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Abstract—Public Safety Power Shutoffs (PSPS) are a critical
yet disruptive wildfire mitigation strategy used by electric utilities
to reduce ignition risk during periods of elevated fire danger.
However, current PSPS decisions often lack transparency and
consistency, prompting the need for data-driven tools to better
understand utility behavior. This paper presents a Support
Vector Machine (SVM) framework to model and interpret PSPS
decision-making using post-event wildfire reports. Forecast-based
weather and fire behavior features are used as model inputs
to represent decision-relevant variables reported by utilities.
The model is calibrated using Platt scaling for probabilistic
interpretability and adapted across utilities using importance-
weighted domain adaptation to address feature distribution shifts.
A post-hoc clustering segments PSPS events into wildfire risk
zones based on wildfire risk metrics excluded from model train-
ing. Results demonstrate that the proposed framework supports
interpretable, transferable analysis of PSPS decisions, offering
insight into utility practices and informing more transparent de-
energization planning.

Index Terms—Wildfire prevention, post-event analysis, data-
driven modeling, risk-based clustering, Public Safety Power
Shutoffs, importance-weighted support vector machine.

I. INTRODUCTION

A. Background and Related Works

IT is increasingly challenging to maintain a reliable opera-
tion of the power grid due to an increase in high-impact,

low-probability (HILP) weather events such as wildfires, heat-
waves and floods [1]. Wildfires especially pose unique risks
due to their ability to spread rapidly and directly threaten
power infrastructure [2]. Power line ignitions are particularly
severe as they often occur during elevated fire danger condi-
tions, exacerbating spread and damage [3], [4]. For instance,
the 2021 Dixie Fire—ignited by distribution lines—became
the largest single-source wildfire in California history, burning
over 960,000 acres and destroying more than 1,300 structures
[5]. Similarly, the 2025 Southern California wildfires, notably
Eaton Fire, have been linked to alleged equipment failures,
resulting in the destruction of over 9,000 buildings and 18
fatalities [6]. 55.1% of utility infrastructure assessed in the
aftermath was destroyed, along with widespread damage to
critical facilities. These statistics highlight the disproportionate
vulnerability of grid infrastructure and the cascading societal
impact of power line ignitions. These events underscore the
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need for better strategies to mitigate wildfire disasters, espe-
cially those aimed at minimizing grid-initiated ignitions.

To reduce ignition risk from electrical infrastructure, power
utility companies implement Public Safety Power Shutoffs
(PSPS), proactively de-energizing power lines under extreme
weather and dry fuel conditions. While effective in preventing
fire starts, PSPS events often impact thousands of customers.
Between 2013 and 2020, California utilities executed 51 PSPS
events, affecting over 3.2 million customers and incurring
billions in economic and social losses [7]. For instance, a
recent study projects an annual average of 1.6 million person-
days of de-energization under future climate conditions [8].
Rising wildfire mitigation costs have translated into rate in-
creases, and general rate adjustments added an estimated $32
to the average monthly household bill in 2024 [9]. In order
to promote transparency and public accountability of utility
PSPS decisions, regulatory agencies such as California Public
Utilities Commission (CPUC) are starting to require detailed
post-event reports for all PSPS actions [5].

Wildfire modeling efforts span a broad spectrum, from
physics-based fire spread simulations to probabilistic igni-
tion forecasts. Prior work has developed machine learning
models to assess wildfire risk and weather-induced outages
using ensemble trees, regression, and deep learning [10]–[14].
However, these studies generally focus on forecasting ignition
likelihood or outage occurrence rather than interpreting utility
actions. Optimized shutoff strategies also exist, involving
mixed-integer and stochastic optimization to balance ignition
risk against load shed [15]–[17].

A small body of work has begun to directly address
PSPS decisions. For instance, Multi-Attribute Value Function
(MAVF)-based frameworks have been adopted by utilities to
quantify wildfire-versus-shutoff risk tradeoffs from a planning
perspective [18]. Recent reviews also propose guideline tax-
onomies for proactive shutoffs [19]. However, existing models
lack validation against actual post-event outcomes. They also
often rely on predefined thresholds or deterministic logic.

B. Contribution and Paper Structure

This paper presents a data-driven, behavioral modeling
framework for analyzing how electric utilities mitigate wildfire
risks through PSPS decisions. Rather than predicting wildfire
ignitions, the objective of this framework is to diagnose and
explain utility decision-making—i.e., how forecasted envi-



ronmental and fire-behavior conditions influence the execu-
tion or cancellation of PSPS events. The proposed method
differs from traditional predictive models by focusing on
interpretability and diagnostic insight into utility decision-
making processes, while also enabling cross-utility evaluation
based on publicly available data.

The methodology is applied to two major California util-
ities—Pacific Gas and Electric (PG&E) and San Diego Gas
and Electric (SDG&E)—as representative use cases. A Sup-
port Vector Machine (SVM) is trained on PG&E post-event
reports, capturing decision boundaries based on forecast in-
puts. The SVM margins are scaled for probabilistic inter-
pretation using Platt scaling. To account for class imbal-
ance and domain shift—since SDG&E reports only executed
events—an importance-weighted domain adaptation strategy
aligns PG&E-trained models to SDG&E’s feature distribution,
supporting cross-utility generalization.

To move beyond binary classification, a post-hoc clustering
segments the dataset into risk-informed decision clusters us-
ing wildfire consequence metrics and utility-defined risk and
benefit scores-excluded from model training. This enables a
diagnostic evaluation of how model confidence aligns with
operational behavior across different wildfire risk zones.

The overall framework—illustrated in Fig. 1—includes fea-
ture preprocessing, SVM training and calibration, cross-utility
domain adaptation, and post-hoc analysis. In summary, the
contributions of this work are as follows:

• A behavioral decision-analysis framework for interpreting
real-world PSPS actions, using case studies from two
major California IOUs (Investor-Owned Utilities).

• Development of a calibrated and domain-adapted SVM
classifier to uncover decision boundaries under feature
shift and class imbalance.

• A post-hoc risk-based clustering approach to evaluate
alignment between modeled confidence and real-world
operational behavior.

The remainder of this paper is structured as follows: Section II
presents the data construction, preprocessing, and SVM-based
decision boundary formulation. Section III provides an ex-
tended ablation study, classifier benchmarking, and robustness
testing under extreme wildfire scenarios. Section IV introduces
a post-hoc risk space analysis to evaluate model confidence
across wildfire risk zones Finally, Section V concludes the
study and discusses directions for future research.

II. DATA FRAMEWORK AND MODEL DEVELOPMENT

This section outlines the construction of the dataset, pro-
cessing steps, and the interpretable learning framework used
to identify PSPS decision boundaries from post-event data.

A. Data Framework

1) Data Sources and labeling: The primary data sources
include post-event wildfire reports from PG&E and SDG&E,
covering 2021–2024. Each record corresponds to a unique
circuit-day event, labeled as executed (+1) if a de-energization
occurred, or canceled (–1) if a PSPS notification was issued
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Fig. 1. Overview of the proposed PSPS decision-space analysis framework
using SVM-based modeling and post-hoc clustering evaluation.

TABLE I
COMPARISON OF PSPS FACTORS REPORTED BY PG&E AND SDG&E [5]

ID Feature Unit PG&E SDG&E
Weather Conditions
X1 Sustained Wind Speed (10m) mph > 19 > 25
X2 Sustained Wind Speed (50m) mph Included Not Reported
X3 Peak Wind Gust (Forecasted) mph > 30 > 35
X4 Temperature °F Included Included
X5 Relative Humidity % < 30 < 20
X6 Vapor Pressure Deficit (2m) mb Included Not Reported

Fuel Moisture
X7 Dead Fuel Moisture (10-hr) % < 9 < 7
X8 Dead Fuel Moisture (100-hr) % < 12 < 10
X9 Dead Fuel Moisture (1000-hr) % < 11 Not Reported

X10 Live Fuel Moisture – Herbaceous % < 65 Not Reported
X11 Live Fuel Moisture – Woody % Included Not Reported
X12 Live Fuel Moisture – Chamise % < 90 < 79
Fire Behavior
X13 Flame Length (2hr forecast) ft > 10 Not Reported
X14 Rate of Spread (2hr forecast) ch/hr > 30 Not Reported
X15 Area Burned (8hr forecast) acres Included Not Reported
X16 Fire Potential Index (FPI) Probability ×10 < 0.22 Included
Vegetation
X17 Tree Overstrike Potential ft Included Not Reported

but later rescinded. The datasets include forecast-based envi-
ronmental variables and fire behavior indicators (see Table I).
The analysis focuses exclusively on distribution-level circuits,
which face greater infrastructure exposure and pose elevated
risks to surrounding communities [1].

2) Dataset Challenges: The dataset poses several modeling
challenges: (i) limited sample size due to restricted public re-
lease of detailed post-event PSPS data, particularly from some
utilities such as Southern California Edison (SCE), which
limits generalization and increases the risk of overfitting;
(ii) severe class imbalance, with canceled events representing
only 11.4% of dataset; (iii) domain shift, as evident from
discrepancies in feature distributions between utilities; and (iv)
a high-dimensional input space, that increases complexity.
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Fig. 2. Correlation heatmap of input features representing factors considered
in PSPS decision-making. Highly collinear features (ρ > 0.85) were removed
prior to model training. Specifically, X2, X6, and X9 were removed due to
their high redundancy with other retained features. See Table I for variable
descriptions and activation thresholds defined by different utilities.

3) Feature Engineering and Preprocessing: To refine the
input feature set, pairwise Pearson correlations were computed
and visualized via a heatmap to highlight redundant and unique
variable relationships, as illustrated in Fig. 2. The Pearson
correlation coefficient is given by

ρA,B =
cov(A,B)

σAσB
. (1)

Missing data points are imputed using feature-wise means, and
features exhibiting heavy-tailed distributions (e.g., X15 and
X17) are log-transformed using log(1+x) to reduce skewness.
All features are then normalized using robust scaling, defined
as z = (x − median)/IQR, where IQR is the interquartile
range between the 75th and 25th percentiles. The PG&E
dataset is split into 70% training and 30% testing subsets
for model development and in-domain evaluation, while the
positive-class SDG&E dataset is reserved entirely for cross-
utility generalization.

B. SVM for Learning Utility Decision Boundaries
1) Baseline SVM Modeling: A binary classifier—referred

to as the “vanilla” SVM in Fig. 1—is trained using PG&E’s
labeled data to capture operational decision boundaries. The
model uses fixed training parameters without hyperparameter
tuning, to preserve transparency and avoid overfitting given the
limited dataset. The SVM formulation minimizes the following
objective function:

min
ω,b,ξ

λ∥ω∥2 + C

N∑
n=1

ξn, (2)

subject to yn
[
⟨ωT , xn⟩+ b

]
≥ 1− ξn,

ξn ≥ 0, ∀n

TABLE II
CLASSIFICATION RESULTS: VANILLA VS. WEIGHTED SVM

Class Vanilla SVM Weighted SVM

Precision Recall F1-Score Precision Recall F1-Score

Canceled (-1) 0.75 0.50 0.60 0.35 0.84 0.50
Executed (+1) 0.94 0.98 0.96 0.97 0.80 0.88

Accuracy 0.925 (95% CI: [0.881, 0.962]) 0.806 (95% CI: [0.771, 0.837])

This formulation allows margin violations through slack vari-
ables ξn and balances margin maximization with classification
accuracy using penalty term C [20]. The resulting model
captures a behavioral boundary reflecting utility decision logic.

2) Margin-Based Decision Function Interpretation:
A SVM classifier is trained using a custom
SVM_Classifier() implementation. The model learns
a weight vector ω and bias b that define the separating
hyperplane. The decision function, defined as the signed
margin, quantifies how confidently a sample is classified :

f(x) = ω⊤x− b. (3)

The final label is determined as ŷ = sign(f(x)) [21]. Model
performance is evaluated on PG&E test set using standard
classification metrics—precision, recall, F1-score, and accu-
racy—as defined in [22]. Table II summarizes these metrics.
The “vanilla SVM” serves as a baseline without domain
adaptation or reweighting, enabling comparison with the IW-
SVM model described in Section II-D.

C. Confidence Calibration

To convert SVM margins into interpretable confidence
scores, we compare two techniques. Both map the margin
mi = w⊤xi − b into a pseudo-probability, but differ in
flexibility [23], formulated as following:

1) Sigmoid Transformation: The standard sigmoid function
applies a fixed scaling to the margin:

P (y = 1 | xi) =
1

1 + exp(−ami)
. (4)

with a = 1. This method is computationally efficient but does
not guarantee that the output aligns with observed execution
frequencies [23].

2) Logistic Calibration: Commonly referred to as Platt
scaling —fits a sigmoid function to validation data as:

P (y = 1 | xi) =
1

1 + exp(−(αmi + β))
. (5)

where α and β are learned parameters. Compared to (4),
this data-driven mapping adjusts for over-confidence or under-
confidence, yielding better-calibrated probabilities [23].

3) Final Selection: To transform SVM margin outputs
into interpretable probabilities, we compare two scoring ap-
proaches on (4) and (5). Calibration performance is sum-
marized in Table III. For PG&E, Platt scaling significantly
outperforms the standard sigmoid in terms of Brier score and
log loss, indicating better probability calibration. For SDG&E,
only the Brier score is applicable due to the absence of a
negative class; Platt scaling again yields the lowest score.



TABLE III
CALIBRATION METRICS COMPARISON (PG&E AND SDG&E)

Model Brier Score Log Loss AUC

PG&E - Sigmoid 0.2488 0.6907 0.7898
PG&E - Platt 0.1016 0.3564 0.7898
SDG&E - Sigmoid 0.1676 N/A N/A
SDG&E - Platt 0.0105 N/A N/A

Given these results, Platt scaling is selected as the preferred
method for producing probability confidence scores.

D. Importance-Weighted SVM (IW-SVM) model

The vanilla SVM—trained solely on PG&E data without
adaptation—achieves superficially high accuracy on SDG&E
due to the presence of only executed (positive class) events.
However, this 100% classification accuracy is misleading, as
the model faces no negative examples and thus defaults to
classifying all instances as positive. The lack of canceled
events prevents meaningful performance assessment using
standard binary metrics and reveals the limitations of direct
transfer in imbalanced domains. This discrepancy underscores
the need for domain adaptation to correct for covariate shift
and enable more reliable cross-utility generalization.

1) Domain Shift Analysis: To assess cross-utility mis-
matches, we compare the marginal feature distributions be-
tween PG&E and SDG&E datasets, as shown in Fig. 3. The
overlaid histograms and kernel density estimates reveal distinct
shifts in variables such as fuel moisture, relative humidity, and
temperature. These distributional differences can significantly
distort model behavior when applied across domains, further
motivating the use of domain adaptation to calibrate decision
logic for SDG&E-like operational contexts.

2) IW Domain Adaptation: The SVM_Classifier was
modified to accept per-sample weights for domain adaptation
using a class-conditional reweighting scheme. Specifically, the
PG&E training samples are assigned weights that quantify
their similarity to the SDG&E distribution, computed only for
the positive class (executed) since the target domain lacks can-
celed events. The method proceeds as follows: For all executed
events in PG&E, a logistic regression classifier is trained to
distinguish these from SDG&E samples. The resulting class-
conditional probabilities define importance weights:

wi =
P (target | xi)

P (source | xi) + ϵ
. (6)

where ϵ = 10−8 prevents division by zero. Canceled samples
retain unit weight, ensuring only the positive class distribution
is adapted. This strategy emphasizes training samples that
better reflect the operational conditions of SDG&E while
maintaining PG&E-only training integrity.

The weighted SVM (IW-SVM) achieves a lower overall
accuracy (80.6%) compared to the vanilla SVM (92.5%) but
significantly improves recall on the underrepresented canceled
class (from 0.50 to 0.84), indicating improved sensitivity to
non-events. Conversely, the vanilla model demonstrates high
precision and recall for executed events but performs poorly
in identifying canceled cases.
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Fig. 3. Feature distribution comparison between PG&E and SDG&E post-
event reports. Notable differences are observed in features such as temperature
and relative humidity, where SDG&E values are heavily concentrated, sug-
gesting lower variability and potential sensor thresholds or rounding.

Recommendation: Use the IW-SVM if the application pri-
oritizes conservative de-energization (i.e., reducing false neg-
atives for canceled events). Use the vanilla SVM when high
precision or stability for executed events is preferred and the
cost of false alarms is high. This tradeoff allows to select a
model based on operational tolerance for risk versus reliability.

III. EXTENDED ABLATION STUDY

This section evaluates the robustness, generalizability, and
interpretability of the proposed SVM framework through an
extended ablation study. Together, these evaluations validate
the design choices presented in earlier sections and highlight
which variables and modeling strategies most effectively sup-
port PSPS decision-making.

A. Feature Space Ablation

Table IV presents the performance of the SVM classifier
under different feature configurations. Accuracy is reported
with 95% confidence intervals estimated via bootstrapping,
while precision, recall, F1-score, and AUC are shown as point
estimates. The results highlight the critical role of environmen-
tal predictors in PSPS decision modeling. Notably, removing
fuel moisture features led to the most significant performance
decline, underscoring their importance in capturing vegeta-
tion dryness and ignition potential—key factors for proac-
tive shutoff decisions. Weather variables, while influential,
had a slightly smaller impact, suggesting some redundancy
among forecasted wind and humidity measures. The exclusion
of fire behavior features resulted in minimal degradation,
indicating that modeled fire spread characteristics may be
less discriminative than raw environmental conditions near



TABLE IV
SVM ABLATION STUDY RESULTS

Configuration Acc. [95% CI] Prec. Recall F1 AUC

All Features 0.931 [0.888, 0.969] 0.940 0.986 0.962 0.950
Remove Weather 0.906 [0.856, 0.950] 0.915 0.986 0.949 0.928
Remove Fuel Moisture 0.887 [0.831, 0.931] 0.903 0.979 0.939 0.873
Remove Fire Behavior 0.938 [0.900, 0.969] 0.934 1.000 0.966 0.948
Remove Risk Features 0.931 [0.888, 0.969] 0.940 0.986 0.962 0.944
Forecast-Only 0.931 [0.888, 0.969] 0.940 0.986 0.962 0.944
Forecast + Risk 0.931 [0.888, 0.969] 0.940 0.986 0.962 0.950

the PSPS activation threshold. Furthermore, removing utility-
defined risk scores (e.g., ignition probability, CFPD) had little
effect on model performance, implying that forecast-based
variables alone are sufficiently informative. The forecast-only
model performed nearly identically to the full-feature model,
and adding risk scores back yielded no further gains. These
findings reinforce the value of using clean, forecast-derived
indicators to support PSPS decisions and suggest that reliance
on proprietary or post-processed risk indices may be unnec-
essary when environmental predictors are properly modeled.

B. Alternative Classifier Comparison

To benchmark performance, the SVM model was evaluated
against alternative classifiers, including Logistic Regression,
Random Forest, and XGBoost. As summarized in Table V,
ensemble methods achieved slightly higher accuracy and F1-
scores. However, the forecast-only SVM configuration (Ta-
ble II) still reached strong performance with 0.925 accuracy
and 0.98 recall. Unlike black-box ensemble models, SVM’s
margin-based formulation aligns with operational PSPS thresh-
olds and supports calibrated confidence scoring. This inter-
pretability makes SVM a practical and auditable choice for
modeling utility decision behavior.

C. Generalization to Unseen Extreme Conditions

To evaluate the robustness of the SVM model under out-of-
distribution scenarios, we perform an extreme condition test
by masking and excluding high-risk cases—defined by the
top quantile of wind speed and fire spread, and the bottom
quantile of humidity and fuel moisture—from training. The
SVM model is retrained exclusively on non-extreme data and
evaluated on these withheld extremes.

The selected quantile-based thresholds, shown in Fig. 4,
are not arbitrary; they reflect conditions commonly cited as
operational triggers by utilities when deciding to initiate PSPS
events. These include sustained winds, low relative humidity,
and highly receptive fuels—all of which are recognized as
wildfire risk indicators in utility PSPS guidelines [5], [19],
[24]. When tested on the masked extreme cases, the SVM

TABLE V
COMPARISON OF CLASSIFIER METRICS ACROSS MODELS

Model Accuracy [95% CI] F1-Score Recall

Logistic Regression 0.925 [0.881, 0.969] 0.958 0.972
Random Forest 0.963 [0.931, 0.988] 0.979 0.993
XGBoost 0.975 [0.950, 0.994] 0.986 0.993
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Fig. 4. Distributions of key wildfire predictors with 25% (black) and 75%
(red) quantile thresholds. These thresholds define masked extreme scenarios
used for generalization testing.

model achieves an overall accuracy of 74.7%, with a recall of
0.77 and precision of 0.23 for the minority class representing
PSPS cancellations. This indicates that while the model can
still detect many at-risk circuits under extreme conditions,
it is prone to overestimating cancellations. Nonetheless, the
high recall and weighted F1-score of 0.80 highlight its ro-
bustness in prioritizing fire-prone operational triggers even in
scenarios not seen during training. These results underscore
the relevance of weather and fuel features as core predictors
in characterizing utility decision patterns.

IV. POST-HOC RISK SPACE ANALYSIS

In this section, a post-hoc diagnostic framework is con-
structed to evaluate how well the SVM-calibrated outputs align
with wildfire risk conditions. This framework applies unsuper-
vised clustering to define decision-relevant risk groupings and
assess the PSPS model’s behavior within them.

A. Formulation of the Post-Hoc Risk Space

The post-hoc feature space is constructed from wildfire
consequence indicators available in utility post-event reports
[24]. Specifically, the following metrics are included:

• Ignition Probability (IPW): The estimated likelihood of
a wildfire ignition event, as computed by PG&E’s oper-
ational model.

• Catastrophic Fire Probability Distribution (CFPD): A
composite metric defined as the product of IPW and the
X16 (see Table I), capturing both the probability and
potential severity of wildfire ignition.

• Risk and Benefit Indicators (MAVF): Binary MAVF
scores reported by PG&E, based on a multi-attribute
value function that evaluates PSPS justifications. MAVF
combines attributes such as safety risk, reliability impact
(e.g., customer minutes interrupted), and estimated finan-
cial costs, weighted by event probability to determine if
a shutoff reduced wildfire harm (Benefit = Yes/No)
or mitigated expected ignition risk (Risk = Yes/No).

KMeans clustering from the scikit-learn library [22] was
used to segment the post-hoc risk-informed feature space into
distinct decision clusters. It was selected due to its simplicity
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Fig. 5. SVM-calibrated confidence scores across post-hoc decision clusters.
Cluster 0 shows wider variance and lower median, suggesting ambiguity.
Clusters 1–3 exhibit higher, more consistent confidence aligned with high-
risk designations.

and suitability for well-separated, moderately sized clusters.
The steps include:

1) Input Construction: A matrix of samples × risk metrics
(IPW, CFPD, MAVF indicators).

2) Preprocessing: All features are log-transformed where
appropriate, followed by mean imputation and robust
scaling. These post-hoc features are not included in
model training but serve as independent validators of
utility decisions and model behavior.

3) Cluster Validation: Silhouette scores and the elbow
method are used to evaluate cluster compactness and
stability across values of k = 2 to 7.

4) Final Selection: k = 4 selected to preserve interpretabil-
ity across diverse decision behaviors.

These unsupervised clusters serve as independent validation
zones for evaluating model outputs and real-world PSPS
decision consistency under varied risk profiles. Once each
event is assigned to a cluster, SVM margins and Platt-
calibrated confidence scores—computed solely from forecast-
based inputs—are analyzed across groups. This preserves
a strict separation between training features and evaluation
metrics. Figure 5 illustrates the distribution of confidence
scores across clusters, and Table VI reports corresponding
cluster-level averages.

B. Cluster-Level Interpretations and Recommendations

This analysis produced four meaningful decision clusters,
each representing a distinct pattern of utility behavior under
varying wildfire risk conditions. Note that these clusters are de-
rived purely from risk-related attributes reported in post-event
datasets and do not correspond to any geographic, spatial,
or circuit-based grouping. Rather, they represent behavioral
patterns across similar operational contexts.

Cluster 1 – Ambiguous Decisions: This group contains
152 events with low ignition probability (< 0.002), low SVM
confidence (≈ 0.68), and the lowest execution rate (19.7%).
Utility PSPS decisions in this cluster appear precautionary
and inconsistent, likely reflecting conservative activation under

TABLE VI
DECISION CLUSTER ID SUMMARY

ID Avg Confidence Exec. Rate Cluster Size Ignition Prob CFPD

1 0.684 0.197 152 0.002 11.51
2 0.822 1.000 293 0.521 10.23
3 0.816 1.000 3 0.003 20.20
4 0.820 1.000 85 0.003 19.00

uncertain conditions, where the perceived risk may not be fully
captured by forecasted inputs or model confidence.

• Recommendation: Flag for retrospective audit to refine
PSPS thresholds under marginal risk conditions and re-
duce activation uncertainty.

• Operational Suggestion: Use sectionalizing devices or
targeted automation in low-risk areas to minimize un-
necessary customer disruptions.

This cluster underscores the importance of refining decision
thresholds in low-risk conditions, where inconsistent PSPS
actions suggest uncertainty or overly cautious activation logic.

Cluster 2 – High-Risk Execution Benchmark: The largest
cluster (293 events) exhibits the highest ignition probability
(0.52), strong model confidence (0.82), and full execution.
However, MAVF labels were not reported.

• Recommendation: Use this as a baseline for well-aligned
PSPS decisions, and improve MAVF data reporting to
better explain utility actions

• Operational Suggestion: Prioritize this cluster for mi-
crogrid deployment and CAVA (Climate Adaptation and
Vulnerability Assessment)-informed hardening to support
proactive shutdowns and recovery.

This cluster offers a reference for model-utility alignment
in high-consequence scenarios and emphasizes the value of
complete MAVF scoring to improve transparency in utility
decision rationale.

Cluster 3 – High Risk Edge Cases: This cluster contains
only 3 cases but exhibits the highest CFPD (> 20) and full
MAVF flagging (Risk = Yes, Benefit = Yes).

• Recommendation: Leverage as reference cases for PSPS
simulation and risk-informed planning.

• Operational Suggestion: Deploy advanced protection
schemes and enhance vegetation management to mitigate
ignition triggers in extreme-risk profiles.

This small but severe-risk cluster reinforces the value of
edge-case preparedness and validates the need for proactive
adaptation under extreme fire conditions.

Cluster 4 – Utility Driven Risk: This group includes
events where the PSPS decision was executed with high model
confidence, despite low ignition probability. Every case in
this cluster was marked with Risk = Yes, indicating that
utilities perceived a threat not captured by the current weather
or fire-behavior inputs.

• Recommendation: Investigate alternative or unmeasured
drivers—such as infrastructure vulnerability, limited
access for emergency response, or operational con-
straints—that may have influenced these PSPS decisions
beyond what the current model captures.



• Model Insight: Future model iterations should incorporate
non-weather variables to better explain utility behavior in
such cases,where decisions may hinge on asset vulnera-
bilities, operational policies, or situational constraints not
captured by current inputs.

This cluster demonstrates how data-driven risk profiling can
reveal blind spots in existing PSPS models and supports
greater interpretability of utility actions under complex or
unreported operational conditions.

V. CONCLUSIONS

This paper developed a data-driven framework for analyzing
utility-initiated PSPS actions based on post-event wildfire
reports. The primary objective is to characterize how utilities
translate forecast-based wildfire risk into PSPS execution de-
cisions. Using case studies conducted on data from PG&E and
SDG&E, the proposed approach combines SVM-based classi-
fication with probabilistic calibration and domain adaptation to
interpret decision-making patterns under class imbalance and
utility-specific feature distributions. Platt scaling converts raw
margins into interpretable confidence scores, and importance-
weighted adaptation enables generalization to another power
utility, SDG&E, which reports only executed events.

To move beyond binary outcomes, a post-hoc risk space
is constructed using ignition probability, CFPD, and MAVF-
based utility indicators. KMeans clustering segments this risk
space into four decision clusters, each reflecting different
PSPS activation behaviors. The results indicate that the model
confidence aligns well with high-risk clusters, while low-
risk clusters show greater ambiguity and inconsistent utility
actions—providing useful zones for retrospective audit and
operational threshold refinement.

The proposed framework offers a transferable and inter-
pretable diagnostic tool for assessing PSPS actions using
publicly available data. Further, it highlights the need for
more structured utility reporting and sets the stage for future
work incorporating geospatial, infrastructure, and temporal
dynamics to inform advanced wildfire mitigation strategies.
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