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Abstract— False data injection attacks are recently introduced
as a class of cyber attacks against smart grid’s monitoring
systems. They aim to compromise the readings of grid sensors and
phasor measurement units. Recent studies have shown that if the
operator uses the DC, i.e., linear, state estimation to determine
the current states of the power system, the attacker can adjust
the attack vector such that the attack remains undetected and
successfully passes the commonly used residue-based bad data
detection tests. However, in this paper, we examine the possibility
of implementing a false data injection attack when the operator
uses the more practical AC, i.e., nonlinear, state estimation. We
characterize such attacks when the attacker has perfect and
imperfect knowledge of the current states of the system. To the
best of our knowledge, this is the first paper to address false data
injection attacks against non-linear state estimation.

Keywords: Smart grid security, false data injection attacks,
non-linear state estimation, perfect and imperfect attacks.

I. INTRODUCTION

The recent advancements in the field of smart grid can
potentially enhance efficiency and reliability in power systems.
However, they may also create new vulnerabilities against
cyber attacks. It fact, it has recently been shown that false
data injection attacks (FDIAs) against state estimation can
damage the grid and users equipment [6]. In an FDIA, an
adversary hacks the readings of multiple sensors and phasor
measurement units (PMUs) to mislead the grid operators. If
the attack vector fulfils certain conditions, the adversary will
be able to inject an arbitrary amount of error in state estimation
and yet the FDIA will still pass the commonly used residue-
based bad data detection tests (6], [7].

In [3], the authors showed that one can prevent FDIAs
against state estimation by protecting a subset of sensors and
PMUs. However, the number of sensors to be protected can
be very large [2]. Another thread of research seeks to improve
the existing residue-based bad data detection methods in state
estimation such that they can also detect FDIAs. For example,
some more advanced generalized likelihood ratio test and the
adaptive cumulative sum control chart test to detect FDIAs are
also proposed recently in [S] and [4], respectively.

Although FDIAs are widely studied over the past two years,
most prior work, e.g., in [2]-[7], have focused only on a
special class of FDIAs that target DC/linear state estimation.
However, DC/linear state estimation is just a simplified version
of a more general AC/nonlinear state estimation. There are
several differences between linear and nonlinear state esti-
mation. First, unlike in the linear case where the solution is
obtained in closed-form, in non-linear state estimation the so-
lution is obtained through iterations. Second, while linear state

estimation is based on active power flow analysis, nonlinear
state estimation is based on both active and reactive power
flow analysis. Third, while the state variables in linear state
estimation are only the voltage phase angles, nonlinear state
estimation considers both voltage phase angles and magnitudes
as states. These differences make nonlinear state estimation
significantly more complicated. We believe that such complex-
ity is the reason why FDIA against nonlinear state estimation
has not been addressed before. However, since nonlinear state
estimation is widely used in the power industry, understanding
its vulnerability against FDIAs is of great practical importance.

In this paper, we develop a model for FDIAs against
nonlinear state estimation. It requires the attacker to collect
some online data from the grid while the attack is being
implemented. This is in sharp contrast to the linear FDIA
models, where the attacker only needs some offfine data about
the grid topology. Based on the accuracy of such online data
gathering, we divide FDIAs against nonlinear state estimation
into two classes: perfect and imperfect attacks. Simulation
results show that our designed FDIAs can be successful in
compromising the nonlinear power state estimation solutions.

Next, we briefly introduce FDIAs and nonlinear state esti-
mation in section II. Perfect and imperfect nonlinear FDIAs
are analyzed in section III. Simulation results are given in
Section IV. The paper is concluded in section V.

II. SYSTEM MODEL AND BACKGROUND
A. Nonlinear State Estimation

Consider a power system such as the one in Fig. 1. Assume
that S, with cardinality .S, denote the set of buses. For the
grid in Fig. 1, we have S = 30. Let z denote the vector of
measurements which may include active and reactive power
flows Py, and Qy,, at each transmission line between any two
buses k, m € S as well as active and reactive power injections
P, and @ at each bus k. These measurements are taken in
such a way that the system becomes observable, i.e. it becomes
possible to determine all state variables from measurements.
In nonlinear state estimation, voltage magnitudes V}, and phase
angles 6y, are usually taken as state variables at each bus k € S.
Since the phase angle for one of the buses is taken as reference
angle, so the number of state variables becomes 25 — 1 which

together form the state vector x. That is, we have
x=[0 03 ... 05 Vi Vp Vs 15, (1)

The nonlinear power flow equations are the key to nonlinear
state estimation. They indicate the relationships between the
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measurements and the state variables. For the transmission line
between buses k and m, we have

Pim = V2Gkm — ViVinGrm cos(0km)

. (2
— Vi Vi b sin(Ogm),
ka = _Vkakm + Vi Vinbim Cos(ekm) 3)
— Vkagkm Sin(ekm).
Furthermore, for each bus k£ we have
Pk = Vk Z Vm(_gkm COS(ekm) — bkm sin(Hkm))
meSk
4
+ Vk2 Z Jkm,
meSy
Qr =V Z Vin (= Grom SI0(Om) + bprm co8(Opm))
meSy
&)
- Vk:2 Z bk7n.
meSy

Here, S;, C S denotes the set of all buses that have lines to
bus k. Furthermore, gg,, and bg,, are the conductance and
susceptance of the line between buses k& and m, respectively.
Finally, 6y,, = 60 — 0,, denotes the voltage phase angle
difference between buses k and m.

Given the power flow equations, the next step in nonlinear
state estimation is to construct the Jacobian matrix J , where
the number of rows and columns are equal to the number
of measurements and state variables, respectively. The entry
in row ¢ and column j of the Jacobian matrix denotes the
derivative of the ith measurement with respect to the jth
state variable based on their relationships in the power flow
equations. For example, if the ith measurement is the amount
of active power injection at bus k while the jth state variable
is the voltage phase angle at bus m € Sy, we have

0Py

Jij = 90, = Vka(_gkm Sin(ekm) + bkm COS(@km)).
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State estimation in an IEEE 30 bus system. The attacker collects local information to implement an FDIA attack against the phase angle at bus 25.

There are different iterative methods for solving nonlinear
state estimation problems such as Honest Gauss Newton
method, Dishonest Gauss Newton method and Fast Decoupled
State Estimator [7]. In Honest Gauss Newton method, the
Jacobian matrix J is updated in each iteration, while in the
Dishonest Gauss Newton method, it is assumed to be fixed. Let
x([n] denote the most updated estimation of the state variables
at iteration n. At flat start, all voltage magnitudes are set to 1
and all voltage phase angles are set to 0. That is,

x[0]=[0 0 01 1 )" (6)

For a given x, let h(x) denote the measurement vector that is
calculated based on the power flow equations. For example, if
S = 10 and z; is the power flow from bus 1 to bus 2, then
the 1st entry of vector h(x) becomes

hy (x) = x10%91,2 — X10X1191,2 coS(—X1)
— x10X11b1 2 8in(—%1).

Recall from (1) that x; = 69, x10 = V7, and x17 = V5. After
collecting all measurements z and once matrix J is constructed
based on x[0], the following steps are repeated until the state
vector converges to a fixed point:

Step 1: Set Ax[n] = (JTWI)"LITW(z — h(x[n])).

Step 2: Set x[n + 1] = x[n] + Ax[n].

Step 3: Update Jacobian J based on x[n + 1].

)

Note that Step 3 is performed only in the Honest Gauss
Newton method [7]. In the Dishonest Gauss Newton method,
matrix J is initiated based on the flat start state x[0] and
it will not change through the iterations. Here, matrix W
denotes the relative weight of the measurements based on the
inverse of their noise variance. Measurements that have higher
noise variance are given lower weight [7]. Finally, we note
that there is no proof of convergence for the Gauss Newton
algorithm above; however, experimental results have shown
that the above algorithm almost always converges in practical
nonlinear state estimation scenarios [1], [7].



B. Attacks Against DC State Estimation

The DC state estimation [6], [7] simplifies the nonlinear
state estimation problem based on three assumptions. First,
in a per unit system, all voltage magnitudes can be assumed
to be fixed to 1. That is, V,, = 1, for all k¥ € S. Second,
the resistance of the transmission lines is negligible. That
is, gg,m = 0, for all & € § and any m € Sy. Three, the
phase angle difference between any two neighboring buses is
small. That is, |0g,,| < 5°, for all kK € S and any m € Sy.
Applying these assumptions, the DC-equivalent/linear version
of the power flow equations are obtained as

Qrm = 0. ®)

The focus on DC power flow equations is only on active power
injection at each bus. For each bus k, we have

Pk: = Z _bknLekm~ (9)

meSy

Pkm = _bkmekma

Given the linear power flow equations in (8) and (9), the
relationship between measurements and states becomes z =
Hx, where the elements of matrix H are fixed and depend
only on the grid topology and line admittances.

In FDIAs against linear state estimation [2]-[7], an adver-
sary hacks the sensors such that the measurement vector z is
replaced by a compromised vector z, = z + a, where a is
false data vector. Given the false measurement vector z,, the
state estimation solution becomes X, #* X. As shown in [6],
FDIAs can sometimes be detected by using bad data detection
methods based on evaluating the measurement residue:

(10)

z, — Hx,,

and triggering an alarm if the residue is greater than a
threshold. However, from [6], if the attacker selects vector
a to be a linear combination of the rows in matrix H, i.e.,
a = Hc for some arbitrary vector c, then residue-based bad
data detection tests cannot detect the attack since the injected
false data will no longer affect the residue:

r,=2,—Hx,=z4+a—-HX+c)=z—Hx=r, (l1)
where r denotes the residue in absence of an attack and

%, =%+ (H'WH) 'H'WHc = x + c. (12)

It is worth mentioning that matrix H in DC state estimation
is in fact part of the Jacobian matrix J in nonlinear state
estimation corresponding to the derivatives of real power flow
and power injection equations with respect to the voltage phase
angles, given the linear power flow equations in (8) and (9).

ITI. FALSE DATA INJECTION ATTACK FOR
NONLINEAR STATE ESTIMATION

Let x be the true state vector while x, is the false state
vector that the attacker intends to inject into the nonlinear
state estimation solution. The residue under attack becomes:

ro =z, — h(x,)
=1z, — h(x,) + h(x) — h(x)
=z+a—h(x,) (x) — h(x)
=r+a—h(x,) (x),

13
+h (13)
+h

where the third equality is due to the definition of z,. From
(13), in order to achieve r, = r, such that the residue test
does not reveal the attack, we must choose

a=h(x,) — h(x). (14)

Thus, the attack vector in (14) can be a candidate for im-
plementing an FDIA against nonlinear state estimation. Next,
consider the case where no attack is attempted. Assuming that
the three-step Dishonest Gauss Newton algorithm in Section
II-A converges to the true state values, we have

Ax=0 = G(z—h(x))=0, (15)

where

G=J"WI))JTw. (16)

Now assume that the attacker chooses the attack vector in
(14). Also assume that the Dishonest Gauss Newton algorithm
converges to a fixed point X. We have

Ax =0 = G(z, —h(x)) =0,
= G(z—hx))+ G(h(x,) —h(x)) =0, (17)
= G(h(x,) ~ h(x)) =0,

where the last line is due to (15). From (17), either h(x,) —
h(x) is in the null space of matrix G or we have h(x,) =
h(x). Depending on the structure of vector function h(-),
the latter may indicate that x, = X. In fact, our simulation
results in Section IV show that we indeed have x, = X in
most practical scenarios. From this, together with (13), we can
conclude that selecting the attack vector (14) is likely to cause
a successful attack which cannot be detected by residue tests.
The uncertainty here is because of the Gauss Newton Method
since not only its convergence is not guaranteed but also its
exact fixed points cannot be analytically obtained either.

Next, we explain how an adversary may implement an FDIA
based on (14). First, consider an example. For the power grid
in Fig. 1, assume that an attacker aims to compromise state
estimation for the voltage phase angle on bus 25. Let 65
denote the true state value while co5 denotes the error that the
attacker intends to inject into the state estimation solution. For
the active power injection sensor on bus 25, the corresponding
element in the attack vector a is obtained as

ap,; = Va5 Z Vin(—925,m €0s(625 — Om + c25)
meSas
— bas m sin(f2s — 0y, + C25))
- ‘/25 Z ‘/nz(*925,m COS(925 - am)
mESas
— b25,m sin(925 — Hm))

= 2Va5 sin(cas/2) Z Vin (g25,m sin (025 — 0., +c25/2)

meESas
— bas,m, c08(025 — Oy +c25/2))

where So5 = {24,26,27}. To implement the attack, the
adversary needs to know the values of Vay, Va5, Vog, Va7 and
024,025, 026, 027. This can be done either by directly measur-
ing these quantities or estimating them using any available
sensor in the region. Such sensors may include some of the
operator’s existing sensors that are hacked by the attacker
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Fig. 2. Performance of a perfect nonlinear FDIA over iterations of nonlinear
state estimation: (a) State estimation solution. (b) Residue norm.

and/or some new sensors that the attacker may temporarily
deploy for the attack. Therefore, depending on the accuracy
of estimating the state variables that the attacker needs for
implementing the attack, false data injection attacks against
nonlinear state estimation can be divided into two classes:

e Perfect Attacks: Attacks where the adversary can accu-
rately obtain the needed state variables.

e Imperfect Attacks: Attacks where the adversary may
obtain the needed state variables with error.

As we will see in Section IV, not only perfect but also some
imperfect attacks can compromise nonlinear state estimation.

IV. SIMULATION RESULTS
A. Perfect Nonlinear FDIAs

Consider the power network in Fig. 1 and assume that the
attacker aims to compromise the nonlinear state estimation
solution for the phase angle on bus 25, i.e., f25. For this
purpose, the attacker selects the attack vector according to
(14). From Section III, this requires the attacker to estimate
‘/247 ‘/25, Vgﬁ, V27 and 024, 925, 9267 927. Here, in this section,
we assume that the attack is perfect and the attacker can
accurately estimate all these states. The true value of the phase
angle on bus 25 is assumed to be 05 = 0.0202 radians. The
attacker aims to deviate the solution from this true value by
c25 = 0.03 radians. The simulation results are shown in Fig. 2.
Here, we assume that nonlinear state estimation is done using
the Dishonest Gauss Newton method. We can see that state
estimation quickly converges in less than 10 iterations. From
Fig. 2(a) the attack has successfully deviated the nonlinear
state estimation solution at the intended amount of co5. From
Fig. 2(b), the attack does not change in the residue norm.

B. Imperfect Nonlinear FDIAs

Next, we repeat the simulation in Section IV-A, but this
time we assume that the attack is imperfect. In particular,
we consider 100 different scenarios of slight (around 10%)
inaccuracy in the attacker’s obtained state estimation solutions
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Fig. 4. Changes in the residue corresponding to each measurement after
implementing a nonlinear FDIA against linear state estimation.

for states V24, ‘/25, V26, V27 and 024, 925, 926’ 927. From
the results in Fig. 3(a), the attacker can no longer achieve a
perfect attack as the deviations in the state estimation solutions
are no longer equal to the intended amount of cy5. But the
deviation is still close to the intended level. From the results
in Fig. 3(b), imperfect attacks also make some changes in the
residue. Interestingly, the residue norm has decreased due to
the attacks. While we are not certain about the reason behind
this observation, we conjecture that the consistency in the
amounts of injected errors in the hacked sensors can be the
cause to reduce the residue. However, regardless of the exact
cause, the results in Fig. 3 show that even imperfect FDIAs
can be successful in changing state estimation solutions while
not being detected by residue-based bad data detection tests.

C. Nonlinear FDIAs on DC State Estimation

The proposed FDIA in this paper is designed against non-
linear state estimation. However, it works well even if the
power grid operator uses linear state estimation. The changes
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Fig. 6. Residue vs. measurement noise for perfect nonlinear FDIAs.

in the residue, i.e., the difference between the residues with
and without attack, are shown in Fig. 4. We can see that the
changes are minor (less than 6%), suggesting that the designed
nonlinear FDIA can successfully pass the residue tests even
if the operator implements a linear state estimation. The
reason is that attacks against nonlinear state estimation are the
generalizations of the attacks against linear state estimation.

D. DC FDIAs on Nonlinear State Estimation

In this section, we consider the opposite of the scenario
in Section IV-C. That is, we assess the performance of the
DCl/linear FDIA in [6] when the grid operator uses nonlinear
state estimation. As shown in Fig. 5, the changes in the residue
due to the attack are very major. Therefore, if an attacker
implements an FDIA intended for DC state estimation, but
then the grid operator actually uses nonlinear state estimation,
the attack will be detected. Note that, compared to Fig. 4, there
are more residues in 5 because nonlinear state estimation uses
measurements from both active and reactive power sensors.
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Fig. 7. Residue vs. measurement noise for imperfect nonlinear FDIAs.

E. Impact of Measurement Noise

The impact of changes in the measurement noise on the
residue norm for perfect and imperfect nonlinear FDIAs are
shown in Figs. 6 and 7, respectively. We can see that perfect
nonlinear FDIAs do not change the residue norm for all
considered values of the measurement noise. The changes are
still minor even for imperfect nonlinear FDIAs. On the other
hand, the residue norm increases significantly when linear
FDIAs are implemented. Furthermore, we can see in Fig. 7
that the residue norm drops when imperfect nonlinear FDIAs
are implemented in presence of higher measurement noise.

V. CONCLUSIONS

This paper represents a first step towards understanding
FDIAs against nonlinear state estimation. First, we developed a
method to choose the attack vector, which requires the attacker
to collect some online data from the grid while the attack is
being implemented. This is in sharp contrast to linear FDIAs,
where the attacker only needs some offline data about the
grid topology. Then, based on the accuracy of such online
data gathering, we classified nonlinear FDIAs into perfect
and imperfect attacks. Simulation results showed that they are
successful in changing the nonlinear state estimation solutions.

REFERENCES

[1] A. Abur and A. G. Exposito. Power System State Estimation :
and Implementation. CRC Press, New York, 2004.

[2] S. Bi and Y. Zhang. Defending mechanisms against false-data injection
attacks in the power system state estimation. In Proc. of IEEE Globecom
SG-COMNETS, Houston, TX, Dec. 2011.

[3] R.B. Bobba, K. M. Rogers, Q. Wang, H. Khurana, K. Nahrstedt, and T. J.
Overbye. Detecting false data injection attacks on dc state estimation. In
Proc. of IEEE SCS, Stockholm, Sweden, Apr. 2010.

[4] Y. Huang, H. Li, K. A. Campbell, and Z. Han. Defending false data
injection attack on smart grid network using adaptive cusum test. In
Proc. of IEEE CISS, Baltimore, MD, Mar. 2011.

[5] O. Kosut, L. Jia, R. J. Thomas, and L. Tong. On malicious data attacks
on power system state estimation. In Proc. of IEEE UPEC, Aug. 2010.

[6] Y. Liu, P. Ning, and M. K. Reiter. False data injection attacks against
state estimation in electric power grids. In Proc. of ACM CCS, Chicago,
IL, Oct. 2010.

[71 A. Monticelli. State Estimation in Power Systems. Kluwer Academic
Publishers, Boston, 1999.

Theory



