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Abstract—Convergence bidding, a.k.a., virtual bidding, has
been widely adopted in wholesale electricity markets in re-
cent years. It provides opportunities for market participants
to arbitrage on the difference between the day-ahead market
locational marginal prices and the real-time market locational
marginal prices. Given the fact that convergence bids (CBs) have
a significant impact on the operation of electricity markets, it
is important to understand how market participants strategically
select their CBs in real-world electricity markets. We address this
open problem with focus on the electricity market that is operated
by the California Independent System Operator (ISO). In this
regard, we use the publicly available electricity market data to
learn, characterize, and evaluate different types of convergence
bidding strategies that are currently used by market participants.
Our analysis includes developing a data-driven reverse engineering
method that we apply to three years of real-world California
ISO market data. Our analysis involves feature selection and
density-based data clustering. It results in identifying three
main clusters of CB strategies in the California ISO market.
Different characteristics and the performance of each cluster of
strategies are analyzed. Interestingly, we unmask a common real-
world strategy that does not match any of the existing strategic
convergence bidding methods in the literature. Next, we build
upon the lessons learned from the advantages and disadvantages
of the existing real-world strategies in order to propose a new
CB strategy that can significantly outperform them. Our analysis
includes developing a new strategy for convergence bidding.
The new strategy has three steps: net profit maximization by
capturing price spikes, dynamic node labeling, and strategy
selection algorithm. We show through case studies that the annual
net profit for the most lucrative market participants can increase
by over 40% if the proposed convergence bidding strategy is used.

Keywords: Convergence bidding, virtual bidding, bidding strat-
egy, data-driven study, feature selection, data clustering, reverse
engineering, California ISO, electricity market.

NOMENCLATURE

Abbreviations
CB Convergence Bid
DAM Day-Ahead Market
RTM Real-Time Market
LMP Locational Marginal Price
D-LMP Day-Ahead Market LMP
R-LMP Real-Time Market LMP
ISO Independent System Operator
Pnode Pricing Node

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California, Riverside, CA, USA, 92521. This work was
supported by the National Science Foundation (NSF) grant 1711944. The
corresponding author is Hamed Mohsenian-Rad; e-mail: hamed@ece.ucr.edu.

APnode Aggregated Pricing Node
DLAP Default Load Aggregated Point
MILP Mixed-Integer Linear Programming
HDBSCAN Hierarchical Density-Based Spatial Clustering

of Applications with Noise

Indices, Sets, and Symbols
T Set of all the time intervals
t Index of time interval
(·)∗ Symbol for average value
(·)min/max Symbol for upper/lower limit

Parameters
∆ The distance of price bid from the average

hourly D-LMP
λ D-LMP
π R-LMP
δ Difference between D-LMP and R-LMP
ε Relatively small number
M Sufficiently large number
θ Objective function threshold in Algorithm 1
a Accuracy of forecasting

Variables
η Net profit
L Loss / negative profit
P Profit / positive profit
x Submitted price bid
m Distance from the average D-LMP captured

as a spike by an optimal CB
b1, b2 Auxiliary binary variables
z Auxiliary continuous variable

I. INTRODUCTION

A. Background: Convergence Bidding

Convergence bidding, a.k.a., virtual bidding, is a market
mechanism that is used by Independent System Operators
(ISOs) in two-settlement wholesale electricity markets to re-
duce the gap between the day-ahead market (DAM) prices and
the real-time market (RTM) prices in order to increase market
efficiency [1], [2]. A supply convergence bid (CB) is a bid
to sell energy in DAM and buy the same amount of energy
in RTM. A demand CB is a bid to buy energy in DAM and
sell the same amount of energy in RTM [3]. While CBs are
virtual, i.e., only financial and not physical, they are cleared
in DAM together with physical supply and demand bids. If
a supply CB is cleared in DAM, then the bidder is credited
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Fig. 1. The process of clearing CBs in wholesale electricity markets [3].

at the DAM price and charged at the RTM price; and if a
demand CB is cleared in DAM, then the bidder is charged
at the DAM price and credited at the RTM price. In both
cases, the difference between the earning or loss is paid to
the convergence bidder. The process of clearing CBs and the
related payment calculation is outlined in Fig. 1. The payment
is calculated by multiplying the cleared amount of energy by
the difference between the DAM locational marginal price (D-
LMP) and the RTM locational marginal price (R-LMP).

Most ISOs in the United States, including the California
ISO, have already adopted CBs [4], [5]. CBs are currently
understood to play a critical role in electricity markets, e.g.,
to improve market efficiency, reduce the price gap between D-
LMP and R-LMP, and help with the integration of renewable
energy resources, e.g., see the various studies in [6]–[9].

In this paper, we seek to answer a series of research
questions related to CB strategies: 1) How many market
participants submit CBs in the California ISO market, and
what are the characteristics of their CBs? 2) How do market
participants shape their CB strategy, in particular with respect
to the choice of their price bids? 3) How does the reality of the
CB strategies in the California ISO market match the existing
literature in this field? 4) What are the most common strategies
that are used by the CB market participants in the California
ISO market? 5) Is it possible to learn from the current CB
strategies in the California ISO market and propose a new
strategy that can significantly outperform them? 6) Could a
CB strategy that is seemingly unprofitable comprise part of
an enhanced new composite bidding strategy? For the rest of
this paper, we will refer to the above research questions as
Research Question 1 to Research Question 6, respectively. We
will address and refer to these questions throughout the paper.

B. Summary of Contributions and Discoveries

While the basic principles of convergence bidding are
studied in the academic literature and industry reports, there is
currently a gap in this field about understanding the strategy
and behavior of CB market participants in real-world electric-
ity markets. This is a critical subject because the way that

market participants select their CBs can ultimately shape the
impact of CBs on electricity markets. Addressing this open
problem is the focus of this paper. Accordingly, the main
discoveries and contributions in this paper are as follows:

• Three years of real-world market data from the California
ISO market are investigated to understand the behavior of
CB market participants. The analysis is comprehensive;
it looks into all the submitted CBs, D-LMPs, R-LMPs,
and the net cleared CBs. The convergence bidders that
are most present in the market are identified based on
different metrics; and their CBs are analyzed in terms of
the number of submitted CBs, the number of participated
locations, the type of submitted CBs, the number of steps
for the submitted CBs, and the quantity of in MWh.

• The features for the strategy of the submitted CBs are
extracted; and by using a density-based clustering algo-
rithm, three main clusters of CB strategies are identified.
The characteristics and the performance of each identified
cluster of strategies are analyzed and some of their
advantages and disadvantages are investigated. Next, the
identified strategies are reverse engineered, i.e., their key
steps are identified such that we can implement them
for a market participant. The purpose of this reverse
engineering task is two-fold. First, it can shed light on
how CB market participants behave. This by itself is an
important study and the results can be insightful to ISOs
and policy makers. Second, it serves as means for us
to develop a new and better convergence bidding strategy
based on what we learn from the current state of practice.

• Our analysis also unmasks two interesting discoveries.
First, one of the most common real-world CB strategies
in the California ISO market does not match any of the
strategic convergence bidding methods that currently exist
in the research literature. Second, most of the exciting
papers in the research literature are focused on one of
the CB strategies that is less common in practice among
the CB market participants in the California ISO market.

• A new comprehensive convergence bidding strategy is
proposed to utilize the identified reverse engineered
strategies based on their advantages and disadvantages
under various market conditions. To the best of our
knowledge, this is the first composite CB strategy that is
proposed in the literature. It is also the first CB strategy
that is obtained by reverse engineering of existing real-
world CB strategies. The proposed strategy comprises
three steps: net profit maximization by capturing price
spikes, dynamic node labeling, and strategy selection. We
show that the annual profit for the most lucrative market
participant in the California ISO market can increase by
43%; if the proposed bidding strategy is used.

C. Literature Review

Despite the fact that CBs are widely adopted by ISOs in
recent years, the current literature is still limited when it comes
to the analysis of convergence bidding strategies.



Some of the related papers include [10]–[16]. In [10],
an online learning algorithm is proposed to maximize the
cumulative payoff over a finite number of CB trading sessions.
However, there is no discussion on how the proposed strategy
is similar to or different from the strategies that are currently
used by the market participants in practice. In [11], a stochastic
optimization model is proposed to place CBs under different
risk management scenarios. The focus is on self-scheduling
bids; therefore, the choice of the price components for the CBs
is inherently not part of the analysis. In [12], a bi-level CB
optimization problem is proposed, where the upper-level prob-
lem aims to maximize the profit for the convergence bidder and
the lower-level is the economic dispatch problem. The authors
in [15] also proposed a bi-level stochastic optimization model
for joint physical demand bidding and convergence bidding,
for a strategic retailer in the short-term electricity market.
While the use of bi-level optimization is insightful, it may not
match the information available to CB market participants in
practice. In fact, in practice, market participants do not have
access to the detailed formulation of the economic dispatch
problem that is solved by the ISO. They also do not have
access to the comprehensive market data that are needed to
solve the economic dispatch problem. In summary, while the
above papers do propose new convergence bidding strategies,
they are not concerned with convergence bidding strategies
that already exist in practice in the real-world convergence
bidding markets. This is indeed still an open issue that needs
to be explored, which we seek to address in this paper.

There are fundamental differences between the work in this
paper and the few available studies related to the convergence
bidding strategies that we listed in the previous paragraph.
First, none of the available works in the literature has proposed
a data-driven convergence bidding strategy based on the real-
world market data. Second, some of the existing convergence
bidding papers in the literature focus only on selecting the
quantity (in MWh) of the bid, and not the price of the bid;
i.e., they focus on self-scheduling strategies. Third, some of
the papers in the literature tried to solve the market clearing
process as part of their problem in order to consider the price
component of CBs and to be able to use the resultant LMPs
in the profit maximization problem. However, as we know, the
market clearing problem is a very complex optimization prob-
lem with many steps. Therefore, the authors in those papers
had no choice but to significantly simplify the market model
in order to solve their formulated optimization problems. On
the contrary, in this work, we focus on real-world market data
and we analyze and reverse engineer the strategies of each
convergence bidder in the California ISO market.

Compared to the preliminary conference version of this
work in [17], the current journal submission has several new
and important contributions. In fact, the two major tasks
of reverse engineering the existing CB strategies as well as
designing a new comprehensive convergence bidding strategy
are both new in this journal version. This journal version also
includes new results with respect to identifying the advantages
and disadvantages of various real-world convergence bidding
strategies in the California ISO market.

Finally, there is also a rich body of literature that studies

CBs; but they are not about understanding the strategies of
CB market participants. In particular, there are papers that
study the impact of CBs on electricity markets [3], [18]–
[29]. In [3], a method is proposed to identify under what
theoretical conditions a CB results in price divergence, instead
of price convergence. The impact of convergence bidding on
the efficiency of the California ISO market and impact on
price convergence is studied in [19] and also in [24]. There
are also a few papers in the literature that are concerned with
the potential to manipulate the wholesale electricity market
by using CBs [30]–[36]. In [31], an equilibrium model is
developed to study the cross-product manipulation in financial
transmission right and two-settlement energy markets. The
concept of cyber attacks in wholesale electricity markets with
virtual bidding activities is analyzed in [34]. A framework is
proposed to evaluate the economic profit of an attacker who
conducts a topology data attack using CBs.

In the second part of this paper in Section IV, we look
at the strategic bidding problem from the viewpoint of the
market participants. In this regard, the viewpoint in this paper
is similar to those in [10], [37]–[42]; all of which discuss
developing new bidding strategies in electricity markets.

II. OVERVIEW OF THE REAL-WORLD CB MARKET
PARTICIPATION DATA IN THE CALIFORNIA ISO

In this section, we provide an overview of the CB market
participation in the California ISO electricity market based
on the real-world market data. All the raw data in this study
are available in [43]. The analysis in this section will address
Research Question 1. It will also set the stage for the data-
driven reverse engineering work in Section III.

A. Analyzing the Market Data

Three years of market data from the California ISO elec-
tricity market, during 2017, 2018, and 2019, are analyzed.

A CB that is submitted to the California ISO electricity
market must contain four pieces of information as follows: i)
step-wise quantities (MWh), ii) step-wise prices1 ($/MWh),
iii) the type of the CB, which can be either a demand CB
or a supply CB, and iv) the nodal location of the CB. In the
California ISO electricity market, the CB market participants
can submit up to ten steps of quantity and price pairs in each
bid. It should be mentioned that, throughout this paper, if a
CB is multi-step, then the maximum quantity of the different
steps of the same submitted CB is considered as its quantity.

In this study, we focused on the aggregated pricing nodes
(APnodes) in the California ISO market. As defined by the
California ISO, an APnode is a trading hub, a load aggregation
point, or any group of multiple pricing nodes (Pnodes) [44].
The reason that APnodes are the focus of this study is that,
most of the submitted CBs in the California ISO market are at
the APnodes. There is no practical advantage to look into any
higher locational resolution beyond APnodes. With over two
thousand APnodes across the state of California, focusing on

1Throughout this paper, we refer to the price bids, which are expressed in
$/MWh, as the price components or the price values of the convergence bids.
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Fig. 2. Total monthly amount of cleared energy by CBs for each year.
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Fig. 3. Total monthly net profit by convergence bidders for each year.

the APnodes in this study already required handling a huge
amount of real-world market data. Accordingly, we examined
a total of 2265 APnodes; out of which a total of 475 APnodes
hosted at least one CB at any time during the three-year period
of this study. On average, a total of 387 APnodes hosted at
least one CB during each month.

The total number of market participants that ever submitted
a CB during the three-year period of this study was 101,
with a monthly average of 52 market participants. The total
profit that was earned by all the market participants in the
CB market during this period was $61 million. Out of the
101 convergence bidders, 74 of them made money, i.e., had a
net positive profit. Fig. 2 shows the total monthly amount of
cleared energy at each year for the convergence bidders, and
Fig. 3 shows the monthly net profit that all the convergence
bidders earned during this period of study. Note that, notation
$M means $1,000,000. Interestingly, there were months that
the market participants had an overall loss, i.e., net negative
profit as the outcome of their convergence bidding. Another
interesting observation is that even though the net profit
fluctuated significantly across different months, the amount of
cleared CB was about the same in each month.

As it is already widely discussed in the literature, there is a
direct relationship between the CB market participants’ ability
to earn profit, and the advantages that convergence bidding can
provide to the society from the system viewpoint. In particular,
as discussed in the ISO reports, such as in [4], [5], if the
CB market participants make profit, then their CBs also help
closing the gap between D-LMPs and R-LMPs. Closing such
gap results in several benefits to the system, such as [4],

TABLE I
SELECTION OF THE CB MARKET PARTICIPANTS WITH CONSIDERABLE

PRESENCE BASED ON THE FOUR INTRODUCED METRICS ACROSS A TOTAL
OF 101 CONVERGENCE BIDDERS.

Alias ID 1 2 3 4
1 20.97 1.49 11.06 1.93
2 8.53 12.82 5.61 7.00
3 6.54 8.92 1.68 2.51
4 6.05 13.13 3.00 6.96
5 6.02 1.26 16.26 3.47
6 5.63 1.50 7.09 3.55
7 5.26 1.16 2.28 0.50
8 3.87 1.11 2.34 1.21
9 3.69 7.15 10.56 17.56
10 2.56 3.30 0.68 1.06
11 2.49 5.62 0.31 0.72
12 2.31 2.92 1.11 1.47
13 1.91 2.24 5.77 5.82
14 1.67 3.63 0.28 0.62
15 1.58 3.53 0.27 0.62
16 1.36 2.37 1.76 2.10
17 1.21 1.90 4.58 5.10
18 1.11 1.12 2.20 2.71
19 1.04 1.94 2.50 3.69
20 0.19 0.41 1.88 4.30

Total 84.0% 77.5% 81.2% 72.9%

1 Share of the number of submitted CBs (%).
2 Share of the number of cleared CBs (%).
3 Share of the total submitted quantity in MWh (%).
4 Share of the total cleared quantity in MWh (%).

[5]: 1) Lowering the costs due to more efficient day-ahead
commitment, 2) Improving the grid operations and reliability,
3) Market power mitigation, 4) Increasing the market liquidity,
5) Promoting the competition between market participants.
The above mentioned fact in the ISO reports, that a profitable
CB helps with achieving price convergence and its advantages,
is also proved mathematically in [3].

B. Identifying the Most Present Convergence Bidders

In this work, although we analyze all the submitted CBs
in the California ISO market, we scrutinize only the “most
present” convergence bidders for the purpose of extracting
their convergence bidding strategies. The most present CB
market participants can be defined based on different metrics:
1) their high share in the market in terms of the number of
submitted CBs; 2) their high share in the market in terms of
the number of cleared CBs; 3) their high share in the market
in terms of the total amount of quantity of the submitted CBs
in MWh; 4) their high share in the market in terms of the total
amount of quantity of the cleared CBs in MWh.

The process of selecting the most present market partici-
pants is summarized in Table I. For each metric, we calculated
the share (in percentage) of all the CB market participants
according to that particular metric. We then sorted the list
of market participants based on each metric, and accordingly
selected the market participants with the 10 highest shares in
the market according to each metric. The 10 selected market
participants for each metric are marked in Table I by gray
shaded areas. There are exactly 10 market participants with



gray shaded areas in each column. Next, we combined the four
lists from the four metrics. Due to the overlaps between the
lists for the four metrics, this analysis results in identifying
a total of 20 market participants as the ones that are “most
present” in the CB market. At this stage, we assigned Alias
IDs to the selected market participants, as denoted by 1 to
20. As it is mentioned before, the total number of CB market
participants that ever submitted a CB during the period of this
study is 101. The reason for choosing the 10 highest shares
of each list of metrics is to select all market participants that
one way or another have some considerable presence in the
market, then we scrutinize the selected market participants.
Note that, each of the 20 selected market participants has a
considerable presence in the market based on at least one of
the four metrics. As we can see in the last row in Table I, the
identified 20 most present market participants in the above
process accounted for 72% to 84% of the entire convergence
bidding market, based on any of the four metrics that one can
consider to define the share of the market participants.

Table II shows some basic information for each Alias ID
that we previously identified in Table I. We can make several
preliminary observations, as we explain next.

Some of the identified convergence bidders placed CBs in
almost all the locations that ever received CBs, such as Alias
ID 4 that placed CBs in 95% of locations that hosted at least
one CB at any time during the three-year period of this study.
Some other convergence bidders placed CBs in only a few
locations, such as Alias ID 20 that placed CBs in less than
1% of the locations. Most of these 20 convergence bidders
with considerable presence submitted both supply and demand
bids, but some of them, such as Alias ID 17 and Alias ID 20,
submitted supply CBs more than demand CBs, or vice versa.

Based on the average value for the number of steps for the
cleared CBs, some market participants always submitted single
step bids, while some others used multiple steps in their CBs.
Finally, the average quantity of the cleared CBs varies from
about 2 MWh to 156 MWh which shows a different amount of
investment and available credit between market participants.

III. DATA-DRIVEN REVERSE ENGINEERING OF THE
CONVERGENCE BIDDING STRATEGIES

In this section, first, we will extract different quantitative
features to characterize the convergence bidding strategies
of the market participants based on the raw market data
that we introduced in Section II. After that, we will use
the extracted features to cluster the submitted CBs into
three clusters of strategies. Finally, the performance of the
clusters of strategies will be compared. By going through
these steps, the convergence bidding strategies of the real-
world market participants in the California ISO market will
be reverse engineered. The benefit of this analysis is two-fold.
First, an in-depth understanding of the CB strategies that are
currently adopted by the real-world market participants is in
its own right interesting from the view point of research and
also to provide insights to ISOs. Second, by unmasking and
reverse engineering the existing real-world CB strategies in
the California ISO market, an enhanced and more profitable
CB strategy is achieved, as we will see in Section IV.

TABLE II
CONVERGENCE BIDDING CHARACTERISTICS IN THE CLEARED

CBS FOR THE MARKET PARTICIPANTS WITH CONSIDERABLE PRESENCE.

Alias ID 1 2 3 4
1 28.21 68.11 2.86 28.79
2 58.53 79.08 1.11 8.41
3 70.95 69.33 2.05 4.92
4 95.37 50.53 1 7.97
5 21.47 63.18 2.9 76.51
6 48.63 57.01 1.92 49.27
7 62.11 61.5 2.45 8.07
8 19.16 49.12 1.64 19.73
9 18.11 55.08 2.52 49.66
10 32.63 79.03 1.04 4.97
11 68.63 45.74 1 1.92
12 20 58.02 1.03 7.84
13 3.58 53.81 1.37 49.15
14 24.84 60.19 1.13 2.6
15 45.26 39.25 1 2.64
16 22.74 77.88 4.36 21.42
17 12 87.04 3.33 53.93
18 33.68 53.63 1 36.23
19 69.89 64.09 5.29 37.37
20 0.21 100 1 156.72

1 Share of nodal locations in cleared CBs (%).
2 Share of supply bids in cleared CBs (%).
3 Average number of steps in cleared CBs.
4 Average quantity in MWh in cleared CBs.

A. Features for Cluster Identification

Recall from Section II.A that each submitted CB has three
types of information: quantities, prices, and whether it is a
demand CB or a supply CB. The pair of quantity and price
can be submitted in one step or multiple steps. Accordingly,
we introduce four different features for each submitted CB:
1) The price distance, i.e., the difference between the price
bid in the submitted CB at a node and the average hourly D-
LMP2 at that node; 2) The correlation between the type of the
submitted CB (demand or supply) at a node and the historical
CBs at that node; 3) The number of steps in the submitted CB;
4) The type of node where the CB is submitted, i.e., whether
the node is a regular APnode, i.e., it is not a Hub or a DLAP,
or it is one of the major aggregated nodes in the California
ISO market, i.e., it is a Hub or a DLAP.

In this work, we seek to consider the key determinative
features for the bidding strategy of the CB market participants.
In our assessment, the selected features should have three main
characteristics as follows. First, the selected feature should be
built only based on the data that each market participant has
access to by its own. For example, a feature that needs to
include other market participants’ bidding information is not
considered in our features for the purpose of clustering. This is
because each convergence bidder does not have access to the
bidding data of other market participants. Second, the selected
feature should not involve or depend on the information that is
private to the market participant. It is not really a choice to not
consider such private information; it is rather the nature of a
study like ours that is based on analyzing real-world electricity

2The average D-LMP is a fixed number for each hour and each node, as it
is the mean value of the historical prices over a period of three years.
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Fig. 4. Demonstration of the first feature, i.e., ∆, which is the price distance
of bid from average hourly D-LMP: a) in a supply bid; b) in a demand bid.

market data. For example, each CB market participant has a
“credit” with California ISO, which determines the maximum
quantity of bids that the market participant can submit to the
market. Such “credit” is not public data. Thus, the quantity
of the submitted CB in MWh is not considered as a feature,
because it is not clear whether the quantity of the bid is simply
set based on the market participant’s “credit” or it is a factor
that is strategically selected by the market participant. Third,
the selected feature should be built only based on the data that
each market participant has access to at the time of submitting
its bid to the California ISO market. For example, the same
day LMPs are not known to the market participants at the
time of submitting their bids, but the historical average of the
LMPs for each location and each hour is known to them.

Fig. 4 shows the definition of the first feature for a multi-
step supply CB and a multi-step demand CB. This feature is
denoted by ∆. In this figure, the green horizontal dashed line
is the average hourly D-LMPs for the hour corresponding to a
given CB. Three green lines show three possible different cases
that will be explained in follow. First, consider a supply CB in
sub-figure (a). Three cases can happen: 1) All the submitted
price values in a given CB are higher than the average D-LMP.
In other words, the entire piecewise linear function for the
submitted CB is above the average D-LMP. In this case, ∆ > 0
and it is defined to be equal to the minimum price value in the
submitted CB minus the average D-LMP. 2) All the submitted
price values in a given CB are lower than the average D-
LMP. In other words, the entire piecewise linear function for

the submitted CB is below the average D-LMP. In this case,
∆ < 0 and it is defined to be equal to the maximum price
value in the submitted CB minus the average D-LMP. 3) The
average D-LMP is somewhere between the minimum and the
maximum price values in the submitted CB. In other words,
the average D-LMP has an intersection with the piecewise
linear function for the submitted CB. In this case, ∆ = 0
and it is defined to be zero. Next, consider a demand CB in
sub-figure (b). Again, three cases can happen, which can be
defined similarly. The only difference is that, when it comes
to a demand CB, in the first case, ∆ is equal to the average
D-LMP minus the minimum price value in the submitted CB
(not the other way around); and in the second case, ∆ is equal
to the average D-LMP minus the maximum price value in the
submitted CB (not the other way around). In other words, the
previously defined ∆ should be multiplied by -1.

The second feature indicates whether the same type of CB,
i.e. a supply CB or a demand CB, has been consistently used
by a market participant at a nodal location. This feature is a
number between 0 and 1. This feature indicates whether the
type of the submitted CB is similar or dissimilar to the type of
the CBs historically submitted by the same market participant
at the same location. The value of this feature is close to 1,
if the market participant consistently selects the same type of
CB at the given node; and the new submitted CB also has
the same type. The value of this feature is close to 0, if the
market participant consistently selects the same type of CB at
the given node; but the new submitted CB has a different type.
Finally, the value of this feature is close to 0.5 if the market
participant frequently changes the type of its submitted CBs
at the given node; i.e., it submits a mix of both supply CBs
and demand CBs. As an example, consider all the previous
CBs that are submitted by a market participant at a node.
Suppose 60% of the CBs are supply bids and 40% of the CBs
are demand bids. If the current CB is a supply CB, then the
second feature would be 0.6. If the current CB is a demand
CB, then the second feature would be 0.4. In this work, a
window of one year of historical data, i.e., the data over the
previous year, is considered for calculating this feature.

The third feature is the number of steps in the submitted
CB, which is an integer number between one and ten.

The fourth feature is driven by the fact that some market
participants submit CBs only at the major aggregated nodes,
in the California ISO market, i.e., at one or more of its three
Hubs, namely NP15, SP15, and ZP26, or its three Default
Load Aggregated Points (DLAPs), which include San Diego
Gas and Electric (SDG&E), Pacific Gas and Electric (PG&E),
and Southern California Edison (SCE). Importantly, these
major aggregated nodes have a higher level of predictability
for LMPs, compared to the regular APnodes. This feature
somewhat incorporated two other candidate features, namely
the LMP volatility and the LMP forecast accuracy of the node
where the CB is submitted. In fact, higher volatility in LMP
values directly results in less accuracy in forecasting the LMP
values. This fourth feature is a binary number on whether or
not the node is a major aggregated node. It should be noted
that, in the California ISO market, the major aggregated nodes
are among the APnodes.



B. Identified Convergence Bidding Clusters

Based on the introduced features in Section III.A, next, we
classify the submitted CBs by using the Hierarchical Density-
Based Spatial Clustering of Applications with Noise (HDB-
SCAN) method. HDBSCAN is a robust clustering algorithm
that can work with little or no parameter tuning [45]. The
only parameter that needs to be tuned in this method is the
minimum number of points in each cluster.

The data points in this analysis are the collection of all the
submitted CBs over the three-year period of this study, which
add up to 6.6 million CBs. The purpose of our clustering
analysis is to gain insights from such a huge amount of
data, such that we can identify the main convergence bidding
strategies in the California ISO market. Accordingly, our
analysis is a hybrid of applying data-driven algorithms and
manual inspection of the data-driven results. In the latter (i.e.,
manual) inspection, we examined the data-driven results with
respect to the four features and we accordingly identified
three clusters that can cover practically all the existing major
convergence bidding strategies in the California ISO market
during the period of this study. In this process, we combined
artificial intelligence with human expertise to translate the
bidding data to the most meaningful clusters. It should be
mentioned that, the clustering in this paper is done only once
and it is done for the entire dataset in the period of this study.
Our approach to involve both machine intelligence and human
expertise, is very suitable for the purpose of this study which
involves a huge amount of bidding data. The definition of each
cluster and its work function is defined as follows:

CB Cluster 1 (Price-Forecasting Strategy): This strategy
is the case where the CB market participant submits price
bids that are close to the LMP values at the location where
the CB is placed; making it evident that the market participant
is trying to forecast the market prices at its bidding locations.
For each hour of the next day, if the forecasted D-LMP is
higher than R-LMP, then a supply CB is submitted. If the
forecasted D-LMP is lower than R-LMP, then a demand CB
is submitted. For a supply CB, the price values should be less
than the forecasted D-LMP but close to it in order to avoid
entering the market when D-LMP is unexpectedly low. Also,
for a demand CB, the price values should be more than the
forecasted D-LMP but close to it in order to avoid entering the
market when D-LMP is unexpectedly high. As a result, in this
cluster: 1) ∆ is relatively small. 2) The correlation between
the type of the submitted CB and those of the previous CBs
of the same market participant at the same location is often
not close to 1, because the convergence bidder is trying to
actively forecast the LMPs. As a result, the types of the CBs
are selected according to the forecast results, and they can
vary depending on the market conditions. 3) The number of
steps for the submitted CB can be single or multiple, and
this is not a determinative feature in this cluster of strategies.
4) The CB is mostly submitted in a major aggregated node,
with a higher level of locational price predictability, because
this strategy requires accurate forecasting of both D-LMP and
R-LMP. However, in principle, it is possible that a market
participant uses this strategy on regular APnodes, if they can

achieve accurate LMP forecasts at that node.

CB Cluster 2 (Self-Scheduling Strategy): This strategy
is the case where the CB market participant does not mean
to calculate and submit a price bid, i.e., its CB is mainly
about its quantity. It should be clarified that, in principle,
all CBs in the California ISO market must include at least
one price value. Thus, when a CB market participant follows
a self-scheduling strategy, it still needs to include a price
value in its CB. For a demand CB, the price value should be
much higher than the expected D-LMP for that hour, i.e., the
average D-LMP for that hour, such that the submitted CB is
always cleared in the market. For a supply CB, the price value
should be much lower than the expected D-LMP, such that the
submitted CB is always cleared in the market. In both cases,
i.e., whether the submitted CB is a demand bid or a supply
bid, it would result in a large negative ∆. Importantly, as far as
the price-forecasting is concerned, the self-scheduling strategy
only needs a rough forecast about the sign of the difference
between D-LMP and R-LMP in order to decide on whether
to submit a supply CB or a demand CB. For each hour of
the next day, if the difference between D-LMP and R-LMP is
expected to be positive, then a supply CB is submitted; and
if such difference is expected to be negative, then a demand
CB is submitted. As a result, in this cluster: 1) ∆ is relatively
large and negative. 2) The correlation between the type of
the submitted CB and those of the previous CBs of the same
market participant at the same location is often not close to 1,
because the convergence bidder may submit different types of
CBs based on the expected sign of the difference between D-
LMP and R-LMP. 3) The submitted CB is single step. This is
an important determinative feature in this cluster of strategies,
because multi-step strategies cannot match the definition of
self-scheduling bids. 4) The CB may be submitted at regular
APnodes or at the major aggregated nodes.

CB Cluster 3 (Opportunistic Strategy): This strategy is
the case where the CB market participant does not want to get
involved in the difficulties of doing an accurate price forecast,
yet it does not want to be as passive as in the self-scheduling
strategy (as far as the selection of its price bid is concerned).
Hence, the market participant takes a third option, which
is somewhat opportunistic. In this strategy, the CB market
participant always submits either a supply CB that has a price
bid that is considerably higher than the D-LMPs, or a demand
CB that has a price bid that is considerably lower than the
D-LMPs. In this regard, the CB market participant waits for a
spike in D-LMP to enter the market. As a result, the submitted
bids are not cleared most of the time. They are cleared only
occasionally, when there is a potential opportunity to make a
considerable profit. Interestingly, this is a completely new CB
strategy and it does not match any of the strategic convergence
bidding methods that currently exist in the literature. Thus,
we will provide a detailed explanation about the application
of this strategy in Section IV. In this cluster: 1) ∆ is relatively
large and positive. 2) The correlation between the type of the
submitted CB and those of the previous CBs is often close to 1.
3) The number of steps for the submitted CB can be single or
multiple, and it is not a determinative feature in this cluster.
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Fig. 5. The first feature (∆) for Alias ID 5 at two different locations during
2019. It is evident that this CB market participant uses two different bidding
strategies as these two different locations.

4) The CB is almost always submitted at regular APnodes,
but not at the major aggregated nodes. This is an important
determinative feature in this cluster, because convergence
bidders should find those nodes that have a potential for
experiencing price spikes. Major aggregated nodes with high
levels of predictability do not carry this characteristic.

The above three identified clusters and their introduced
characteristics address Research Question 2.

The above analysis can also be used to address Research
Question 3. Importantly, while CB Cluster 2 is less common
among market participants, yet many of the existing papers
in the literature are in fact focused on this strategy; such as
some of the papers that we cited in Section I.C. Furthermore,
CB Cluster 3 is a common strategy in the California ISO
market, yet it does not match any of the strategic convergence
bidding methods that currently exist in the literature. In fact,
the strategy in CB Cluster 3 is currently used by several market
participants, including Alias ID 1, which is the most active
market participant in the California ISO market, in terms of
the number of submitted CBs.

Another note to highlight is that the same market participant
may have different strategies at different nodes. For example,
consider the hourly value of the first feature (∆) in Fig. 5 for
the submitted CBs by Alias ID 5 in two different locations. As
we can see, there is a clear distinction between the strategies
that Alias ID 5 chose at these two different locations.

An interesting observation is that, some of the CB market
participants have clearly changed their strategy during the
period of this study. For example, Fig. 6 shows the first
introduced feature, i.e., the distance of the submitted price bids
from the average D-LMPs, at each hour for Alias ID 6. We see
that this market participant clearly changed its bidding strategy
around February 2019. While its bidding strategy in 2018
mostly matches the Opportunistic Strategy, its bidding strategy
in 2019 mostly matches the Price-Forecasting Strategy.

As a side note, no other market participant changed her
convergence bidding strategy around the date that Alias ID 6
changed her strategy. Therefore, while we cannot speculate on
the reason for Alias ID 6 to change her strategy, it is more
likely that the change was due to Alias ID 6’s own internal

Fig. 6. The first feature (∆) at each hour for Alias ID 6 over a period of
two years. It is evident that this CB market participant changed its bidding
strategy in February 2019.

factors than a change in the system.

C. Performance Comparison among Identified Strategies

To complete the reverse engineering task, next, we evaluate
the performance of each CB cluster to understand the advan-
tages and the disadvantages of different CB strategies. Two
metrics are used to assess and compare the performance of dif-
ferent CB clusters. The first metric is the cleared-to-submitted-
ratio (CSR), which is the percentage of the submitted CBs that
are cleared in the market for each market participant:

CSR =
Number of Cleared CBs

Number of Submitted CBs
× 100. (1)

The second metric is the loss-to-profit-ratio (LPR), which
can help capture the level of loss compared to the level of
profit. This metric is defined as follows:

LPR =
Total Loss
Total Profit

× 100. (2)

A lower CSR indicates that only a small portion of the
submitted CBs for a given market participant at a given node is
cleared. A lower LPR indicates that the cleared CBs of a given
market participant at a given node resulted in more profits than
losses. Together, CSR and LPR draw a clear picture about the
portion of the CBs that are cleared and the circumstances in
terms of loss versus profit for the cleared CBs. Note that, we do
not consider the total net profit as a comparison factor, because
it depends on each market participant’s credit in the California
ISO market, which limits the quantity of their submitted CBs.

The CSR is listed in Table III for all the identified Alias IDs.
For each CB cluster, the performance of one representative
market participant is considered for benchmarking.

Alias ID 9, which is the most lucrative CB market partic-
ipant in the California ISO market (Fig. 7), mostly used the
Price-Forecasting Strategy on the major APnodes. Fig. 8 shows
the hourly per unit profit ($/MWh) for Alias ID 9 in one of
the three DLAPs using the Price-Forecasting Strategy. As we
can see, there are many hours with a loss for the submitted
CBs by this market participant. For these CBs, CSR and LPR
are 86.43% and 73.62%, respectively. These values show that



TABLE III
PERCENTAGE OF SUBMITTED CBS THAT ARE CLEARED IN THE

MARKET FOR EACH ALIAS ID IN EACH YEAR.

Alias ID 2017 (%) 2018 (%) 2019 (%)
1 3.58 3.59 2.45
2 66.12 65.72 67.36
3 68.43 68.86 48.32
4 - 98.68 94.38
5 33.46 12.54 5.25
6 7.29 14.41 44.49
7 5.52 13.48 11.51
8 100 4.54 14.23
9 88.36 94.15 76.77

10 56.99 60.57 40.17
11 - 99.84 99.98
12 - 61.14 54.99
13 61.14 51.78 51.12
14 98.19 93.11 95.54
15 96.45 99.9 99.79
16 68.81 81 75.64
17 86.43 88.15 49.98
18 82 59.73 33.62
19 78.45 83.99 84.15
20 98.79 98.13 -
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Fig. 7. Total yearly amount of earned/lost profit by each Alias ID.

most of the submitted CBs by Alias ID 9 are cleared, and
some of the cleared ones resulted in a positive profit.

Alias ID 1, which is the most active market participant in
terms of the number of submitted CBs, used the Opportunistic
Strategy in most of the nodes. Fig. 9 shows the hourly per
unit profit for Alias ID 1 at four different locations using the
Opportunistic Strategy. It should be mentioned that only the
non-zero profits are shown in Fig. 9. As we can see, there are
only a few days that any of the submitted CBs is cleared. But
Alias ID 1 had excellent profit on those few days. For these
CBs, CSR and LPR are 0.24% and 3.04%, respectively. These
values show that only a few submitted CBs are cleared, but
most of the cleared ones resulted in a positive profit.

Alias ID 11 always used the Self-Scheduling Strategy as
its strategy. As mentioned in Section III.B, this strategy is
less common among the market participants. Fig. 7 shows that
Alias ID 11 did not gain a high profit during its presence in
the market despite participating in more than 300 nodes. From
Table III, almost 100% of Alias ID 11’s CBs are cleared in
the market. For this market participant, CSR is 90.90%.
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Fig. 8. Hourly profit for Alias ID 9 using the Price-Forecasting Strategy at
a DLAP.
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Fig. 9. Hourly profit for Alias ID 1 using the Opportunistic Strategy at four
different locations in the market.

The share of each implemented CB strategy for each CB
market participant is calculated. The results for each of the
20 most present CB market participants are shown in Fig. 10.
This figure shows the share of each strategy for each Alias
ID. We can see that each of the three identified convergence
bidding strategies has been used in the market.

In total, out of the 6.6 million submitted CBs that were
analyzed during the period of this study for all the 101 CB
market participants in the California ISO market, here is the
share of each convergence bidding strategy: 35.95% of all
the submitted CBs belong to CB Cluster 1 (Price-Forecasting
Strategy), 15.58% of all the submitted CBs belong to CB
Cluster 2 (Self-Scheduling Strategy), 35.33% belong to CB
Cluster 3 (Opportunistic Strategy), and 13.14% of all the
submitted CBs belong to Other (Unidentified) strategies.

As it is evident from the above numbers, three is the exact
number of the clusters of strategies that take significant shares
of the real-world convergence bids in the period of this study.
On one hand, a smaller number of clusters would inevitably
ignore at least one of the three significant real-world strategies.
On the other hand, a larger number would inevitably add a
very insignificant strategy which can distract the focus from
the three significant strategies and their characteristics and
implications.

Collectively, the analyses in Sections III-B and III-C address
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Fig. 10. The share of each identified strategy for each market participant.

Research Question 4 that we had raised in Section I.A.

IV. DESIGNING A COMPREHENSIVE CONVERGENCE
BIDDING STRATEGY BASED ON THE REVERSE

ENGINEERING RESULTS

In this section, we seek to address Research Question 5.
In this regard, we propose a new comprehensive composite
convergence bidding strategy based on the results in Section
III. The key question is: now that we have learned the strate-
gic behaviors of various real-world CB market participants
through reverse engineering, can we go one step further and
create a new CB strategy that can learn from the advantages
and disadvantages of the existing strategies to significantly
outperform them? The answer is yes. In this section, we
discuss how such a strategy can be developed.

The proposed composite convergence bidding strategy is
developed in three steps. First, we focus on the Opportunistic
Strategy, i.e., the CB strategy that is completely new and
has never been discussed in the literature. In this step, we
propose an optimization-based algorithm to maximize the net
profit of the market participant by capturing the spikes in D-
LMPs with an optimal price bid at each node. Second, we
introduce an algorithm to label each node based on the solution
of the optimization problem in the first step. This labeling
is necessary to find out what kind of CB (if any) is more
profitable at each node. Each node can be labeled as Demand
CB Node, or Supply CB Node, or Neither, or Both. Third, by
using the results from the first two steps, and combining them
with the results from Section III about CB Cluster 1 and CB
Cluster 2, we propose the new composite CB strategy.

A. Step 1: Net Profit Maximization by Capturing Price Spikes

1) Basic Idea: We define price spikes as the cases where
D-LMPs demonstrate abnormalities by being much higher or
much lower than the average D-LMP at the same location and
the same hour. By using the historical data at each node, we
formulate an optimization problem to find the optimal price
bid that could maximize the net profit with minimum loss for
a CB with a unit quantity. If there is a feasible solution for
the formulated optimization problem, then the optimal price
bid will be used for each hour of the next day for that given

node. Price spikes can be both negative or positive. A demand
CB is required to take advantage of a negative spike in D-
LMPs, i.e., low prices. Similarly, a supply CB is required to
take advantage of a positive spike in D-LMPs, i.e., high prices.

2) Optimization Problem Formulations: The following op-
timization problem is designed to capture the negative spikes
with a demand CB at each node in order to maximize the
total net profit with minimum loss. At each time interval, if
the net profit (ηt) is positive, then it is considered as a profit
(Pt); and if it is negative, then it is considered as a loss (Lt).
Note that, this optimization problem makes use of only the
historical data that are already known to the market participant.
Thus, it does not require dealing with the difficulties associated
with price forecasting. Hence, this analysis is inherently not
sensitive to the accuracy of price forecasting. Here, T is the set
of historical time intervals that a market participant considers
in analyzing the historical price spikes.

maximize Obj :

T∑
t=1

ηt (3)

subject to ηt = (πt − λt) | λt ≤ xt, ∀t ∈ T (4)
xt = λ∗t −m ∀t ∈ T (5)
Pt = ηt | ηt ≥ 0, ∀t ∈ T (6)
Lt = ηt | ηt ≤ 0, ∀t ∈ T (7)

−
T∑
t=1

Lt ≤ ε×
T∑
t=1

Pt (8)

mmin ≤ m ≤ mmax (9)

The objective function (3) is the total net profit over the past T
time intervals. The amount of net profit for each time interval
using a demand CB with a unit quantity is calculated in (4).
Here, π and λ denote R-LMP and D-LMP, respectively; and
x is the price bid. The condition in this constraint, which is
denoted by a vertical line, indicates that the submitted price
bid (x) is cleared only if it is higher than D-LMP. Eq. (5)
shows that the price bid for each hour is equal to the average
of D-LMP for that hour minus m. In this optimization, m is the
main decision variable which is the distance from the average
hourly D-LMPs that is captured as a price spike criteria by an
optimal price bid. Eqs. (6) and (7) divide the net profit to profit
and loss in each time interval. Eq. (8) is a bound constraint that
is used to guarantee that the total amount of loss is less than a
small percentage (ε) of the total amount of profit. As we will
discuss in Step 2 of the proposed method, only those nodes
that have a feasible solution for this optimization problem with
an optimal objective value of greater than a threshold are used
in our proposed bidding strategy.

As mentioned before, the optimization problem in (3)-(9)
is for capturing the negative spikes in D-LMPs with demand
CBs. The same optimization problem can be used to capture
the positive spikes with supply CBs. We just need to replace
the definition of net profit in (4)-(5) with the following:

ηt = (λt − πt) | λt ≥ xt, ∀t ∈ T (10)
xt = λ∗t +m ∀t ∈ T (11)



3) Solving the Formulated Problems: The introduced op-
timization problems are non-convex and may not be solved
efficiently and quickly in their current forms. Importantly, it
is necessary to have a computationally tractable formulation
as these optimization problems must be solved each day
for all the nodes in the market. In two steps, we convert
the optimization problem (3)-(9) into a Mixed-Integer Linear
Program (MILP). First, we introduce a binary variable (b1t ) and
utilize the Big-M method to convert Eq. (4) to the following
linear constraints [46]:

ηt = b1t × (πt − λt), ∀t ∈ T (12)

x ≥ λt −M × (1− b1t ), ∀t ∈ T (13)

x ≤ λt +M × b1t , ∀t ∈ T (14)

where M is a large fixed parameter in the Big-M method.
Next, equations (6)-(7) are transformed to the following:

Pt = ηt × b2t ∀t ∈ T (15)

Lt = ηt × (1− b2t ), ∀t ∈ T (16)

ηt ≥ −M × (1− b2t ), ∀t ∈ T (17)

ηt ≤M × b2t , ∀t ∈ T (18)

where b1 and b2 are binary variables. By replacing Rt
in equations (15)-(18) with equation (12), the new MILP
maximization problem will be formulated as follows:

maximize Obj :

T∑
t=1

b1t × (πt − λt) (19)

subject to λ∗t −m ≥ λt −M(1− b1t ), ∀t ∈ T (20)

λ∗t −m ≤ λt +M × b1t , ∀t ∈ T (21)

b1t × (πt − λt) ≥ −M(1− b2t ), ∀t ∈ T (22)

b1t × (πt − λt) ≤M × b2t , ∀t ∈ T (23)
T∑
t=1

(zt − b1t )× (πt − λt) ≤

ε×
T∑
t=1

zt × (πt − λt) (24)

mmin ≤ m ≤ mmax (25)

zt ≤ b1t , ∀t ∈ T (26)

zt ≤ b2t , ∀t ∈ T (27)

zt ≥ b1t + b2t − 1, ∀t ∈ T (28)
0 ≤ zt ≤ 1, ∀t ∈ T (29)

The optimization problem in (19)-(29) is the linearized
version of the optimization problem in (3)-(9). The process
of linearizing this optimization problem is done through (12)-
(18). Note that, z is a new continuous auxiliary variable which
takes the value of the multiplication of b1 and b2 to avoid the
nonlinearity. Constraints (26)-(29) are added to the linearized
optimization problem in order to create the required conditions
for z to be able to work as the multiplication of b1 and b2. This
final MILP optimization problem in (19)-(29) can be solved
by using various commercial solvers.

Algorithm 1 Dynamic Node Labeling
1: Input: Outputs of Optimization-Based Spike Capturing
2: Output: Label and Optimal Price Bid for each Node
3: for n in Nodes do
4: Solve the negative spike capturing problem in (3)-(9).
5: if Obj > θ then
6: Label n as a Demand CB Node
7: Optimal Price Bid = λ∗t −m
8: end if
9: Solve the positive spike capturing problem in (3), (6)-

(11).
10: if Obj > θ then
11: Label n as a Supply CB Node
12: Optimal Price Bid = λ∗t +m
13: end if
14: end for

B. Step 2: Dynamic Node Labeling

Algorithm 1 is developed to dynamically label each node
for the next day, using the optimization-based results in Step
1. For each node, first, we solve the negative and the positive
spike capturing problems. If the optimal objective value for the
negative spike capturing problem is greater than a threshold,
then the node is labeled as Demand CB Node. If the optimal
objective value for the positive spike capturing problem is
greater than a threshold, then the node is labeled as Supply CB
Node. The two optimization problems are independent; hence,
a node can be labeled both as Demand CB Node and Supply
CB Node. A node may also be labeled as No CB Node.

As another output of the optimization problem in (19)-(29),
m is used for generating the optimal price bid for each hour
of the next day based on the label of each node. If a node is
labeled as Demand CB Node, Supply CB Node, or Both, then
it will be considered for the next (final) step in the proposed
convergence bidding strategy, as we will explain next.

C. Step 3: Strategy Selection

In this section, we put together all the components, in-
cluding the optimization-based price spike capturing method
in Step 1 and the dynamic node labeling method in Step 2
to develop a new composite convergence bidding strategy.
The new CB strategy makes use of each of three reverse
engineering CB strategies based on their advantages and
disadvantages.

The inputs for this comprehensive strategy are the historical
LMPs and the forecasted LMPs for the next day. The output
is the type of strategy that should be used at each node for
each hour of the next day. The outline of this strategy is
shown in Fig. 11. Here, aλ, aπ , and aδ are the accuracy for
the forecasted D-LMP, R-LMP, and the sign of the difference
between D-LMP and R-LMP, respectively. As we can see, the
first two strategies in this algorithm are based on the forecast
accuracy of the next day LMPs. On the other hand, the third
strategy does not use any price forecast data and instead,
relies on the historical LMPs, optimization-based price spike
capturing, and node labeling. It must be mentioned that these
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Fig. 11. The proposed comprehensive convergence bidding strategy for each
hour of the next day and at each node in the market, based on the reversed
engineered strategies of market participants.

three strategies are based on the three identified clusters of
strategies in Section III.B. The choice of the thresholds for the
mentioned forecast accuracy defines the risk preference for the
use of each strategy. Higher thresholds in Fig. 11, mean less
risk-seeking; and lower thresholds mean more risk-seeking.
The application of each strategy is as follows:

Selecting CB Strategy 1: This strategy is selected if both
D-LMP and R-LMP forecasts are available and have high ac-
curacy. For each hour of the next day, if the forecasted D-LMP
is higher than R-LMP, then a supply CB is submitted. If the
forecasted R-LMP is higher than D-LMP, then a demand CB
is submitted. For a supply CB, the price components should
be less than the forecasted D-LMP but close to it in order to
avoid entering the market when D-LMP is unexpectedly low.
Also, for a demand CB, the price components should be more
than the forecasted D-LMP but close to it in order to avoid
entering the market when D-LMP is unexpectedly high.

Selecting CB Strategy 2: This strategy should be used if
only the forecast for the sign of the difference between D-
LMP and R-LMP is available and it has high accuracy. For
each hour of the next day, if the difference between D-LMP
and R-LMP is positive, then a supply CB is submitted; and
if it is negative, then a demand CB is submitted. The price
components for a supply CB must be much lower than the
average D-LMP; and for a demand CB, it must be much higher
than the average D-LMP on that hour in order to always be
cleared in the market.

Selecting CB Strategy 3: This strategy is used when
accurate forecasting for LMPs are not available at a node.
Using the historical LMPs in the spike capturing optimization
problem and the node labeling algorithm, the optimal price bid
and the type of CB are determined for a node. As explained
in Step 1, the optimal price component of the submitted CB
is the best price bid to capture the price spikes; which leads
to a situation where the convergence bidders participate in the
CB market only occasionally, but when their CB is cleared

they gain considerable profit. This behavior is indeed justified,
because in the absence of accurate price forecasting capability,
one should avoid taking high risks.

It must be emphasized that, each strategy has its own impor-
tance and it forms part of the proposed enhanced composite
bidding strategy. For example, although we showed that the
performance of the Self-Scheduling Strategy is not as good
as the other two strategies in the California ISO market, the
Self-Scheduling Strategy does bring value to our composite
bidding strategy when there is an accurate forecast only for
the sign of the difference between D-LMP and R-LMP. If there
is an accurate forecast for both D-LMP and R-LMP, then the
Price-Forecasting Strategy would be a better choice.

Importantly, the construction of the above proposed algo-
rithm also addresses Research Question 6. Here, the seemingly
unprofitable (or low profitable) CB strategy is the second
strategy. It is now incorporated as one part of an enhanced
and profitable new bidding strategy.

Another note to mention is that, the overall architecture of
our proposed composite bidding strategy is not sensitive to or
even directly related to the specific building of the explained
clusters. That is, if other major clusters of bidding strategies
emerge in the future, they too can potentially be incorporated
into the architecture of our proposed composite bidding strat-
egy by reveres engineering their main characteristics.

Before ending this section, it should be mentioned that the
quantity of submitted CBs (MWh) at each hour, depends on the
available credit for each market participant with the California
ISO. Accordingly, a unit value is considered in the proposed
bidding strategy for the quantity of submitted CBs, which is
aligned with other studies in the literature such as [10].

D. Case Study

In this section, we analyze the performance of the proposed
comprehensive convergence bidding strategy. Since providing
an accurate and realistic forecast for D-LMPs and R-LMPs is
out of the scope of this work, here we assume that we have
the same forecasting accuracy as Alias ID 9, which is the most
lucrative CB market participant in the California ISO market
during the period of this study. Our goal here is to examine
how Alias ID 9 could improve its performance in 2019, if
it had used our proposed composite strategy. The value for
M in the Big-M method is tuned to be a sufficiently large
number. In this regard, it is set to 3000. Also, the boundaries
for m in equation (25) are set to 30 and 200, respectively;
which are based on our observations on the real-world data.
The analyses in this section are done in Python and the
optimization problems are solved by using Gurobi within the
Pyomo package on a PC with Intel Xeon Silver 4208 CPU
@2.10GHz and 128 GB RAM.

As mentioned before, Alias ID 9 mostly participated in
the main Hubs and DLAPs by utilizing the Price-Forecasting
Strategy. For other nodes, we use one year of historical data
before each day in 2019 and run the dynamic node labeling
algorithm including the optimization-based spike capturing
problem. By adjusting the only two hyperparameters, ε and θ,
the nodes with the potential to use the Opportunistic Strategy



TABLE IV
RESULTS FOR THREE ANALYZED CASES BASED ON
DIFFERENT VALUES OF THE HYPERPARAMETERS.

Case ε θ Node Day η ($M) LPR (%)
1 0.01 100 148 227 3.89 24.84
2 0.001 1000 32 66 2.13 11.14
3 0.0001 2000 25 40 1.55 5.25
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Fig. 12. The additional hourly net profit in Case 1. Each color represents
one of the 148 labeled nodes where the submitted CBs are cleared.

are labeled and the optimal price bid is submitted for each
hour of the next day. The submitted CBs have one step and
the quantity of each submitted CB is considered as the average
of Alias ID 9’s submitted CBs equal to 50 MW, instead of a
unit value. All the above assumptions match the overview of
the actual market data in Table II.

Table IV shows three cases based on different values for the
hyperparameters. We can see that, by tightening the constraints
(decreasing ε and increasing θ) from Case 1 to Case 3, the
number of nodes and days that the submitted CBs are cleared
has decreased. As we defined in (2), LPR indicates the level of
loss compared to the level of profit. Also, recall from Section
IV.A that η denotes the total net profit. As we can see in Table
IV, by tightening the constraints, although the total net profit
is decreased, the loss-to-profit-ratio as an important factor
in the Opportunistic Strategy is also decreased. Therefore,
these two parameters can be used as control knobs by the
market participant to suitably adjust the level of risk seeking
in this composite bidding strategy. Figs. 12 and 13 show the
additional hourly net profit for Case 1 and Case 2. Note
that, notation $K means $1,000. In Fig. 13, for Case 2 as
a moderate case, it is shown that by submitting CBs at 32
nodes and entering the CB market in only 66 days, Alias
ID 9 could earn an additional net profit of $2.13 million.
This is a 43% increase in Alias ID 9’s net profit in 2019,
compared to its current net profit of $4.9 million. In order to
further extended the assessment of the increase in net profit,
Table V shows the original annual net profit of four market
participants (Alias IDs) in 2019 and compares them with the
corresponding annual net profit of the same market participant
in case she had used the proposed convergence bidding method
in Algorithm 1. Similar to the previous test case for Alias ID
9 as the most lucrative market participant, here we use the
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Fig. 13. The additional hourly net profit in Case 2. Each color represents
one of the 32 labeled nodes where the submitted CBs are cleared.

TABLE V
COMPARING THE PERFORMANCE OF THE PROPOSED METHOD WITH

FOUR ALIAS ID IN 2019 WHICH MOSTLY USED THE THIRD STRATEGY.

Alias Original New Improvement
ID Net Profit ($M) Net Profit ($M) ($M)
1 0.30 1.27 0.97
5 0.31 3.26 2.95
6 0.44 2.1 1.66
8 0.58 0.84 0.26

average quantity in MWh from Table II for the size of the
CBs for each market participant. We can see that all these
four market participants that were mainly focused on the third
strategy based on Fig. 10, could have significantly benefited
from the proposed convergence bidding strategy.

V. CONCLUSIONS AND FUTURE WORK

This paper provided a data-driven analysis of real-world
electricity market data from the California ISO market to
understand, reverse engineer, and enhance the behavior of
convergence bidders. It was discussed that a total of 20 CB
market participants currently have a considerable presence
in the California ISO that accounts for 72% to 84% of the
entire CB market. The different bidding characteristics of these
most present market participants were analyzed. Next, four
quantitative features were extracted from all the submitted
CBs; and by using the HDBSCAN algorithm, three main clus-
ters of CB strategies were identified. The characteristics and
the performance of each identified cluster of strategies were
analyzed and some of their advantages and disadvantages
were investigated.

Two interesting discoveries were discussed. First, the Op-
portunistic Strategy does not match any of the convergence
bidding strategies that currently exist in the literature. Sec-
ond, most papers in the literature are focused on the Self-
Scheduling Strategy, while in practice, this strategy is less
common among the market participants in the California ISO.

After reverse engineering the convergence bidding strategies
of the real-world market participants in the California ISO
market, a new comprehensive composite CB strategy was
proposed. It was shown that the proposed strategy, optimally



utilizes the advantages of various identified reverse engineered
strategies under different market conditions. The new strategy
was developed in three steps: First, by focusing on the
Opportunistic Strategy as the newly discovered strategy, an
optimization-based algorithm was proposed to maximize the
total net profit of the market participant by capturing the price
spikes. Second, an algorithm was developed to dynamically
label each node based on the solution of the optimization
problem in the first step. Third, by using the results from the
first two steps for the Opportunistic Strategy, as well as by
combining them with the Price-Forecasting Strategy and the
Self-Scheduling Strategy, a strategy selection algorithm was
proposed to complete a comprehensive composite CB strategy.
It was shown in a case study that the annual profit of the most
lucrative market participant could increase by over 40% if the
proposed comprehensive strategy had been used.

The study in this paper can be extended in different di-
rections. For example, we may investigate how the identified
real-world CB strategies may positively or negatively affect
price convergence and the efficiency of the electricity market.
In other words, we may investigate the system-level impact
of the identified real-world bidding strategy and/or the pro-
posed composite bidding strategy. We may also analyze and
reverse engineer the bidding strategy of the market participants
that also submit physical bids. Another interesting path for
potential future research is to investigate the impact of the
behavior of CB market participants on each other; i.e., by
using concepts and methods in Game Theory.
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