
Unconstrained Constrained

Day
Ahead
Market

Real
Time

Market
Total

Day
Ahead
Market

Real
Time

Market
Total

0 528 175 703 581 139 720
1 551 175 726 604 139 743
2 552 177 729 606 139 745
3 555 175 730 607 140 747

constrained (with network model) and unconstrained (without
network model) cases. Observe that as the uncertainty budget
increases, the expected cost increases as well, given the fact
that the utility is protected from more severe operating limit
violations. It is seen that the day-ahead cost is higher than the
real-time one in all cases. This is because the energy price
in the real-time market is volatile and can drastically vary.
The utility thus has to keep balance between these scenarios
in order to minimize its expected cost by choosing its bid in
the day-ahead market. Moreover, the utility can benefit from
energy sale in the real-time market in some scenarios.

The day-ahead bids in sample hours 13, 14, 15 and 16 and
for Γr = 3 are depicted in Fig. 7 for the unconstrained and
constrained cases. It is seen that in the constrained case the
utility is willing to purchase more from the day-ahead market.
Detailed results show that the (energy) bid strategy for other
Γr values is similar to that obtained for Γr = 3.

It is worth mentioning that if the linearized Distflow model
in [25] is used, then the expected costs would become $719,
$742, $744 and $746 for Γ = 0, 1, 2, 3, respectively. These
numbers are only about $1 different than the numbers in Table
I. Furthermore, the bidding pattern does not change when
the linearized Distflow model in [25] is used. These results
confirm that the main findings and conclusions of this paper
do not depend on the exact choice of the linearized Distflow
model being used.

2) Deferrable Loads Location: Two scenarios are described
as follows. The first scenario is similar to that explained in the
previous section in which five deferrable loads are placed in
the system, but the active and reactive limits of the feeder
connecting node 2 to 19 are less than 1 MW and 0.2 MVar.
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Fig. 7. Day-ahead energy bids for Γr = 3 for sample hours

TABLE II
EXPECTED COSTS WITH DIFFERENT NUMBER OF DEFERRABLE LOADS

AND SIMILAR TOTAL DEMAND

# of
Flexible
Loads

Cost ($)
Unconstrained Constrained

Day
Ahead
Market

Real
Time

Market
Total

Day
Ahead
Market

Real
Time

Market
Total

2 552 177 729 665 102 767
5 552 177 729 605 140 745

The second scenario considers two deferrable loads located at
buses 5 and 33. The total consumption of these loads remains
as in the first scenario, i.e. 0.0813 pu

The optimization results for the unconstrained and con-
strained cases are shown in Table II. As seen, the expected
costs of the unconstrained cases are the same in both scenarios.
However, in the constrained case, the expected cost is higher
when two deferrable loads are considered. Specifically, the
energy bids in the day-ahead market are higher for the scenario
with two deferrable loads in hours 12, 13, 14 and 15 as
shown in Fig. 8. The higher cost here is due to the network
constraints. That is, the utility has to shift more deferrable
loads to the hours of higher prices as shown in Fig. 9. With
five deferrable loads, the utility has better choices to manage
consumption and cost, as seen from Table II. FCII for five and
two deferrable loads are 2.14% and 4.95% highlighting that
the utility can better benefit from its deferrable loads when
they are distributed.

3) Renewable Generation Location: In this subsection, we
analyze the impact of size and site of renewable generations
on the expected cost of the utility. The first scenario is similar
to that explained in the previous section in which one wind
turbine and two PV units were placed in the system. The
second scenario considers one wind turbine located at bus 2
with the same generation output of the wind turbine in scenario
1 and one PV unit is located at bus 3. The generation output
of the PV unit is equal to the total generation of PV units
in scenario 1. Again, the unconstrained model cannot capture
the location of the renewable generation and thus the expected
cost is the same for both scenarios. The expected cost for this
case is $729. The expected cost of scenario 1 is $745 while it
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increases to $748 in the second scenario. That is, the location
of renewable generation directly affects the cost of the utility
in the demand bidding problem.

4) Deferrable Load Penetration: The impact of increasing
the number of deferrable loads was studied in this section.
From the previous discussion, the total deferrable load was
0.0813 pu We constructed a scenario in which the deferrable
load portion is equal to ρ × 0.0813 pu, and the remaining
(1− ρ)× 0.0813 pu is inflexible with consumptions are being
equally divided among all the hours. We increased ρ from 0 to
1. Fig. 10 presents the results with and without grid constraints
for Γr = 2. We can see that increasing the penetration level
of the deferrable loads reduces the cost. As seen, for low
penetration level, network constraints have slight impacts on
the bidding cost while for higher value of this parameter,
network model impacts become significant and can lead to
operating limit violations. For example, for ρ = 1, in Fig.
10(b), the feeder connected to the substation, operates outside
its allowable limits. Moreover, the worst voltage deviation
among the nodes in all scenarios and time slots is harsh.

5) Proposed Indexes: Table III provides the values of the
indexes related to Section V for different ρ in Section VI-
B.4. It is observed that when the deferrable load penetration
increases, PQCVI increases. Notice that FCII is low. That
is, the expected cost between considering versus ignoring
network constraints is not significant. Therefore, the utility, by
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TABLE III
PROPOSED LOCAL INDEXES FOR DIFFERENT LEVEL OF DEFERRABLE

LOAD PENETRATION

Index Flexible Load Coefficient ρ
0 0.2 0.4 0.6 0.8 1

PQCVI (%) 0 40 70 100 100 100
FCII (%) 0 0.04 0.22 0.62 1.39 2.34

applying the proposed model, can prevent from violating its
constraints at the expense of a slight increase in the expected
cost compared to using the conventional model which may not
be feasible in practice. Note that, in this example, PQCVI is
high for ρ ≥ 0.6. This means that if the utility ignores the
network constraints in the bidding problem, there is a high
probability that these constraints are violated in practice and
the utility incurs high costs. However, if the model considers
the operational constraints, then the model acts proactively and
prevents from the network constraint violation in reality. The
indexes were calculated for one day. The average value can
be obtained in the long term and used for planning purposes.
Interestingly, both FCII and PQCVI can be a good measure
to develop deferrable load penetration in distribution network
under uncertainties. These two indexes need to be considered
simultaneously; because if only one index is considered, the
utility may not see the big picture in his decision making
process. If both indexes are high in the long term, then the
feeder in question may not be a good choice for recruiting
deferrable loads.

6) Comparison Based on Actual Outcome: To better evalu-
ate our method, several experiments based on the actual output
is done. To such aim, we performed the following steps:

• We obtained the day-ahead demand bid using our model
with and without constraints. To highlight the importance
of our model, we limit the substation capacity to 4MW.
We also limit the bid in the real-time market to be less
than 1MW to relieve the utility form the stress of the
real-time market [22].

• After obtaining the day-ahead demand bid, we solved
a cost minimization problem considering the network
constraints and fixed values of the renewable generations,
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inflexible loads, real-time energy prices and day-ahead
demand bids.

• As for the renewable generations, two different values
are considered. In the first one, the renewable generations
are equal to the worst case scenario obtained from our
optimization problem and in the other case, their values
are equal to their predicted values gr.

• As for the real-time prices and the inflexible loads, we
consider their values in each scenario.

Table IV shows the actual cost and the nodes with voltage
violations for different values of the renewable generations,
real-time market prices and inflexible loads. We consider
20 different realizations for actual values. We can see that
the proposed model attains a feasible solution, while the
unconstrained model failed to reach any feasible solution in
all scenarios. That is, in this case study, the utility cannot
correct the network constraints problems due bidding in real-
time market. It must take other actions. The cost is lower when
the renewable generations operate at their nominal values.

7) Actual Outcome for Different Modeling of Real-Time
Prices : In this section, we examine the case where the uncer-
tainty in real-time prices is modeled as continuous uncertainty
sets as opposed to discrete random scenarios. Consider the
network-constrained model with the assumptions described in
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TABLE IV
THE ACTUAL COSTS AND VOLTAGE VIOLATIONS FOR DIFFERENT ACTUAL OUTPUTS.

Model Scenarios
1 2 3 4 5 6 7 8 9 10

Constrained
Worst
Case

Cost
$ 696 707 809 685 739 795 809 814 789 717

Nominal
Case

Cost
$ 679 690 763 660 722 778 776 792 768 697

Unconstrained

Worst
Case

Cost
$ Infeasible

Violated
Node

Voltage

9-18,
29-33

9-18,
29-33

9-18,
30-33

9-18,
29-33

8-18,
28-33

8-18,
28-33

9-18,
29-33

9-18,
29-33

9-18,
30-33

9-18,
30-33

Nominal
Case

Cost
$ Infeasible

Violated
Node

Voltage

9-18,
29-33

9-18,
29-33

9-18,
30-33

9-18,
29-33

8-18,
29-33

8-18,
29-33

9-18,
29-33

9-18,
29-33

9-18,
28-33

9-18,
29-33

Section VI-B.1. The uncertainty budget is fixed at 10 and the
real-time prices are assumed to vary within the minimum and
maximum values in each hour, as shown in Fig. 5. Fig. 11
shows the bidding patterns in both cases. The expected cost
increases from $745 to $811 for the set-based model. Next, we
carry out experiments based on the actual outputs using real-
time prices from October 1 to December 24 2015 as follows:
• We obtained the day-ahead demand bid using the pro-

posed models for continuous and discrete uncertainty
modeling approaches for real-time prices.

• After obtaining the day-ahead demand bids, we solved
a cost minimization problem considering network con-
straints and fixed values of the renewable generations,
inflexible loads, real-time energy prices and day-ahead
demand bids.

• Output levels of the renewable resources were set equal
to the predicted values.

• Real-time prices and inflexible loads were set in each sce-
nario based on the actual real-time prices from October
1 2015 to December 24 2015.

Fig. 12 shows the actual daily cost of the utility across three
months using the two proposed methods. It is seen that, on
most days, the model with discrete scenarios attains a lower
cost solution compared to the model where the real-time prices
are modeled by the uncertainty sets. There are few days/hours
that the uncertainty set approach leads to lower costs. For
example, on October 9, the cost of the robust model is $780
while it increases to $950 if the model with discrete scenarios
for real-time prices is used.

In future, the indexes proposed in this paper can be com-
bined with field measurements at power distribution feeders,
e.g., from smart meters or phasor measurement units [38], to
examine in real-time the impact of the aggregated participation
of DERs in electricity markets and transmission-level services
on distribution system reliability.

VII. CONCLUSIONS

In this paper, we proposed the optimal bidding problem
of a utility with intermittent renewable generations and de-
ferrable loads that participates in a two-settlement market.
We considered the uncertainty of the real-time market price,

inflexible demand, and DERs generation and developed a two-
stage robust stochastic optimization problem which to the best
of our knowledge is the first bidding model that simultaneously
considers uncertainty and network model. A two stage robust
stochastic optimization model was thus derived which was
solved using a decomposition algorithm.

We observed that the bidding strategy of the utility drasti-
cally changes when network constraints are considered, com-
pared to the simplified unconstrained case that can lead to
infeasible or costly outcomes. The effect of the deferrable
load locations in the distribution system was also evaluated
and it was shown that a large number of deferrable loads,
compared to small numbers but with large capacity of such
loads, can better reduce the bidding cost in the presence of
network constraints. Novel indexes were also proposed to
help the utility apprise the distribution network performance.
The possibility of modeling the uncertainty of the real-time
prices with a set-based uncertainty method was discussed and
illustrated with numerical results.
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