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Abstract—In wireless sensor networks (WSNSs), the field in- Source Source
formation (e.g., temperature, humidity, airflow) is acquired via o O o) o<----,f;(l;§
several battery-equipped wireless sensors and is relayed towasd / / \O o
a sink node. As the size of the WSNSs increases, it becomes ineffi- @] / \ @) 2
cient (in terms of power consumption) to gather all information in Q O\ e}
a single sink. To tackle this problem, one can increase the number O\A\ Sink 1 O\ Sink 2
of sinks. The set of sensor nodes sending data to sirikis called O O/'.‘\O
commodity k. In this paper, we formulate the lexicographically o T O\ O/' A o
optimal commodity lifetime routing problem. A stepwise central- O o \ /‘
ized algorithm, called the lexicographically optimal commodity A Second
lifetime (LOCL) algorithm, is proposed which can obtain the First O o commodity

. . . . . . ) commodit AR —
optimal routing solution and lead to lexicographical fairness Y [

among commodity lifetimes. We then show that under certain Source Source
assumptions, the lexicographical optimality among commodity ) ] )
lifetimes can be achieved by providing lexicographical optimality Fig- 1. A sample wireless sensor network with two sinks.
among node lifetimes. This motivates us to propose our second

algorithm, called the lexicographically optimal node lifetime ; P : ; ;
(LONL) algorithm, which suitable for practical implementation. can be carried out. In [8], [9], it is defined as the time at vahic

Simulation results show that our proposed LOCL and LONL @& region within the WSN is not covered by any nodes.
algorithms increase the normalized commodity and node life-  We now summarize some of the related works on lifetime
times compared to the maximum lifetime with multiple sinks maximization in WSNs. The maximum lifetime routing prob-
(MLMS) [1] and lexicographical max-min fair (LMM) [2] routing o, js formulated as a linear programming (LP) problem in
algorithms. [5], [10], and [11]. In [12], a distributed algorithm based o
Keywords: multiple sinks, wireless sensor networks, lexicodual decomposition is proposed to solve the linear maximum

graphical optimality, routing flow. lifetime problem. In [13], the maximum lifetime problem
is extended by considering a variable-length TDMA (time
. INTRODUCTION division multiple access) frame in the MAC (medium access

. . o control) layer. In [14], the utility-lifetime tradeoff in aximum
Recent advances in low power integrated circuits have spagiine problem is studied by considering the source rates

up the development of various types of low COSt WIrelesg, iapjes in the system. In [15], the same problem is studied

sensori, which are the building kaIOCkS of thedwiflessr]sensigl considering the scheduling constraints of the link dates.
networks (WSNs). In WSNs, each sensor node has the capar) e |ifetime problem is formulated as an LP problem

"?”“y to Sense the environment (e.g., temperature, PresStys, multicommodity networks. In [2], an iterative algonith
light, acoustic) and process the data. In general, WSNs hﬁ'ﬁ’eproposed to obtain a lexicographic max-min node lifetime

an ad hoc topology and eac_:h node is capable of relaying t!Q’f'iution. In [16], an iterative centralized algorithm ioposed
data towards the sink [3]. Since most of the sensor nodes #&ind a Pareto-optimal routing solution for WSNs

battery powered, one of the design objectives is to prolbeg t

lifetime of the network [4]. There are various ways to defin As the size of the network Increases, I begomes_ |neff|C|_ent
the lifetime of a WSN. It can be defined as the time at WhiC!n terms of power consumptlon) and some_t|mes |mpo§5|ble
the first node runs out of energy [5]. This time is equivale i terms of network capacity) to gather all information in a

to the time at which the first routing path is disconnecteﬂngle sink node. To tackle this problem, one can increase th

[6]. In [7], the lifetime is defined as the time at which thd'UMPer Of sinks [17}-[22]. A sample WSN with two sinks is

maximum number of times a certain data collection functio'HUStrated in Fig. 1, with each source node sending dataeo t

nearest sink. WSNs with multiple sinks have recently reckive
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optimal solution of the multiple sink problem are obtainedThe commodities and the nodes can be considered as the
It is shown that the bounds are tight for networks with asersand resourcesof the system, respectively. Each sink
large number of nodes. In [23], we studied the problem of fairses the system resources to gather information within the
resource allocation among different commaodities in midtip sensing area. The source nodes in a commodity utilize the
sinks WSNSs. energy of the intermediate nodes in the network for a multi-
The set of nodes sending data to a particular sink is calledp transmission towards the sink. Since each node hasybatte
a commodity. The lifetimes of commodities in a networlpowered, resources in the system are limited. Thus, a fair
with multiple sinks are not independent. By changing theesource allocation is needed. Our objective is to obtain a
routing flows, we can increase or decrease the lifetime foin earouting flow which fairly shares the system resources among
commodity. One important issue is how to obtain a routingpmmodities. The lexicographic optimality is used as the
solution which provides fairness among different commpoditnotion of fairness among the lifetimes of the commodities.
lifetimes. This is the main focus in this work. To the best of Let ) denote the set of sensor nodes &ndienote the set of
our knowledge, there is no prior study on fair lifetime maxisinks collecting information from the network. The dataerat
mization for multi-commodity WSNs with multiple sinks. Ourgenerated by source nodeto sink k& € C is denoted byS~.
proposed algorithms are based on lexicographic optinui@atiThe total data rate generated by source notedenoted by
(see Section II-A) to achieve fairness. The contributiohthis  S; and is equal tdy_, .. SF. Let \V; be the set of neighbors
paper are as follows: of nodei € V. Let z;; denote the data rate of commodity
« We consider the commodity lifetime problem in a WSN: € C transmitted from nodé to node;j € N;. The aggregate
with multiple sinks. We formulate this problem as alata rate for the unidirectional logical link from nodéo j €
sequence of optimization problems. N; is denoted byr;; and is equal oy, .. :cfj For notation
« We propose a stepwise centralized algorithm, called tlsamplicity, we stack up all:;; and denote it as vectot.
lexicographically optimal commodity lifetime (LOCL) Let p;; denote the power consumed in nodes V for
algorithm, which lexicographically maximizes the life-transmission of one bit information to node € N;. The
time of commodities. By using the LOCL algorithm,maximum data rate between nodeand j is denoted byR;;
the average normalized commodity lifetime increases lepending on the capacity of the link and the MAC protocol
100% and 35% compared to maximum lifetime witlbeing used. Lef; represent the initial energy of nodeThe
multiple sinks (MLMS) [1] and lexicographical max-minlifetime of sensor nodg T;(x), is defined as follows:
fair (LMM) [2] algorithms when there are four sinks in
the network, respectively. Ty(x) = E; . 1)
o We show that, under certain assumptions, a lexicographi- Zjem Dij Dk xfj
cally optimal commodity lifetime problem can be reduced
to a lexicographically optimal node lifetime problem. The lifetime of commodity is defined as the time at which
This problem can be solved in polynomial time. Wehe first path is disconnected between one of the sources and
propose a distributed algorithm, called the lexicographsink £ € C. This time is equal to the time at which the first
cally optimal node lifetime (LONL) algorithm, to solve node carrying information for sink runs out of its energy.
this problem using dual decomposition technique. ThEhe lifetime of commodityk € C under data flow vectox is
LONL algorithm is simpler for implementation and moredefined as follows:
interesting for practical deployment.
The rest of this paper is organized as follows: In Section . .
Il, we present the r?rort))lem forr?mlation and describe our pro- TH(x) =min § Ti(x) | i€V and Z xfﬂ >00. )
posed LOCL algorithm. In Section Ill, we propose the LONL JEN:
algorithm and provide its distributed implementation gsihe 1 e il i ) )
dual decomposition technique. The performance compagison” Vector T = (I, 1%, .., T'%) is callledl alexgcographl-
between LOCL, LONL, MLMS, and LMM algorithms are cally orderedcommodity lifetime vector ifl"* < 7= < --- <

: : . A : ic i i o
presented in Section IV. Conclusions are given in Section v, That'ls, all thg elements in the vectqr are 'sorted (or
arranged) in ascending order. The commodity lifetime wecto

T is lexicographically greatgrthanyector’i‘ if and only
LIFETIME (LOCL) ALGORITHM if there qxlst31~such that 7% > Tl., and for allj < ¢
. . o i . .. we haveT® = T7. As an example, ifT' = (2,2,5,8) and
In this section, we first introduce the notations. The lifegi 7. _ (2,2,4,9), then'T is lexicographically greater thaf.
of the commodity and the lexicographically ordered commogy,  yectors ardexicographically equalf all of the elements
ity lifetime vectors are defined. We then present the stepWigs ihese two vectors are equal.
LOCL algorithm.

Il. LEXICOGRAPHICALLY OPTIMAL COMMODITY

A vector islexicographically optimaln a set if it is the lexi-
cographically greatest vector in the set. As an examplehr
A. System Model set{(1,3,7,8),(2,2,5,8),(2,2,4,9), (2,2,3,10)}, the vector

Consider a WSN where the sensor nodes are randoniy 2,5, 8) is the lexicographically optimal vector. Note that for
scattered over the coverage area. Each sensor node hasllinahy compact set dR™, there exists only one lexicographically
energy. Nodes can cooperate to relay data towards the sirdggtimal vector [24].



B. Problem Formulation a lower bound for the lifetime of minimum commodity:

In the LOCL algorithm, the objective is to determine the < min, rec {T%(x)} = ¢ < T"(x), VkeC. (4)
routing paths and flow rates (i.e., data flow vectgrwhich
lead to the lexicographically optimal feasible lifetimectar.
The LOCL algorithm is a stepwise algorithm. In the first
step, the minimum commodity lifetime in the network is maximize ¢

The objective is to maximizé. Substituting (2) in (4) and (4)
n (3), it becomes:

max.imized. This step may have an infinite number of optimal subject to ¢ < T, VEkeC

routing solutions. In the second step, among the solutims f

the first step, a solution is chosen which maximizes the skcon L . m
o ’ o o TF = T | T, = E, g m

minimum commodity lifetime. The second step may also have e | T il ( Z Pij Z i)

e e . . . ieEN; eC
an infinite number of optimal solutions. ’ "

In general, in stepr of the LOCL algorithm, among the

k

solutions from stepr(— 1), the solution is chosen which max- and Z zi; >0, VkeC
imizes thenth minimum commodity lifetime. In other words, JEN;
in stepn, thenth minimum commodity lifetime is maximized Z (xfj — xfi) = Sk, VieV,VkeC
while all lower commaodity lifetimes are being maximized.€eTh JEN:
routing solution in the last step lexicographically maxies koo ‘ )

L2 " 5 < Ryj, VieV,VjeN;
the lifetime of all commodities. Note that the number of step ,;x” - ! J =

is equal to or less than the number of commodities. The

optimal routing solution in the last step is the lexicogriapty 2ij 20, VieV,VjeN, VkeCl. (5

optimal commaodity lifetime routing (LOCLR) solution: The second constraint in problem (5) can be replaced by:
Definition 1 A routing flow is LOCLR if the vector of _, E; : & _

o " ) . . . < — if x>0, VieV. (6)

lifetimes of commodities under this routing flow is the lexi- > ien, Somee Pig J%\; J

cographically greatest feasible commodity lifetime vecto
k i e i _ k
LOCLR s the solution of the LOCL algorithm or equiva- Ve replacel™ andt by their respective inverseg” = 1/7

lently the optimal solution of the last step of this algomth 2nd¢ = 1/t. The objective is changed from maxi'mizimgo
The last step of the LOCL algorithm may have more than ofi@nimizing ¢. Problem (5) can now be written as:

(i.e., an infinite number of) optimal solutions. minimize ¢

Proposition 1 The lexicographically optimal commodity subject to
lifetime vector is unique but the LOCLR solution is not k
necessarily unique. | 729 m < g gk vfk ¢ S 0VieV.VEeC

. . . . . iglss > LY )| ij >0, )

As we mentioned earlier, the lexicographically optimal EZN_mZEcszJ 7 ,EZN_IJ 'e ©
commodity lifetime vector in a set is unique [24]. Results ’__.' . . ) ] '
in [2] showed that in a lifetime maximization problem, it is Z (5 —xj;) =57, VieV, Vkel ()
possible to have an infinite number of optimal solutions. An ~ 7€N:
example can be found in [25]. This example can be extended szfj < Ry, VieV,VjeN;
for the networks with multiple sinks or commodities. keC

af; >0, VieV,VjeN; VkeC.

C. LOCL Algorithm: First Step The second constraint in problem (7) is conditional. To

We now present the first step of the LOCL algorithn®btain a closed-form for this constraint, we multiply boithes
and describe how it can be converted to a linear mixedf the inequality by(>", . #};). The new constraint is:
integer programming problem. In the first step, the minimum

commodity lifetime is maximized. The problem is as follows: k , E E
’ g D || 2 dpunh | < | Xy | Bt
maximize min {7%(x)} JEN: JEN; mec JEN;
keC

vVieV, keC. (8)

b E gk gk v
subject to 3 (wly — o) = SF, VieV, VheC o S ,ex, 2% = 0, then both left hand side and right

ij

. X ) . hand side become 0. [}, . rfj > 0, then constraint (8)
nglea VZ€V7VJ GM 1 I . ' ot ok

Z J is equivalent t0:3 ", - >,.ccpiji; < Eiq". Therefore,

kec ;

. ) ) constraint (8) is equivalent to the second constraint in ThAg
zij 20, Vi€V, Vj €N, VE€C. (3) constraint in (8) is a nonconvex constraint. We use a series
The first set of constraints is the flow conservation for ea(](:ﬂc change of v anables_ to replace this constraint with s«_éyer
N . Tinear constraints. We introduce an auxiliary booleanalalg:
commodity in all the nodes. The second set of constraints is
the data rate limits on each link. To obtain a linear objectiv b — { 0, i Xien ;=0 )

function, we introduce an auxiliary scalar variabjevhich is P, df Zje/\n xfj > 0,



where b¥ is equal to 1 when node carries information of ~ Because of the linearity of the objective function, it is pos
commodity k. We can then map the new boolean variable tgible to have an infinite number of optimal lifetime soluson

rate variables as follows: To obtain a unique set of commaodities with minimum lifetime
S ik in this step and the subsequent steps, we use the regulamizat
LU T < b, VieV, keC. (10) method. Details of the regularization method can be found in
2jen; Bij Appendix B. The regularization term used in problem (15) is

Constraint (8) can now be written as follows: the Euclidean norm of commaodity lifetime vector which is

2 e _
> ree (d)”. Therefore, the new objective of problem (15) is:
0> Y pual <UEGE,  VieVv, kecC. (11) © 2
JEN mee minimize ¢ +6>_ (¢*)°, (16)

This constraint is still nonlinear. We use a linearizatieoh- ke

nique and convert this constraint to a set of linear conssai whered is the regularization parameter. The objective function
Details of the linearization technique can be found in Ads now quadratic. The work in [26] and [27] proved that when

pendix A. We define two new variables: J is less than a certain threshold, the optimal solutions ef th
) regularized problem form a subset of the optimal solutiohs o
ko _ k C.m
vE = by Y pual), YieV, kec the problem before regularization.
jEN; meC
v = biEd", Viev, kec. (12

D. LOCL Algorithm: Subsequent Steps

The first step in the LOCL algorithm is a linear mixed-
vl < EiyF, VieV, kec. (13) integer program (MIP). The feasible set in the second step

of the LOCL algorithm is the optimal solution set of the

A set of constraints is added for each new variable and nofiet step. Similarly, the feasible set in the third step ie th

Constraint (11) can be written as:

i and commodityk: optimal solution of the second step, and so on. We call the
m mixed integer programming problem in step as MIPx.
0 < v < Fjen: Lmec PigT, The following lemma characterizes the feasible region ter t
D jen: 2omee Pigaly — (1= 0F)Pe® <l problem in step:
vk < bk pmaz, (14) Lemma 1.The feasible region of problem MIR- is
0< A~k < gt nonempty if there exists at least one path between eachesourc

. E (1) < ok < gk bk and its associated sink.
¢ = Gmaa(1 = 07) <977 < daabls The proof of this lemma is presented in Appendix C. This
where P/"** = Y- p;;R,;, and gk, is a loose upper lemma guarantees that the feasible region in each stephwhic
7 i J mazxr . . . . . .
bound forg*. We re-write problem (7) with new variables. IniS the optimal solution set in the previous step, is nonempty
this problem, the variables arg ¢*, =, «72, b, v, and/%, Ass_umelt*hat the minimum lifetime in the first step (problem
while ¥, Ry;, Ei, pij, P, andgk,, are the constants: (15)) is T** and the optimal value (inverse of minimum
commodity lifetime) isq'*. Let P, be the set of commodities
minimize ¢ that the first constraint is active in problem (15). In theoset

subject to step, the minimum lifetime among all the commodities except
ko VEkecl the members of?; (i.e., C\'P;) is maximized subject to the
7 = q,k . . ‘ condition that the lifetime of the commodities #, is also
> (@ - afy) = S, VieV, keC being maximized. The problem in the second step is similar to
JEN; problem (3) while the objective is modified to be as follows:
k
jeN; Lij )

% < by, VieV, keC maximize min T (x).

Z]Gj\ﬂ R’L] /CEC\Pl

k k .
vi < Eivi vVieV, kel Also, there is a constraint on the maximization of minimum
0<uF< Z Z pijrii, Vi€V, kel (15) lifetime. The constraint is:

SN mee T > T Viep
, , € Ps.

STpu DAl - -bPmer <uF Viev, keC = !
JENi  meC The problem in thexth step can be formulated with similar
Zx?j < Rij, VieV, jeN; changes in the objective function and by including the ad-
kec ditional constraints. Lef"* denote the maximum achievable
A YieV, keC value for thehth minimum commodity lifetime (obtained from
0<+F <, VieV, keC the hth step). LetP, denote the set of commodities that

A . . . A ' their lifetimes are equal td@** in the hth step. We have
0" = Gmaz(1 = b7) <9 < dmazbis Vi€V, keC  p,—(k | TF=T" and ke C\U/-' P.}. The problem
xfj >0, b¥ € {0,1}, vieV, jeN;, keC. inthenth step is as follows:



branch-and-bound algorithm [30]. The linear mixed-intege
problem in then!" step of Algorithm 1 hasgC||V| binary

.. . k
maximize  ming e\ ot p, {77(x) ] variables|C|(2|V|+]|L£]|) real variables|C|(8|V|+n) inequality

subject to T' > Th*, VieP, h=1,...,n—1 constraints, andC||V| equality constraints, wher& is the
Z (zh —zk) =Sk VieV, kecC set of links in the network. Notice that the computational
JEN; ’ ’ complexity of a linear mixed-integer problem depends only
A ) _ on the number of its integer (in our case binary) variables,
%xzj SRy, VieV, jeN, (A7) but not the number of real variables [31]. Thus, problem (18)
€

. _ _ can easily be solved in practice for small-scale and medium-
ry; = 0, VieV, jeEN;, k€C.  scale WSNs. Next, we propose our second algorithm which

By letting ¢"* = 1/T"*, the same series of changes that al]é particularly useful for practical deployments of largale

applied to problem (3) can be applied to problem (17). Th\é/SN

mixed integer programming problem in stegi.e., MIP-n) is

as follows: I1l. L EXICOGRAPHICALLY OPTIMAL NODE LIFETIME

(LONL) ALGORITHM

In (2), we defined the lifetime of a commodityto be the
time at which the first node carrying information in commegdit

minimize ¢

subject to

n—1
¢ < g, Yk e\ U P, k runs out of it_s energy. In a WSNs with a Igrge numbgr of
W1 sensor nodes, if the sensor nodes and the sinks are uniformly
4 <™ VieP, h=1 1 distributed in the coverage area and all the sensor nodes hav
e . _ ’ the same amount of initial energy, then the first node which
Z (xij —x5) = 57, VieVv, kel runs out of its energy in commodity is most likely to be
JEN: one of those that is the neighbor of sikkIn the first stage,
D ien, T some sensor nodes that are closer to the sinks will most
I < pk VieVv, keC

Zjex\/i R — % likely run out of energy. These nodes, which are in different

VE < Bk VieVv, kecC comm_odities z_ind most Ii_kely neighbors of th_e_ sinks, usually
‘ ! carry information belonging to their commaodities. Therefo
0<vf <> N pyaf}, VieV, keC (18) their lifetimes are independent. If the above assumptioas a
JENi meC valid, then the lexicographically optimal commodity lifee
Z Dij Z e — (1 —bF)Pme* <k vieV, keC problem can be reduced to a lexicographical optimal node
JEN,  meC lifetime problem. In this section, we show how to solve the
k N ) . ‘ latter in adistributedmanner. The proposed algorithm is called

%xij < Ry, VieV, jEeN: thelexicographically optimal node lifetimgONL) algorithm.

Uk < pk pmas VicV kel Compared to the LOCL algorithm in the previous section,
t—= e ’ the LONL algorithm is simpler for implementation and more
0<qf <4, VieV, kel practical for deployment.

0" = @ (1= 07) <A < qhubi, VieV, keC

x>0, by €{0,1}, VieV, jeN;, keC. A system Model

Algorithm 1 shows the stepwise LOCL algorithm to deter- Given the list of nodes’ lifetimes from equation (1), we can
mine the LOCLR solution. determine the correspondirigxicographically ordered node
. . _ . lifetime vectorsuch thatly < T, < --- < Tjy,. The concepts
Algorithm 1 Stepwise LOCL Algorithm (Centralized)  of |exicographical orderingandlexicographically greater than

1 Setn =1 are the same as what we defined in Section II-A.

2: While | J;_, Pn #C

3 Solve MIPx. Definition 2 A routing is calledLexicographically Optimal
4 Set¢™* := Optimal value of MIPx. Node Lifetime RoutingLONLR) if the node lifetime vector
5: SetP, :={k | ¢* =¢™ and ke C\ UZ;} Pu}. under this routing flow is the lexicographically greatesoam
6: Setn :=n + 1. all feasible node lifetime vectors.

7: End

We call the inverse of the lifetime of each node the
. _ normalized power consumptioof the node. Letg; denote
The MIP-1 is problem (15). The MIR-(for n. > 1) is problem  the normalized power consumption of nodé'he normalized

(18). The number of steps in the stepwise LOCL algorithm [sower consumption of nodé under data flow vectox =
less than or equal to the number of commodities. 2k is as follows:

Algorithm 1 is NP-hard in general. There are efficient
commercial software (such as CPLEX [28] and MOSEK [29]) oy EjeNi Pij D pec T
to solve linear mixed-integer problems. Most of them use 9i(x) = E;

(19)



For simplicity, the vectorg = {g¢;} is used to denote the (20) is indeed the LONLR solution. Problem (20) is a tractabl
normalized power consumptions of all the nodes. convex problem which can be solved in polynomial time. We

o _ ) ) ) ) now propose a distributed solution for this problem.
Definition 3 A routing flow is Lexicographically Optimal

Normalized Power Consumption RoutiigONPR) flow if the o )
normalized power consumption vector under this routing flofd- Distributed Implementation
is the lexicographically smallesteasible normalized power In this section, we present a distributed algorithm to solve
consumption vector. problem in (20). The technique that we useligal decomposi-

) _tion [32], which has also been used in [12], [33]. Problem (20)
Using the concept of LONPR, we can express the following referred as the primal problem. We first introduce Lageang
lemma: multipliers \¥ for the first equality constraints in (20). The

Lemma 2 The nodes' lifetimes vectors under LONLR ﬂoWother constraints are local constre}lnts in ez_‘;lch node gnd)do n
need to be relaxed. The Lagrangian functibfg, x, A) is:

(Definition 2) and LONPR flow (Definition 3) are lexicograph-

ically equal. L(g,x,A)
The proof of this lemma is provided in Appendix D. It shows B i & &
that theith minimum lifetime is equal to the inverse of the = 2_J (9 F 2 > A | X (il —25i) = S

ith maximum normalized power consumption for all values of B i€V hee JEN

i=1,...,|V]. — ( )+ 2R (0F — \F) = )J_fs.)_
We now formulate a convex optimization problem, which ZEZV floo ]gfgc i (X ) % o

leads to the LONPR solution. Consider the following prollem ) )
From the Lagrangian, the dual function and the dual prob-

minimize Zf(gi) lem can be defined. A subgradient algorithm [32] can be
eV used to solve the dual problem. The subgradient algorithm is
subjectto S (af —ak) = SF, VieV, kec @ iterative algorithm. In iteratiom, given AF(T), Ai(7) for
j € N;, and the local informationy(;, E;, R;;), each node

JEN;

updatesz® (1) and ¢ (7) by solving the following problem:
S py S ek = B, Viev  (0) © 4;(r) andg¥(r) by solving gp
JEN:  keC minimize  f(g;(7)) + Z foj(T) (Af(r) _ /\;ﬁ;(T))
in‘ﬂjSRij’ VieV, jeN; JEN; keC
keC _ Z )\f(T)SL
:Ef,»ZO, VieV, jeN;, keC, e

] k — R
where the functionf(g;) is a convex function. Problem  SuPiectto Z pig Y w5(r) = Eigi(7),
(20) has|V|(|C| + 1) (real) variables/£|(|C| + 1) inequality JENT  keC

constraints, andl’|(|C| + 1) equality constraints. Since all the foj(T) <Ry, VjEN;
constraints are linear and the objective function is convex kec
the optimization problem in (20) is a convex programming xfj(T) >0, VjeN,;, keC. (21)

problem. There are several schemes that can be used to ) o )
solve convex optimization problems. They include gnadient _ Algorithm 2 shows the distributed LONL algorithm per-
projection methodsinterior point method and primal-dual  formed in node.

hmethOde]' Note that the convex programming algorithmsge e = — SN —Ajaorithm in Node (Distributed)
ave polynomial complexity. That is, the run time is no

greater than a polynomial function of the problem size/|+ % Setr := 1

I£])(|C| + 1). The theorem below relates problem (20) and the? While not converged _ .
LONPR solution. 3: Solve problem (21) to obtaig;(r) and z7;(7) for

jEN;, keC.
Theorem1. If h(z) is a differentiable increasing convex 4:  Exchange the values off, () with neighboring nodes
function, then the routing solution of problem (20) with j € N,.
f(z) = (h(z))” approaches the LONPR solution as— co. 5. Set\f(r +1) := A¥(7) — pu(7) (Si =Y iew, (@5(7)
—xk(T)))
Ji

Exchange the values of¥(r + 1) with neighboring

The proof of this theorem is presented in Appendix E. It can bé*

shown that the LONPR flow solution is not necessarily unique. node.si' € N"l'
However, all of the solutions lead to a unique lexicographyc £ dT =7+
ordered node lifetime vector. Based on Theorem 1, the optim:?' n

solution of problem (20) is the LONPR solution. Based on
Lemma 2, the LONPR and LONLR flow solutions lead to thén the above algorithmy(7) is a positive diminishing step
same node lifetime vector. Therefore, the solution of peobl size and is chosen a7s}r—1



IV. PERFORMANCEEVALUATION (@)

In this section, we evaluate the performance of our propos
LOCL and LONL algorithms. We assume a deterministic pa
loss model. The power consumed for transmission of one
from nodei to nodej (i.e., p;;) is m + T]Qd”, whered is
the physical distance. We choose = 1 andny, = 0.1. The
regularization coefficient is set t6 = 10~°. Each source
generates 1 kbps of information. The initial energy of eac 3
source nodeFEys is 3 J while the initial energy of each
intermediate node (i.e., E;) is 1 J. Nodes use TDMA to 2
access the shared communication channel. The time slots
assigned equally and statically to the different links, athi I
have interference with each other. The maximum link e I
is 250 kbps for all logical links. 1 2 3 4

Number of sinks

(b)

Normalized minimum commodity lifetime
=
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In the first experiment, we show the performance of en 3l
ploying multiple sinks. There are 30 sensor nodes randon
deployed in a 50mx 50m square field. The transmission rang 25
of each node is 10m. Eight nodes are randomly chosen as
source nodes. Each source sends data to its (physicalsgstlo 2
sink. Fig. 2(a) shows the normalized minimum commodit
lifetime in the network versus the number of sinks. Each sir 15
is located in one of the four corners in the field. Results a
averaged over 100 simulation runs. The values are norndaliz
with respect to the lifetime of the network with only one sink osl
Simulation results depict that the lifetime increases atmc
linearly as the number of sinks is increased. It can be sexn t o
the minimum commodity lifetime in the network when thert ! R umber of sinke 4
are four sinks is almost 500% more compared to the netwc.
with one sink. The benefit of increasing the number of sinks i, , | oL algorithm for network with different number ofriis: (a)
evident. Fig. 2(b) shows the number of steps performed in thgimum commodity lifetime; (b) Average number of iterations IOCL
LOCL algorithm versus the number of sinks in the networlk!gorithm.

When there are four sinks in the network, the average number
of steps is about 3.5. Ilfet|me of commodities decreases compared to the caseewher

Next, we investigate the performance of the LOCL algo: each node sends data to the nearest sink.
rithm with a different number of sources. The other simolati
settings are the same as in the previous experiment. FigB3Performance Comparisons between LOCL, LONL, MLMS,
shows the average normalized commodity lifetime for th@nd LMM Algorithms
commodities under different number of sources. When theTo perform the simulation for the LONL algorithm, we need
number of sources increases, the lifetime of each commoditychoose functiorh(g;) and parameter. We seth(g;) = g;.
decreases. To choosey, we set up an experiment. The network topology

In this experiment, we assume that there are four differeist similar to the network used in the first experiment with
types of sources in the network, two sensors of each typeo sinks. We increment the value of starting from 1 and
For example, there can be two temperature sensors, tsalve problem (20). Fig. 5 shows the average normalized
pressure sensors, two humidity meter sensors, and twovairflminimum lifetime in the network for 100 simulation runs
sensors. One sink is assigned to gather information for eadrsus different values of. It can be seen that when> 8, the
data type. Sensors are then required to send data to difference between consecutive lifetime values is less ii%.
corresponding sink. Fig. 4 shows the normalized lifetime &fe choosey = 10 for the subsequent simulation runs. The
the commodities. We compare the results when there argjective function in problem (20) is chosen Agy;) = g,
different types of sensors and the case that each source sendo compare our LOCL and LONL algorithms with the
data to the nearest sink. When there are different types edfisting algorithms in the literature, we implemented the
sources and all sources are randomly deployed in the seralgiorithms proposed in [1] and [2]. We solve the correspogdi
area, there are more common nodes among commodities. Tiged integer programming problems by using the MOSEK
correlation between different commodities increasesoAtlse [29] optimization toolbox. There are four sinks and eight
data packets are traversed over longer paths. Therefare, shurces in the network. In [1], the problem of network lified

Average number of iterations
=
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and different types of sinks.

Fig. 6 compares the lifetime of commodities between
maximization is modeled as a concurrent multi-commodityOCL, LONL, MLMS, and LMM algorithms. Results show
flow optimization problem. The problem can be extended that for the minimum commodity lifetime, all four algorittem
consider the multi-sink case. We modify this algorithm angrovide the same lifetime. For the other commodities, the
assume that each source sends data to the closest sink. N@€L algorithm provides a higher lifetime. The difference
that this makes the comparison to be fair as in all other caggstween LOCL and LONL algorithms is due to the fact that
for multi-sink WSNs. When there is one sink, this problenafter the first node runs out of its energy, the LOCL algorithm
is equal to the maximum lifetime routing problem proposeglies to maximize the next commodity lifetime while the
in [5]. We call the modified algorithm the maximum Lifetime ONL algorithm tries to maximize the second node lifetime.
routing for network with Multiple Sinks (MLMS). The second node does not necessarily belong to the second

A lexicographical max-min fair (LMM) algorithm is pro- commodity. This happens for the subsequent commodities and
posed in [2]. This algorithm determines a schedule for tHeads to different results for LOCL and LONL algorithms. The
routing flows. We extend this algorithm for WSNs withdifference increases as the commodity number increases.
multiple sinks. We compare the results of LOCL with the first The lifetimes for the commodities obtained from the MLMS
routing flow of LMM method. Notice that the LOCL algorithmalgorithm are almost equal because this algorithm only max-
provides one routing flow but not a schedule of routing flowimizes the minimum lifetime in the network. For the LMM
for the network. Since both LOCL and LONL algorithmsalgorithm, the first routing flow from the schedule is complare
provide one routing flow, we compare these algorithms with Fig. 7 compares the lifetime of nodes under LONL, MLMS,
the first routing flow in the schedule of LMM. and LMM algorithms. The LONL algorithm maximizes the



Assume thatr,,.., is an upper bound for the real variable
TonL x. The desired correspondence betweena, and the new
A MM variable z is obtained by requiring that [34]:

—&— MLMS

25

g 0<z<u,
o
£ 2p E T — Tmaz(l —a) < 2 < zpaza. (23)
° A
E
2 B. Regularization Technique
E Consider the following convex optimization problem with
g 151 1 variablex:
S
= minimize  fo(x)
= = = it subject to  f;(x) > 0, i=1,....m
1 s i i i i i i i x = 0. (24)
1 2 3 4 5 6 7 8 9 10

Node number where f;, f;’s can be linear or nonlinear functions. The

optimal value(i.e., minimal value) is denoted by* and is
achieved at aroptimal solutionx*. That is, p* = fo(x*).
Now consider the following optimization problem:

Fig. 7. Lifetime of nodes for LONL, LMM, and MLMS algorithms fa
network with four sinks.

lifetime of all the nodes in the network and consequently minimize  fo(x) + 0¢(x)

has better performance. The LMM algorithm has a better subject to  fi(x) 20,  i=1,....,m
performance compared to the MLMS algorithm. In the MLMS x = 0. (25)
algorithm, only the minimum lifetime is maximized and there

fore the lifetimes of other nodes are almost equal. Mangasariaret al. [26] proved that if the problem is a linear

programming problem, for all values éfbelow some positive
threshold, the optimal solutions of the regularized proble
(25) are also the optimal solution in problems (24). Regentl
Multiple sinks can be employed in a WSN to increase the [27], Friedlanderet al. extended this work and proved that
lifetime of the network. In this paper, we formulated twovhen the problem is nonlinear, the result still holds. They
algorithms to fairly share the network resources amonguari showed that this threshold is the inverse of the Lagrange
commodities and nodes in the system using the conceptmotiltiplier of the second inequality constraint in the foliag
lexicographical fairness. We first proposed the centrdlizgroblem:
LOCL algorithm to obtain the exact lexicographically opaim
solution. LOCL is a stepwise algorithm. In each step, a linea

V. CONCLUSIONS

minimize @(x)

mixed-integer programming problem is being solved. Our subject to  f;(x) >0, t=1,....m
second algorithm, called the LONL algorithm, is distritdite fo(x) <p*
It can obtain the optimal solution under certain assumgtion x> 0. (26)

and the sub-optimal solutions in general. The LONL alganith

is easier for implementation and more practical for deploy-hey proved that this problem always has a Karush-Kuhn-
ments. Simulation results show that both LOCL and LONiTucker KKT) point. Thus, the threshold always exists.
algorithms have better performance compared to some raxisti

schemes. C. Proof of Lemma 1

There are several directions for future work. The algorithm We use mathematical induction to prove this lemma. If there

can be extended to enable the source nodes to select ghg . . .
. . - iS at least one path between each source and its associated si
appropriate sink. Alternatively, the problem can be forabed P ©

: . . . o the feasible set of problem MIP-1 is nonempty. Consequently
such that the .opt_|malllocapon forthe_smks is determinedavh the optimal set is also nonempty. If the feasible region of
the network lifetime is being maximized.

problem MIP# is nonempty then its optimal set is nonempty.
Since the feasible set of problem M[R-+ 1) is the optimal
APPENDIX set in problem MIPr, therefore it is nonempty. [ |

A. Linearization Technique

Consider a non-negative real variabland a binary variable D. Proof of Lemma 2
a. The product of these variables can be replaced by a newpe use mathematical induction to prove the following parts:
real variablez. The value ofz corresponds to the value of 1) The inverse of the minimum lifetime is equal to the
anda as follows: maximum normalized power consumption.
L { 0, ifa=0, 22) 2) If the inverse of theith minimum lifetime is equal to
| oz, fa=1. the ith maximum normalized power consumption, then
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the inverse of th€i+ 1)th minimum lifetime is equal to Since the functionf,,(z) > 0, we have:
the (i 4+ 1)th maximum normalized power consumption. Wi

Both parts can be proved by contradiction. We only prove Am < fn () = i (g7™) + Z Fm (g1

part one; the proof for the second part can be derived in it

similar manner. Let7; denote the minimum lifetime (i.e., V|

the maximum achievable value for the minimum lifetime) and = —fm (gl + Z Fm (gl) - (30)
g1 denote the maximum normalized power consumption (i.e., p—

the minimum achievable value for the maximum normaliz
power consumption).

Now assume thay, # Til If g1 > Til it means that it is
posls|ble_to reduce maximum norm_allzed power consqmptlon Ay < —fm (g7) + M fr(gl), (31)
to - while we have assumed that is the minimum achiev- .
able value for the maximum normalized power consumptiowhere M = V| —i + 1. We know thatg; = g; — £. We also
which is a contradiction. I§; < -, it means that it is possible Use equation (27) to obtain:

1
to .reduce maximum normahzgd power _consumptl_on%tlo A < =gt —€) + Mfim(gr — €)
while we have assumed that is the minimum achievable S

value for the maximum normalized power consumption which = —fm(gf —¢€) (1 - MW) . (32
is a contradiction. Ify; > 4, it means that it is possible to fm(gf —€)

increase minimum lifetime te- while we have assumed thatSincee can be any number, we choose it such that &. The

T is the maximum achievablqe1 value for the minimum lifetimdast term is equal to:

It is also a contradiction. [ |
fm(g; =) (h(gi* - 5))7’”
higf —¢€))

fmlgr —€)

whereh(z) is an increasing function. Whem,, — oo (i.e.,

The set of constraints in problem (20) constructs a closgd . ~), this term tends to zero. Thereforé,, < —1, which

convex set. Ley"** be a loose upper bound for the normalis 3 contradiction. ]
ized power consumption of nodec V. Let g denote the  Note that our proof is related to that of Lemma 3 in [35]. In
vector of normalized power consumption agd repressnt [35], Mo et al. considered utility maximization problems and
the optimal value of problem (20) whefi(z) = (h(z))". proved a similar theorem for max-min fairness; howevergher
The closed feasible set and the loose upper bound constrgjat consider the normalized power consumption minimization

construct a compact feasible set fgf. Sinceg” is a sequence problem and the lexicographically optimal is the notion of
in a compact set, there exists a subsequenceg, §f,,,m >  fajrness.

1}, such thatg” converges to som&* as m — oo,
where g* is the limit point of g¥~. We prove thatg* is

e . : .
'Fhe vectorg’ is lexicographically ordered. Thus, for all >
i, gn < gi, we have:

(33)

E. Proof of Theorem 1
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