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Abstract— In wireless sensor networks (WSNs), the field in-
formation (e.g., temperature, humidity, airflow) is acquired via
several battery-equipped wireless sensors and is relayed towards
a sink node. As the size of the WSNs increases, it becomes ineffi-
cient (in terms of power consumption) to gather all information in
a single sink. To tackle this problem, one can increase the number
of sinks. The set of sensor nodes sending data to sinkk is called
commodity k. In this paper, we formulate the lexicographically
optimal commodity lifetime routing problem. A stepwise central-
ized algorithm, called the lexicographically optimal commodity
lifetime (LOCL) algorithm, is proposed which can obtain the
optimal routing solution and lead to lexicographical fairness
among commodity lifetimes. We then show that under certain
assumptions, the lexicographical optimality among commodity
lifetimes can be achieved by providing lexicographical optimality
among node lifetimes. This motivates us to propose our second
algorithm, called the lexicographically optimal node lifetime
(LONL) algorithm, which suitable for practical implementation.
Simulation results show that our proposed LOCL and LONL
algorithms increase the normalized commodity and node life-
times compared to the maximum lifetime with multiple sinks
(MLMS) [1] and lexicographical max-min fair (LMM) [2] routing
algorithms.

Keywords: multiple sinks, wireless sensor networks, lexico-
graphical optimality, routing flow.

I. I NTRODUCTION

Recent advances in low power integrated circuits have sped
up the development of various types of low cost wireless
sensors, which are the building blocks of the wireless sensor
networks (WSNs). In WSNs, each sensor node has the capa-
bility to sense the environment (e.g., temperature, pressure,
light, acoustic) and process the data. In general, WSNs have
an ad hoc topology and each node is capable of relaying the
data towards the sink [3]. Since most of the sensor nodes are
battery powered, one of the design objectives is to prolong the
lifetime of the network [4]. There are various ways to define
the lifetime of a WSN. It can be defined as the time at which
the first node runs out of energy [5]. This time is equivalent
to the time at which the first routing path is disconnected
[6]. In [7], the lifetime is defined as the time at which the
maximum number of times a certain data collection function
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Fig. 1. A sample wireless sensor network with two sinks.

can be carried out. In [8], [9], it is defined as the time at which
a region within the WSN is not covered by any nodes.

We now summarize some of the related works on lifetime
maximization in WSNs. The maximum lifetime routing prob-
lem is formulated as a linear programming (LP) problem in
[5], [10], and [11]. In [12], a distributed algorithm based on
dual decomposition is proposed to solve the linear maximum
lifetime problem. In [13], the maximum lifetime problem
is extended by considering a variable-length TDMA (time
division multiple access) frame in the MAC (medium access
control) layer. In [14], the utility-lifetime tradeoff in maximum
lifetime problem is studied by considering the source ratesas
variables in the system. In [15], the same problem is studied
by considering the scheduling constraints of the link data rates.
In [1], the lifetime problem is formulated as an LP problem
for multicommodity networks. In [2], an iterative algorithm
is proposed to obtain a lexicographic max-min node lifetime
solution. In [16], an iterative centralized algorithm is proposed
to find a Pareto-optimal routing solution for WSNs.

As the size of the network increases, it becomes inefficient
(in terms of power consumption) and sometimes impossible
(in terms of network capacity) to gather all information in a
single sink node. To tackle this problem, one can increase the
number of sinks [17]–[22]. A sample WSN with two sinks is
illustrated in Fig. 1, with each source node sending data to the
nearest sink. WSNs with multiple sinks have recently received
increasing attention. In [17], a multi-sink WSN architecture
is proposed where the network is partitioned into clusters.
All the sources in a cluster are assigned to send data to the
sink designated to that particular cluster. A multi-drain sensor
network is considered in [18]. Data from each source are
logged in two distinct drains in order to increase the resiliency
of drain failure. In [19], the upper and lower bounds for the
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optimal solution of the multiple sink problem are obtained.
It is shown that the bounds are tight for networks with a
large number of nodes. In [23], we studied the problem of fair
resource allocation among different commodities in multiple
sinks WSNs.

The set of nodes sending data to a particular sink is called
a commodity. The lifetimes of commodities in a network
with multiple sinks are not independent. By changing the
routing flows, we can increase or decrease the lifetime for each
commodity. One important issue is how to obtain a routing
solution which provides fairness among different commodity
lifetimes. This is the main focus in this work. To the best of
our knowledge, there is no prior study on fair lifetime maxi-
mization for multi-commodity WSNs with multiple sinks. Our
proposed algorithms are based on lexicographic optimization
(see Section II-A) to achieve fairness. The contributions of this
paper are as follows:

• We consider the commodity lifetime problem in a WSN
with multiple sinks. We formulate this problem as a
sequence of optimization problems.

• We propose a stepwise centralized algorithm, called the
lexicographically optimal commodity lifetime (LOCL)
algorithm, which lexicographically maximizes the life-
time of commodities. By using the LOCL algorithm,
the average normalized commodity lifetime increases by
100% and 35% compared to maximum lifetime with
multiple sinks (MLMS) [1] and lexicographical max-min
fair (LMM) [2] algorithms when there are four sinks in
the network, respectively.

• We show that, under certain assumptions, a lexicographi-
cally optimal commodity lifetime problem can be reduced
to a lexicographically optimal node lifetime problem.
This problem can be solved in polynomial time. We
propose a distributed algorithm, called the lexicographi-
cally optimal node lifetime (LONL) algorithm, to solve
this problem using dual decomposition technique. The
LONL algorithm is simpler for implementation and more
interesting for practical deployment.

The rest of this paper is organized as follows: In Section
II, we present the problem formulation and describe our pro-
posed LOCL algorithm. In Section III, we propose the LONL
algorithm and provide its distributed implementation using the
dual decomposition technique. The performance comparisons
between LOCL, LONL, MLMS, and LMM algorithms are
presented in Section IV. Conclusions are given in Section V.

II. L EXICOGRAPHICALLY OPTIMAL COMMODITY

L IFETIME (LOCL) ALGORITHM

In this section, we first introduce the notations. The lifetime
of the commodity and the lexicographically ordered commod-
ity lifetime vectors are defined. We then present the stepwise
LOCL algorithm.

A. System Model

Consider a WSN where the sensor nodes are randomly
scattered over the coverage area. Each sensor node has limited
energy. Nodes can cooperate to relay data towards the sinks.

The commodities and the nodes can be considered as the
users and resourcesof the system, respectively. Each sink
uses the system resources to gather information within the
sensing area. The source nodes in a commodity utilize the
energy of the intermediate nodes in the network for a multi-
hop transmission towards the sink. Since each node has battery
powered, resources in the system are limited. Thus, a fair
resource allocation is needed. Our objective is to obtain a
routing flow which fairly shares the system resources among
commodities. The lexicographic optimality is used as the
notion of fairness among the lifetimes of the commodities.

Let V denote the set of sensor nodes andC denote the set of
sinks collecting information from the network. The data rate
generated by source nodei to sink k ∈ C is denoted bySk

i .
The total data rate generated by source nodei is denoted by
Si and is equal to

∑

k∈C Sk
i . Let Ni be the set of neighbors

of node i ∈ V. Let xk
ij denote the data rate of commodity

k ∈ C transmitted from nodei to nodej ∈ Ni. The aggregate
data rate for the unidirectional logical link from nodei to j ∈
Ni is denoted byxij and is equal to

∑

k∈C xk
ij . For notation

simplicity, we stack up allxij and denote it as vectorx.
Let pij denote the power consumed in nodei ∈ V for

transmission of one bit information to nodej ∈ Ni. The
maximum data rate between nodesi andj is denoted byRij

depending on the capacity of the link and the MAC protocol
being used. LetEi represent the initial energy of nodei. The
lifetime of sensor nodei, Ti(x), is defined as follows:

Ti(x) =
Ei

∑

j∈Ni
pij

∑

k∈C xk
ij

. (1)

The lifetime of commodityk is defined as the time at which
the first path is disconnected between one of the sources and
sink k ∈ C. This time is equal to the time at which the first
node carrying information for sinkk runs out of its energy.
The lifetime of commodityk ∈ C under data flow vectorx is
defined as follows:

T k(x) = min







Ti(x) | i ∈ V and
∑

j∈Ni

xk
ij > 0







. (2)

A vector T = (T 1, T 2, · · · , T |C|) is called alexicographi-
cally orderedcommodity lifetime vector ifT 1 ≤ T 2 ≤ · · · ≤
T |C|. That is, all the elements in the vector are sorted (or
arranged) in ascending order. The commodity lifetime vector
T̂ is lexicographically greaterthan vectorT̃ if and only
if there existsi such that T̂ i > T̃ i, and for all j < i
we haveT̂ i = T̃ j . As an example, ifT̂ = (2, 2, 5, 8) and
T̃ = (2, 2, 4, 9), then T̂ is lexicographically greater thañT.
Two vectors arelexicographically equalif all of the elements
of these two vectors are equal.

A vector islexicographically optimalin a set if it is the lexi-
cographically greatest vector in the set. As an example, forthe
set{(1, 3, 7, 8), (2, 2, 5, 8), (2, 2, 4, 9), (2, 2, 3, 10)}, the vector
(2, 2, 5, 8) is the lexicographically optimal vector. Note that for
any compact set ofRm, there exists only one lexicographically
optimal vector [24].



3

B. Problem Formulation

In the LOCL algorithm, the objective is to determine the
routing paths and flow rates (i.e., data flow vectorx) which
lead to the lexicographically optimal feasible lifetime vector.
The LOCL algorithm is a stepwise algorithm. In the first
step, the minimum commodity lifetime in the network is
maximized. This step may have an infinite number of optimal
routing solutions. In the second step, among the solutions from
the first step, a solution is chosen which maximizes the second
minimum commodity lifetime. The second step may also have
an infinite number of optimal solutions.

In general, in stepn of the LOCL algorithm, among the
solutions from step (n−1), the solution is chosen which max-
imizes thenth minimum commodity lifetime. In other words,
in stepn, thenth minimum commodity lifetime is maximized
while all lower commodity lifetimes are being maximized. The
routing solution in the last step lexicographically maximizes
the lifetime of all commodities. Note that the number of steps
is equal to or less than the number of commodities. The
optimal routing solution in the last step is the lexicographically
optimal commodity lifetime routing (LOCLR) solution:

Definition 1. A routing flow is LOCLR if the vector of
lifetimes of commodities under this routing flow is the lexi-
cographically greatest feasible commodity lifetime vector.

LOCLR is the solution of the LOCL algorithm or equiva-
lently the optimal solution of the last step of this algorithm.
The last step of the LOCL algorithm may have more than one
(i.e., an infinite number of) optimal solutions.

Proposition 1. The lexicographically optimal commodity
lifetime vector is unique but the LOCLR solution is not
necessarily unique.

As we mentioned earlier, the lexicographically optimal
commodity lifetime vector in a set is unique [24]. Results
in [2] showed that in a lifetime maximization problem, it is
possible to have an infinite number of optimal solutions. An
example can be found in [25]. This example can be extended
for the networks with multiple sinks or commodities.

C. LOCL Algorithm: First Step

We now present the first step of the LOCL algorithm
and describe how it can be converted to a linear mixed-
integer programming problem. In the first step, the minimum
commodity lifetime is maximized. The problem is as follows:

maximize min
k∈C

{

T k(x)
}

subject to
∑

j∈Ni

(xk
ij − xk

ji) = Sk
i , ∀ i ∈ V, ∀ k ∈ C

∑

k∈C

xk
ij ≤ Rij , ∀ i ∈ V, ∀ j ∈ Ni

xk
ij ≥ 0, ∀ i ∈ V, ∀ j ∈ Ni, ∀ k ∈ C. (3)

The first set of constraints is the flow conservation for each
commodity in all the nodes. The second set of constraints is
the data rate limits on each link. To obtain a linear objective
function, we introduce an auxiliary scalar variablet, which is

a lower bound for the lifetime of minimum commodity:

t ≤ minx, k∈C

{

T k(x)
}

⇒ t ≤ T k(x), ∀ k ∈ C. (4)

The objective is to maximizet. Substituting (2) in (4) and (4)
in (3), it becomes:

maximize t

subject to t ≤ T k, ∀ k ∈ C

T k = min
i∈V







Ti | Ti = Ei/(
∑

j∈Ni

pij

∑

m∈C

xm
ij )

and
∑

j∈Ni

xk
ij > 0







, ∀ k ∈ C

∑

j∈Ni

(xk
ij − xk

ji) = Sk
i , ∀ i ∈ V, ∀ k ∈ C

∑

k∈C

xk
ij ≤ Rij , ∀ i ∈ V, ∀ j ∈ Ni

xk
ij ≥ 0, ∀ i ∈ V, ∀ j ∈ Ni, ∀ k ∈ C. (5)

The second constraint in problem (5) can be replaced by:

T k ≤
Ei

∑

j∈Ni

∑

m∈C pijxm
ij

if
∑

j∈Ni

xk
ij > 0, ∀ i ∈ V. (6)

We replaceT k andt by their respective inverses:qk = 1/T k

and q = 1/t. The objective is changed from maximizingt to
minimizing q. Problem (5) can now be written as:

minimize q

subject to

qk ≤ q, ∀ k ∈ C
∑

j∈Ni

∑

m∈C

pijx
m
ij ≤ Eiq

k, if
∑

j∈Ni

xk
ij > 0,∀i ∈ V,∀k ∈ C

∑

j∈Ni

(xk
ij − xk

ji) = Sk
i , ∀ i ∈ V, ∀ k ∈ C (7)

∑

k∈C

xk
ij ≤ Rij , ∀ i ∈ V, ∀ j ∈ Ni

xk
ij ≥ 0, ∀ i ∈ V, ∀ j ∈ Ni, ∀ k ∈ C.

The second constraint in problem (7) is conditional. To
obtain a closed-form for this constraint, we multiply both sides
of the inequality by(

∑

j∈Ni
xk

ij). The new constraint is:




∑

j∈Ni

xk
ij









∑

j∈Ni

∑

m∈C

pijx
m
ij



 ≤





∑

j∈Ni

xk
ij



 Eiq
k,

∀ i ∈ V, k ∈ C. (8)

In (8), if
∑

j∈Ni
xk

ij = 0, then both left hand side and right
hand side become 0. If

∑

j∈Ni
xk

ij > 0, then constraint (8)
is equivalent to:

∑

j∈Ni

∑

m∈C pijx
m
ij ≤ Eiq

k. Therefore,
constraint (8) is equivalent to the second constraint in (7). The
constraint in (8) is a nonconvex constraint. We use a series
of change of variables to replace this constraint with several
linear constraints. We introduce an auxiliary boolean variable:

bk
i =

{

0, if
∑

j∈Ni
xk

ij = 0

1, if
∑

j∈Ni
xk

ij > 0,
(9)
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where bk
i is equal to 1 when nodei carries information of

commodityk. We can then map the new boolean variable to
rate variables as follows:

∑

j∈Ni
xk

ij
∑

j∈Ni
Rij

≤ bk
i , ∀ i ∈ V, k ∈ C. (10)

Constraint (8) can now be written as follows:

bk
i

∑

j∈Ni

∑

m∈C

pijx
m
ij ≤ bk

i Eiq
k, ∀ i ∈ V, k ∈ C. (11)

This constraint is still nonlinear. We use a linearization tech-
nique and convert this constraint to a set of linear constraints.
Details of the linearization technique can be found in Ap-
pendix A. We define two new variables:

νk
i = bk

i

∑

j∈Ni

∑

m∈C

pijx
m
ij , ∀ i ∈ V, k ∈ C

γk
i = bk

i Eiq
k, ∀ i ∈ V, k ∈ C. (12)

Constraint (11) can be written as:

νk
i ≤ Eiγ

k
i , ∀ i ∈ V, k ∈ C. (13)

A set of constraints is added for each new variable and node
i and commodityk:

0 ≤ νk
i ≤

∑

j∈Ni

∑

m∈C pijx
m
ij ,

∑

j∈Ni

∑

m∈C pijx
m
ij − (1 − bk

i )Pmax
i ≤ νk

i ,

νk
i ≤ bk

i Pmax
i , (14)

0 ≤ γk
i ≤ qk,

qk − qk
max(1 − bk

i ) ≤ γk
i ≤ qk

maxbk
i ,

where Pmax
i =

∑

j∈Ni
pijRij , and qk

max is a loose upper
bound forqk. We re-write problem (7) with new variables. In
this problem, the variables areq, qk, xk

ij , xm
ij , bk

i , νk
i , andγk

i ,
while Sk

i , Rij , Ei, pij , Pmax
i , andqk

max are the constants:

minimize q

subject to

qk ≤ q, ∀ k ∈ C
∑

j∈Ni

(xk
ij − xk

ji) = Sk
i , ∀ i ∈ V, k ∈ C

∑

j∈Ni
xk

ij
∑

j∈Ni
Rij

≤ bk
i , ∀ i ∈ V, k ∈ C

νk
i ≤ Eiγ

k
i , ∀ i ∈ V, k ∈ C

0 ≤ νk
i ≤

∑

j∈Ni

∑

m∈C

pijx
m
ij , ∀ i ∈ V, k ∈ C (15)

∑

j∈Ni

pij

∑

m∈C

xm
ij − (1 − bk

i )Pmax
i ≤ νk

i , ∀ i ∈ V, k ∈ C

∑

k∈C

xk
ij ≤ Rij , ∀ i ∈ V, j ∈ Ni

νk
i ≤ bk

i Pmax
i , ∀ i ∈ V, k ∈ C

0 ≤ γk
i ≤ qk, ∀ i ∈ V, k ∈ C

qk − qk
max(1 − bk

i ) ≤ γk
i ≤ qk

maxbk
i , ∀ i ∈ V, k ∈ C

xk
ij ≥ 0, bk

i ∈ {0, 1}, ∀ i ∈ V, j ∈ Ni, k ∈ C.

Because of the linearity of the objective function, it is pos-
sible to have an infinite number of optimal lifetime solutions.
To obtain a unique set of commodities with minimum lifetime
in this step and the subsequent steps, we use the regularization
method. Details of the regularization method can be found in
Appendix B. The regularization term used in problem (15) is
the Euclidean norm of commodity lifetime vector which is
∑

k∈C

(

qk
)2

. Therefore, the new objective of problem (15) is:

minimize q + δ
∑

k∈C

(

qk
)2

, (16)

whereδ is the regularization parameter. The objective function
is now quadratic. The work in [26] and [27] proved that when
δ is less than a certain threshold, the optimal solutions of the
regularized problem form a subset of the optimal solutions of
the problem before regularization.

D. LOCL Algorithm: Subsequent Steps

The first step in the LOCL algorithm is a linear mixed-
integer program (MIP). The feasible set in the second step
of the LOCL algorithm is the optimal solution set of the
first step. Similarly, the feasible set in the third step is the
optimal solution of the second step, and so on. We call the
mixed integer programming problem in stepn as MIP-n.
The following lemma characterizes the feasible region for the
problem in stepn:

Lemma 1. The feasible region of problem MIP-n is
nonempty if there exists at least one path between each source
and its associated sink.
The proof of this lemma is presented in Appendix C. This
lemma guarantees that the feasible region in each step, which
is the optimal solution set in the previous step, is nonempty.

Assume that the minimum lifetime in the first step (problem
(15)) is T 1? and the optimal value (inverse of minimum
commodity lifetime) isq1?. Let P1 be the set of commodities
that the first constraint is active in problem (15). In the second
step, the minimum lifetime among all the commodities except
the members ofP1 (i.e., C\P1) is maximized subject to the
condition that the lifetime of the commodities inP1 is also
being maximized. The problem in the second step is similar to
problem (3) while the objective is modified to be as follows:

maximize min
k∈C\P1

T k(x).

Also, there is a constraint on the maximization of minimum
lifetime. The constraint is:

T l ≥ T 1?, ∀ l ∈ P1.

The problem in thenth step can be formulated with similar
changes in the objective function and by including the ad-
ditional constraints. LetTh? denote the maximum achievable
value for thehth minimum commodity lifetime (obtained from
the hth step). LetPh denote the set of commodities that
their lifetimes are equal toTh? in the hth step. We have
Ph = {k | T k = Th? and k ∈ C\

⋃h−1

l=1
Pl}. The problem

in the nth step is as follows:
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maximize mink∈C\
⋃

n−1

h=1
Ph

{

T k(x)
}

subject to T l ≥ Th?, ∀ l ∈ Ph, h = 1, . . . , n − 1
∑

j∈Ni

(xk
ij − xk

ji) = Sk
i , ∀ i ∈ V, k ∈ C

∑

k∈C

xk
ij ≤ Rij , ∀ i ∈ V, j ∈ Ni (17)

xk
ij ≥ 0, ∀ i ∈ V, j ∈ Ni, k ∈ C.

By letting qh? = 1/Th?, the same series of changes that are
applied to problem (3) can be applied to problem (17). The
mixed integer programming problem in stepn (i.e., MIP-n) is
as follows:

minimize q

subject to

qk ≤ q, ∀ k ∈ C\
n−1
⋃

h=1

Ph

ql ≤ qh?, ∀ l ∈ Ph, h = 1, . . . , n − 1
∑

j∈Ni

(xk
ij − xk

ji) = Sk
i , ∀ i ∈ V, k ∈ C

∑

j∈Ni
xk

ij
∑

j∈Ni
Rij

≤ bk
i , ∀ i ∈ V, k ∈ C

νk
i ≤ Eiγ

k
i , ∀ i ∈ V, k ∈ C

0 ≤ νk
i ≤

∑

j∈Ni

∑

m∈C

pijx
m
ij , ∀ i ∈ V, k ∈ C (18)

∑

j∈Ni

pij

∑

m∈C

xm
ij − (1 − bk

i )Pmax
i ≤ νk

i , ∀ i ∈ V, k ∈ C

∑

k∈C

xk
ij ≤ Rij , ∀ i ∈ V, j ∈ Ni

νk
i ≤ bk

i Pmax
i , ∀ i ∈ V, k ∈ C

0 ≤ γk
i ≤ qk, ∀ i ∈ V, k ∈ C

qk − qk
max(1 − bk

i ) ≤ γk
i ≤ qk

maxbk
i , ∀ i ∈ V, k ∈ C

xk
ij ≥ 0, bk

i ∈ {0, 1}, ∀ i ∈ V, j ∈ Ni, k ∈ C.

Algorithm 1 shows the stepwise LOCL algorithm to deter-
mine the LOCLR solution.

Algorithm 1 Stepwise LOCL Algorithm (Centralized)
1: Setn = 1
2: While

⋃n
h=1

Ph 6= C
3: Solve MIP-n.
4: Setqn? := Optimal value of MIP-n.
5: SetPn := {k | qk = qn? and k ∈ C\

⋃n−1

h=1
Ph}.

6: Setn := n + 1.
7: End

The MIP-1 is problem (15). The MIP-n (for n > 1) is problem
(18). The number of steps in the stepwise LOCL algorithm is
less than or equal to the number of commodities.

Algorithm 1 is NP-hard in general. There are efficient
commercial software (such as CPLEX [28] and MOSEK [29])
to solve linear mixed-integer problems. Most of them use

branch-and-bound algorithm [30]. The linear mixed-integer
problem in thenth step of Algorithm 1 has|C||V| binary
variables,|C|(2|V|+|L|) real variables,|C|(8|V|+n) inequality
constraints, and|C||V| equality constraints, whereL is the
set of links in the network. Notice that the computational
complexity of a linear mixed-integer problem depends only
on the number of its integer (in our case binary) variables,
but not the number of real variables [31]. Thus, problem (18)
can easily be solved in practice for small-scale and medium-
scale WSNs. Next, we propose our second algorithm which
is particularly useful for practical deployments of large scale
WSNs.

III. L EXICOGRAPHICALLY OPTIMAL NODE L IFETIME

(LONL) A LGORITHM

In (2), we defined the lifetime of a commodityk to be the
time at which the first node carrying information in commodity
k runs out of its energy. In a WSNs with a large number of
sensor nodes, if the sensor nodes and the sinks are uniformly
distributed in the coverage area and all the sensor nodes have
the same amount of initial energy, then the first node which
runs out of its energy in commodityk is most likely to be
one of those that is the neighbor of sinkk. In the first stage,
some sensor nodes that are closer to the sinks will most
likely run out of energy. These nodes, which are in different
commodities and most likely neighbors of the sinks, usually
carry information belonging to their commodities. Therefore,
their lifetimes are independent. If the above assumptions are
valid, then the lexicographically optimal commodity lifetime
problem can be reduced to a lexicographical optimal node
lifetime problem. In this section, we show how to solve the
latter in adistributedmanner. The proposed algorithm is called
the lexicographically optimal node lifetime(LONL) algorithm.
Compared to the LOCL algorithm in the previous section,
the LONL algorithm is simpler for implementation and more
practical for deployment.

A. System Model

Given the list of nodes’ lifetimes from equation (1), we can
determine the correspondinglexicographically ordered node
lifetime vectorsuch thatT1 ≤ T2 ≤ · · · ≤ T|V|. The concepts
of lexicographical orderingandlexicographically greater than
are the same as what we defined in Section II-A.

Definition 2. A routing is calledLexicographically Optimal
Node Lifetime Routing(LONLR) if the node lifetime vector
under this routing flow is the lexicographically greatest among
all feasible node lifetime vectors.

We call the inverse of the lifetime of each node the
normalized power consumptionof the node. Letgi denote
the normalized power consumption of nodei. The normalized
power consumption of nodei under data flow vectorx =
{xk

ij} is as follows:

gi(x) =

∑

j∈Ni
pij

∑

k∈C xk
ij

Ei

. (19)
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For simplicity, the vectorg = {gi} is used to denote the
normalized power consumptions of all the nodes.

Definition 3. A routing flow is Lexicographically Optimal
Normalized Power Consumption Routing(LONPR) flow if the
normalized power consumption vector under this routing flow
is the lexicographically smallestfeasible normalized power
consumption vector.

Using the concept of LONPR, we can express the following
lemma:

Lemma 2. The nodes’ lifetimes vectors under LONLR flow
(Definition 2) and LONPR flow (Definition 3) are lexicograph-
ically equal.

The proof of this lemma is provided in Appendix D. It shows
that theith minimum lifetime is equal to the inverse of the
ith maximum normalized power consumption for all values of
i = 1, . . . , |V|.

We now formulate a convex optimization problem, which
leads to the LONPR solution. Consider the following problem:

minimize
∑

i∈V

f(gi)

subject to
∑

j∈Ni

(xk
ij − xk

ji) = Sk
i , ∀ i ∈ V, k ∈ C

∑

j∈Ni

pij

∑

k∈C

xk
ij = Eigi, ∀ i ∈ V (20)

∑

k∈C

xk
ij ≤ Rij , ∀ i ∈ V, j ∈ Ni

xk
ij ≥ 0, ∀ i ∈ V, j ∈ Ni, k ∈ C,

where the functionf(gi) is a convex function. Problem
(20) has|V|(|C| + 1) (real) variables,|L|(|C| + 1) inequality
constraints, and|V|(|C|+1) equality constraints. Since all the
constraints are linear and the objective function is convex,
the optimization problem in (20) is a convex programming
problem. There are several schemes that can be used to
solve convex optimization problems. They include thegradient
projection methods, interior point method, and primal-dual
method[32]. Note that the convex programming algorithms
have polynomial complexity. That is, the run time is no
greater than a polynomial function of the problem size(2|V|+
|L|)(|C|+1). The theorem below relates problem (20) and the
LONPR solution.

Theorem1. If h(x) is a differentiable increasing convex
function, then the routing solution of problem (20) with
f(x) =

(

h(x)
)γ

approaches the LONPR solution asγ → ∞.

The proof of this theorem is presented in Appendix E. It can be
shown that the LONPR flow solution is not necessarily unique.
However, all of the solutions lead to a unique lexicographically
ordered node lifetime vector. Based on Theorem 1, the optimal
solution of problem (20) is the LONPR solution. Based on
Lemma 2, the LONPR and LONLR flow solutions lead to the
same node lifetime vector. Therefore, the solution of problem

(20) is indeed the LONLR solution. Problem (20) is a tractable
convex problem which can be solved in polynomial time. We
now propose a distributed solution for this problem.

B. Distributed Implementation

In this section, we present a distributed algorithm to solve
problem in (20). The technique that we use isdual decomposi-
tion [32], which has also been used in [12], [33]. Problem (20)
is referred as the primal problem. We first introduce Lagrange
multipliers λk

i for the first equality constraints in (20). The
other constraints are local constraints in each node and do not
need to be relaxed. The Lagrangian functionL(g,x,λ) is:

L(g,x,λ)

=
∑

i∈V

f(gi) +
∑

i∈V

∑

k∈C

λk
i





∑

j∈Ni

(

xk
ij − xk

ji

)

− Si





=
∑

i∈V

(

f(gi) +
∑

j∈Ni

∑

k∈C

xk
ij

(

λk
i − λk

j

)

−
∑

k∈C

λk
i Si

)

.

From the Lagrangian, the dual function and the dual prob-
lem can be defined. A subgradient algorithm [32] can be
used to solve the dual problem. The subgradient algorithm is
an iterative algorithm. In iterationτ , given λk

i (τ), λk
j (τ) for

j ∈ Ni, and the local information (pij , Ei, Rij), each nodei
updatesxk

ij(τ) andgk
i (τ) by solving the following problem:

minimize f(gi(τ)) +
∑

j∈Ni

∑

k∈C

xk
ij(τ)

(

λk
i (τ) − λk

j (τ)
)

−
∑

k∈C

λk
i (τ)Si

subject to
∑

j∈Ni

pij

∑

k∈C

xk
ij(τ) = Eigi(τ),

∑

k∈C

xk
ij(τ) ≤ Rij , ∀ j ∈ Ni

xk
ij(τ) ≥ 0, ∀ j ∈ Ni, k ∈ C. (21)

Algorithm 2 shows the distributed LONL algorithm per-
formed in nodei.

Algorithm 2 LONL Algorithm in Node i (Distributed)
1: Setτ := 1
2: While not converged
3: Solve problem (21) to obtaingi(τ) and xk

ij(τ) for
j ∈ Ni, k ∈ C.

4: Exchange the values ofxk
ij(τ) with neighboring nodes

j ∈ Ni.
5: Setλk

i (τ + 1) := λk
i (τ)− µ(τ)

(

Si −
∑

j∈Ni

(

xk
ij(τ)

−xk
ji(τ)

))

.
6: Exchange the values ofλk

i (τ + 1) with neighboring
nodesj ∈ Ni.

7: τ := τ + 1.
8: End

In the above algorithm,µ(τ) is a positive diminishing step
size and is chosen as1

τ+1
.
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IV. PERFORMANCEEVALUATION

In this section, we evaluate the performance of our proposed
LOCL and LONL algorithms. We assume a deterministic path
loss model. The power consumed for transmission of one bit
from node i to nodej (i.e., pij) is η1 + η2d

4
ij , whered is

the physical distance. We chooseη1 = 1 and η2 = 0.1. The
regularization coefficient is set toδ = 10−5. Each source
generates 1 kbps of information. The initial energy of each
source nodeES is 3 J while the initial energy of each
intermediate nodei (i.e., Ei) is 1 J. Nodes use TDMA to
access the shared communication channel. The time slots are
assigned equally and statically to the different links, which
have interference with each other. The maximum link rateRij

is 250 kbps for all logical links.

A. Performance of LOCL Algorithm

In the first experiment, we show the performance of em-
ploying multiple sinks. There are 30 sensor nodes randomly
deployed in a 50m× 50m square field. The transmission range
of each node is 10m. Eight nodes are randomly chosen as the
source nodes. Each source sends data to its (physically) closest
sink. Fig. 2(a) shows the normalized minimum commodity
lifetime in the network versus the number of sinks. Each sink
is located in one of the four corners in the field. Results are
averaged over 100 simulation runs. The values are normalized
with respect to the lifetime of the network with only one sink.
Simulation results depict that the lifetime increases almost
linearly as the number of sinks is increased. It can be seen that
the minimum commodity lifetime in the network when there
are four sinks is almost 500% more compared to the network
with one sink. The benefit of increasing the number of sinks is
evident. Fig. 2(b) shows the number of steps performed in the
LOCL algorithm versus the number of sinks in the network.
When there are four sinks in the network, the average number
of steps is about 3.5.

Next, we investigate the performance of the LOCL algo-
rithm with a different number of sources. The other simulation
settings are the same as in the previous experiment. Fig. 3
shows the average normalized commodity lifetime for the
commodities under different number of sources. When the
number of sources increases, the lifetime of each commodity
decreases.

In this experiment, we assume that there are four different
types of sources in the network, two sensors of each type.
For example, there can be two temperature sensors, two
pressure sensors, two humidity meter sensors, and two airflow
sensors. One sink is assigned to gather information for each
data type. Sensors are then required to send data to the
corresponding sink. Fig. 4 shows the normalized lifetime of
the commodities. We compare the results when there are
different types of sensors and the case that each source sends
data to the nearest sink. When there are different types of
sources and all sources are randomly deployed in the sensor
area, there are more common nodes among commodities. The
correlation between different commodities increases. Also, the
data packets are traversed over longer paths. Therefore, the
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Fig. 2. LOCL algorithm for network with different number of sinks: (a)
Minimum commodity lifetime; (b) Average number of iterations in LOCL
algorithm.

lifetime of commodities decreases compared to the case where
each node sends data to the nearest sink.

B. Performance Comparisons between LOCL, LONL, MLMS,
and LMM Algorithms

To perform the simulation for the LONL algorithm, we need
to choose functionh(gi) and parameterγ. We seth(gi) = gi.
To chooseγ, we set up an experiment. The network topology
is similar to the network used in the first experiment with
two sinks. We increment the value ofγ starting from 1 and
solve problem (20). Fig. 5 shows the average normalized
minimum lifetime in the network for 100 simulation runs
versus different values ofγ. It can be seen that whenγ > 8, the
difference between consecutive lifetime values is less than 1%.
We chooseγ = 10 for the subsequent simulation runs. The
objective function in problem (20) is chosen asf(gi) = gγ

i .
To compare our LOCL and LONL algorithms with the

existing algorithms in the literature, we implemented the
algorithms proposed in [1] and [2]. We solve the corresponding
mixed integer programming problems by using the MOSEK
[29] optimization toolbox. There are four sinks and eight
sources in the network. In [1], the problem of network lifetime
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Fig. 3. Lifetime of commodities for LOCL algorithm with different number
of sources.
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Fig. 4. Lifetime of commodities for LOCL algorithm when there are single
and different types of sinks.

maximization is modeled as a concurrent multi-commodity
flow optimization problem. The problem can be extended to
consider the multi-sink case. We modify this algorithm and
assume that each source sends data to the closest sink. Note
that this makes the comparison to be fair as in all other cases
for multi-sink WSNs. When there is one sink, this problem
is equal to the maximum lifetime routing problem proposed
in [5]. We call the modified algorithm the maximum Lifetime
routing for network with Multiple Sinks (MLMS).

A lexicographical max-min fair (LMM) algorithm is pro-
posed in [2]. This algorithm determines a schedule for the
routing flows. We extend this algorithm for WSNs with
multiple sinks. We compare the results of LOCL with the first
routing flow of LMM method. Notice that the LOCL algorithm
provides one routing flow but not a schedule of routing flows
for the network. Since both LOCL and LONL algorithms
provide one routing flow, we compare these algorithms with
the first routing flow in the schedule of LMM.
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Fig. 5. Average normalized minimum lifetime in LONL algorithm versusγ.
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Fig. 6. Lifetime of commodities for LOCL, LONL, LMM, and MLMS
algorithms in a network with four sinks.

Fig. 6 compares the lifetime of commodities between
LOCL, LONL, MLMS, and LMM algorithms. Results show
that for the minimum commodity lifetime, all four algorithms
provide the same lifetime. For the other commodities, the
LOCL algorithm provides a higher lifetime. The difference
between LOCL and LONL algorithms is due to the fact that
after the first node runs out of its energy, the LOCL algorithm
tries to maximize the next commodity lifetime while the
LONL algorithm tries to maximize the second node lifetime.
The second node does not necessarily belong to the second
commodity. This happens for the subsequent commodities and
leads to different results for LOCL and LONL algorithms. The
difference increases as the commodity number increases.

The lifetimes for the commodities obtained from the MLMS
algorithm are almost equal because this algorithm only max-
imizes the minimum lifetime in the network. For the LMM
algorithm, the first routing flow from the schedule is compared.

Fig. 7 compares the lifetime of nodes under LONL, MLMS,
and LMM algorithms. The LONL algorithm maximizes the
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Fig. 7. Lifetime of nodes for LONL, LMM, and MLMS algorithms fora
network with four sinks.

lifetime of all the nodes in the network and consequently
has better performance. The LMM algorithm has a better
performance compared to the MLMS algorithm. In the MLMS
algorithm, only the minimum lifetime is maximized and there-
fore the lifetimes of other nodes are almost equal.

V. CONCLUSIONS

Multiple sinks can be employed in a WSN to increase the
lifetime of the network. In this paper, we formulated two
algorithms to fairly share the network resources among various
commodities and nodes in the system using the concept of
lexicographical fairness. We first proposed the centralized
LOCL algorithm to obtain the exact lexicographically optimal
solution. LOCL is a stepwise algorithm. In each step, a linear
mixed-integer programming problem is being solved. Our
second algorithm, called the LONL algorithm, is distributed.
It can obtain the optimal solution under certain assumptions,
and the sub-optimal solutions in general. The LONL algorithm
is easier for implementation and more practical for deploy-
ments. Simulation results show that both LOCL and LONL
algorithms have better performance compared to some existing
schemes.

There are several directions for future work. The algorithm
can be extended to enable the source nodes to select the
appropriate sink. Alternatively, the problem can be formulated
such that the optimal location for the sinks is determined while
the network lifetime is being maximized.

APPENDIX

A. Linearization Technique

Consider a non-negative real variablex and a binary variable
a. The product of these variables can be replaced by a new
real variablez. The value ofz corresponds to the value ofx
anda as follows:

z =

{

0, if a = 0,
x, if a = 1.

(22)

Assume thatxmax is an upper bound for the real variable
x. The desired correspondence betweenx, a, and the new
variablez is obtained by requiring that [34]:

0 ≤ z ≤ x,

x − xmax(1 − a) ≤ z ≤ xmaxa. (23)

B. Regularization Technique

Consider the following convex optimization problem with
variablex:

minimize f0(x)

subject to fi(x) ≥ 0, i = 1, . . . ,m

x � 0. (24)

where f0, fi’s can be linear or nonlinear functions. The
optimal value(i.e., minimal value) is denoted byp? and is
achieved at anoptimal solutionx?. That is, p? = f0(x

?).
Now consider the following optimization problem:

minimize f0(x) + δφ(x)

subject to fi(x) ≥ 0, i = 1, . . . ,m

x � 0. (25)

Mangasarianet al. [26] proved that if the problem is a linear
programming problem, for all values ofδ below some positive
threshold, the optimal solutions of the regularized problem
(25) are also the optimal solution in problems (24). Recently
in [27], Friedlanderet al. extended this work and proved that
when the problem is nonlinear, the result still holds. They
showed that this threshold is the inverse of the Lagrange
multiplier of the second inequality constraint in the following
problem:

minimize φ(x)

subject to fi(x) ≥ 0, i = 1, . . . ,m

f0(x) ≤ p?

x � 0. (26)

They proved that this problem always has a Karush-Kuhn-
Tucker (KKT) point. Thus, the threshold always exists.

C. Proof of Lemma 1

We use mathematical induction to prove this lemma. If there
is at least one path between each source and its associated sink,
the feasible set of problem MIP-1 is nonempty. Consequently,
the optimal set is also nonempty. If the feasible region of
problem MIP-n is nonempty then its optimal set is nonempty.
Since the feasible set of problem MIP-(n + 1) is the optimal
set in problem MIP-n, therefore it is nonempty. �

D. Proof of Lemma 2

We use mathematical induction to prove the following parts:

1) The inverse of the minimum lifetime is equal to the
maximum normalized power consumption.

2) If the inverse of theith minimum lifetime is equal to
the ith maximum normalized power consumption, then
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the inverse of the(i+1)th minimum lifetime is equal to
the (i+1)th maximum normalized power consumption.

Both parts can be proved by contradiction. We only prove
part one; the proof for the second part can be derived in
similar manner. LetT1 denote the minimum lifetime (i.e.,
the maximum achievable value for the minimum lifetime) and
g1 denote the maximum normalized power consumption (i.e.,
the minimum achievable value for the maximum normalized
power consumption).

Now assume thatg1 6= 1

T1

. If g1 > 1

T1

, it means that it is
possible to reduce maximum normalized power consumption
to 1

T1

while we have assumed thatg1 is the minimum achiev-
able value for the maximum normalized power consumption,
which is a contradiction. Ifg1 < 1

T1

, it means that it is possible
to reduce maximum normalized power consumption to1

T1

while we have assumed thatg1 is the minimum achievable
value for the maximum normalized power consumption which
is a contradiction. Ifg1 > 1

T1

, it means that it is possible to
increase minimum lifetime to1

g1

while we have assumed that
T1 is the maximum achievable value for the minimum lifetime.
It is also a contradiction. �

E. Proof of Theorem 1

The set of constraints in problem (20) constructs a closed
convex set. Letgmax

i be a loose upper bound for the normal-
ized power consumption of nodei ∈ V. Let g denote the
vector of normalized power consumption andgγ represent
the optimal value of problem (20) whenf(x) = (h(x))

γ .
The closed feasible set and the loose upper bound constraint
construct a compact feasible set forgγ . Sincegγ is a sequence
in a compact set, there exists a subsequence ofγ, {γm,m ≥
1}, such thatgγm converges to someg? as m → ∞,
where g? is the limit point of gγm . We prove thatg? is
the lexicographically smallest normalized power consumption
vector and is unique.

Proof by contradiction: Assume thatg? is not the lexico-
graphically optimal solution andg′ is the lexicographically
optimal vector.g′ is lexicographically less thang?. It means
that, there existsi such thatg?

j = g′j for all j < i and
g?

i > g′i. Let ξ = g?
i − g′i. From the convergence ofgγm

to g?, there existsm0 such that for allm ≥ m0, gγm

n is in the
ε-neighborhood ofg?

n for all n ∈ V:

g?
n − ε ≤ gγm

n ≤ g?
n + ε. (27)

Consider the expressionAm defined by:

Am =

|V|
∑

n=1

(fm (g′n) − fm (gγm

n )) , (28)

wherefm(x) = (h(x))
γm . From the optimality ofgγm , we

haveAm ≥ 0. Since for the values ofn < i, the members of
two vectors are equal, we have:

Am = fm (g′i) − fm (gγm

i ) +

|V|
∑

n=i+1

(fm (g′n) − fm (gγm

n )) .

(29)

Since the functionfm(x) > 0, we have:

Am ≤ fm (g′i) − fm (gγm

i ) +

|V|
∑

n=i+1

fm (g′n)

= −fm (gγm

i ) +

|V|
∑

n=i

fm (g′n) . (30)

The vectorg′ is lexicographically ordered. Thus, for alln >
i, g′n < g′i, we have:

Am ≤ −fm (gγm

i ) + Mfm(g′i), (31)

whereM = |V| − i + 1. We know thatg′i = g?
i − ξ. We also

use equation (27) to obtain:

Am ≤ −fm(g?
i − ε) + Mfm(g?

i − ξ)

= −fm(g?
i − ε)

(

1 − M
fm(g?

i − ξ)

fm(g?
i − ε)

)

. (32)

Sinceε can be any number, we choose it such thatε < ξ. The
last term is equal to:

fm(g?
i − ξ)

fm(g?
i − ε)

=

(

h(g?
i − ξ)

h(g?
i − ε)

)γm

, (33)

whereh(x) is an increasing function. Whenγm → ∞ (i.e.,
m → ∞), this term tends to zero. Therefore,Am ≤ −1, which
is a contradiction. �

Note that our proof is related to that of Lemma 3 in [35]. In
[35], Mo et al. considered utility maximization problems and
proved a similar theorem for max-min fairness; however, here
we consider the normalized power consumption minimization
problem and the lexicographically optimal is the notion of
fairness.
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