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Abstract— Wireless links are often unreliable and prone to
transmission error especially when network users are mobd.
These can degrade the performance in wireless networks, pte-
ularly for applications with tight quality-of-service req uirements.
A common remedy to this problem ischanne coding. However,
this per-link solution can compromise the link data rate, leading
to an undesired end-to-end performance. In this paper, we
show that this shortcoming can be mitigated if the end-to-ed
transmission rates and channel code rates are selected prepy
over multiple routing paths. We formulate a joint channel coding
and end-to-end data rate allocation problem in multipath wireless
networks with max-min fairness as the objective function. Our
goal is to maximize the minimum throughput available among
the network users. To cope with the fast and frequent changes
in dynamic environments typical for vehicular networks, we
address bothadaptive and non-adaptive channel coding scenarios.
Unlike similar formulations in single-path routing networks, in
the multipath routing case we face an optimization problem
that is non-convex and is usually difficult to solve. We tackle
the non-convexity by usingfunction approximation and iterative
techniques from signomial programming. Simulation results con-
firm that by using channel coding jointly with multipath rout ing,
we can significantly improve end-to-end network performane,
compared to the case when only one of them is used in the
network. Non-adaptive channel coding is also shown to achie
high degree of optimality with much less complexity.

Keywords: Link reliability, multipath routing, throughput maxi-
mization, max-min fairness, adaptive and non-adaptive chanel
coding, non-convex optimization, signomial programming.

I. INTRODUCTION

Recent advances and technological developments in warel
communication, digital electronics, and radio frequengs-s
tems have placed wireless networks at the forefront of tsd
data transmission systems. However, unlike wired networ
links in wireless networks can be unreliable and prone tostra
mission error due to channel imperfections, backgroundejoi
environmental obstacles, weather conditions, and useilityob
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[1]. Unreliable links can degrade network performanceipast
larly for applications with tight quality-of-service remements
such as voice-over-IP and video streaming [2]. Therefaris, i
crucial to develop efficient strategies in order to improke t
reliability of data transmission in wireless networks [3].

Different approaches are used to make wireless networks
more reliable. They include rate allocation [4], [5], chahn
coding [4], network coding [6], [7], and multipath routing]

[10]. Many rate allocation approaches are based on vanitio
of the network utility maximization (NUM) [11]-[15].

Channel coding is commonly used as a tool to leverage
reliable transmissions ovéossywireless links. With channel
coding, the transmitter node of each link encodes the trans-
mitted packets by addinguxiliary or redundantbits, which
can increase the distance among the codewords and decrease
the packet error probability If the number of extra bits is the
same across all links, then channel codingham-adaptive
On the other hand, if we change the amount of redundant
bits for each link based on its current state, then channel
coding is adaptive Adaptive channel coding may result in
better performance compared to non-adaptive channel gpdin
however, it entails a higher complexity. In general, channe
coding usually introduces @adeoff between reliability and
data transmission rate. In fact, by changing tbee ratei.e.,
the ratio of data bits to data plus redundant bits, we cangdhan
the data rate at which the information is transmitted ovehea
wireless link. In particular, the code rate can be decreased
order to improve (reduce) the probability of error at thetcos
gghaving lower data rates. Similarly, we can increase trieeco
rate to increase the transmission data rate, but at the €ost o

s been used in [4] to enhance the network reliability, when
single-path routing is being used. The rate-reliabiligdeoff
introduced through channel coding is studied in [4], [1&B}

Multipath routing can be used to compensate for the data
rate reduction due to channel coding. This is done by distrib
ing the load over multiple routing paths. Multipath routican
provide fault toleranceagainst link failures and also achieve
load balancingin order to better utilize the available network
capacity [19]-[21]. Multipath routing has been studied aitb
wired [22] and wireless networks [8], [9]. However, none of
the above work addregsintly the use of multipath routing
and channel coding for reliability improvement.

In this paper, our focus is tintly use channel coding and
multipath routing in an optimization-based framework to-fu
ther improve reliability compared to usirgly channel coding
or only multipath routing. We are interested in answering the

ag;a(l:reasing the probability of error. Adaptive channel cadi



following question:How shall we select the end-to-end data  adaptiveand non-adaptivechannel coding.

transmission rates over different paths and per-link crdnn « We tackle the non-convexity of the formulated opti-

code rates in order to achieve the optimal rate-reliability = mization problem in two steps. First, we u$enction

tradeoff in multipath wireless networks? approximationgo reformulate the problem assggnomial
Our main contribution is to use channel coding in multipath  programmingproblem (which is still non-convex). Next,

routing wireless multihop networks to provide fair resauirc

allocation among the network users. In this regard, our work

is closely related to [4]. However, here we introduce threg k
extensions. First, Leet al. in [4] assume that the links in the
network are eithewired or interference-freavireless. On the

we develop an iterative algorithm to solve the signomial
programming problem by solving a chain of tractable
geometric programmingroblems. We introduce a non-
adaptive channel coding scheme with much lower degree
of complexity, which can find a sub-optimal solution. We

contrary, here we have explicitly incorporated the impaict o design our algorithm such that it can quickly find the
wireless interference. Second, unlike the system modet]in [ new solution, whenever there is a change in the network
which addresses only single-path routing, here we consider topology and the number of users.
the case where there are multiple end-to-end routing paths To motivate the joint use of multipath routing and channel
available across the network. Clearly, this includes sifgdth coding, we show through simulations that our proposed
routing as a special case. Third, we formulate the problem scheme significantly improves the network performance
such that the minimum throughput among the individual users when compared to the case with multipath routing, but
is maximized. This leads to fairness provisioning which is  without channel coding. We also show that our joint
of great importance in certain applications such as veaicul scheme outperforms channel coding in single-path rout-
networks where vehicles frequently switch among statipnar  ing systems.
mesh nodes to receive connectivity. In this case, differents We investigate the convergence properties of the proposed
mesh nodes must be provided with fair and consistent data algorithm as well as its efficiency. The latter is studied
rates. The aforementioned three extensions introduceajeve  particularly by evaluating the impact of the approxima-
challenges in solving the formulated optimization probkzmd tions made in the derivation of the algorithm.
have not been addressed before. Those are due to various We compare thedaptivecoding scheme with theon-
non-convexitieshat cannot be directly transformed into a  adaptive coding scheme with less computational com-
convex optimization problem using the well-known logarith plexity. We evaluate the proposed algorithm in a dynamic
mic change of variables as in [4]. Although our proposed vehicular environment where the data traffic pattern
method is centralized, it may be used in vehicular network changes due to mobility. Finally, we study the effects
applications such as those in which stationary access oint of fading on the performance of the algorithm.
provide connectivity for the vehicles in their coverage &on  The rest of this paper is organized as follows. We present
Moreover, it can shed light on how per-link channel codinghe system model and formulate the joint data rate and channe
can improve end-to-end performance in a multipath routingde rate allocation problem in Section II. In Section lle w
wireless network. The centralized solution may also be asedreformulate the problem as a geometric programming problem
a benchmark for evaluating distributed approaches which mand propose a reliability-based rate allocation algorittum
be developed in the future. To the best of our knowledge, raiglve it. We also introduce a non-adaptive channel coding
allocation with the goal of fairness and reliability enhament scheme as a sub-optimal solution with lower complexity.
using multipath routing and channel coding has not be@&imulation results are presented in Section IV. The paper is
addressed in any prior work. concluded in Section V.

In [23], we consider multipath routing and channel coding
for reliability improvement but aiming at maximizing the 1l. SYSTEM MODEL AND PROBLEM FORMULATION
aggregate throughput in the network. This paper is differeq. system Model

because fairness is not considered in [23]. We also ConSideEonsider an ad-hoc wireless network. We can model the

throughput maximization in [24] while minimizing the end- .
: . network topology as a directed gragh(V, &), where) =
to-end delay in the network. However, in [23], [24] we do no‘h’ 2,...,V}is the set of nodes anfl is the set of wireless
i

con5|dgr mobility in vehicular netv_vorks nor th_e fast conve ks. Let T — {1,2,...,1} denote the set of all unicast
gence in the presence of dynamic changes in the network. " : .
) . sessions in the network. For each session Z, the source
In our design, we also consider the case where there are - .
. . and destination nodes are denotedspyand¢;, respectively.

frequent changes in the network (e.g., in the number of users

' VA . : urthermore, we denot€; = {1,2,..., K;} as the set of all
and traffic patterns due to mobility in dynamic ENVIFONMENTS ailable routing paths from source nageo destination node
such as vehicular networks) and adjust our proposed afgorit gp

such that it converges faster to the optimal solution. Meego i For each sessionc 7, each linke € £, and eachk: € K;,

2 . . .~ we have
packet re-transmission is not considered in the modeling in o ]
[23] and [24]. 1, if link e belongs tok™ routing path
The contributions of this paper are as follows. agt = for session, 1)

« We formulate max-min fair resource allocation in multi- 0, otherwise.

path wireless networks employing channel coding as &m this paper, we assume that static routing is used and the
optimization problem. Our system model includes bottouting information is givera priori.



For each sessioie Z, let of denote the data rate of source
s; on its k™ routing pathk € K;. The aggregat&ransmission o o

rate for session is obtained as

> ol (2) >
the ratio of the data bits to data plus redundant bits. Notice

ke,

that if no channel coding is performed, thé&) = 1 as there
will be no redundant bits in the packet. Fig. 1. An example downtown area with 25 access points (fograi wireless

Let Ry. < 1 denote thecut-off rateon wireless linke € £.  mesh infrastructure). The access point at the center sewehe gateway.
We assume that the rat@, of the adopted coding scheme here are 10 vehicles in the system, each one uses the neacest point

. . - 0 connect to the Internet.

(e.g., convolutional codes) is limited by the cutoff rat&]2
Given code rateR. < Ry, if random coding based oMl-ary
binary coded signals is used, we can bound the packet e
probability on linke to be less thag—7(Foe—Fe) a5 [4], [16],
[17], [25]. Therefore, in the worst case, we have
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the network, the effectiveeceivingrate at destination nodg
is the same as (2).

Channel coding can improve reliability on lossy channels
by adding redundant bits to the data packets transmitted. In
this regard, we definé, as thecode rateof link e € &, i.e., _r

Since the packets are retransmitted whenever they arenlost i r

P
D
%
P

gegEspnact

exists an edge between any two vertices inletif wireless
"fRks corresponding to two vertices mutually interfere twit
each other (i.e., the receiver node of one link is within the
interference range of the sender node of the other link)eGiv
P, =1— 2 T(Roe—Re) (3) the contention graph, eaclompletesubgraph (i.e., a subgraph
in which all vertices are connected to all other vertices) is
where P, is the successful packet transmission probability ashlled aclique A maximal cliqueis then defined as a clique
link e and 7" is the coding block length. In general, the cutwhich isnota subgraph of any other clique [26]. Denote the set
off rate Ro. depends on the signal-to-noise ratio (SNR) angk all maximal cliques in contention grapgfic by Qc. Only
the modulation scheme being used. For example, foinary  one link among all the links corresponding to the vertices of
phase shift keyingBPSK) waveform [25], we have a maximal clique) € Q¢ can be active at a time.
_ e For the data link layer, we assume that time division
Ro. =1 —log,(1 +€77), “) multiple access (TDMA) is used. Let denote thenominal
where . denotes the SNR at the receiver node of wirelesita rate of linke € £. The ratioZ= denotes the proportion

link e € £. In particular, we have of time at which linke € £ is active when it is used at data
B 9 ratec.. It is required that
Ye =T xdJ7 X |fe]?, Veek&, (5) u
= <, vV Qe ,
wherel'. depends only on the SNR at transmittéy, is the ;@ Ce @eQc ()

distance between the transmitter and receiver ofdinkis the _ _ ) )
path loss exponent (e.g., betweands), andf. is the small- wherev € (0, 1_] is called theclique capac_lty the that if
scale fading gain. Assuming re-transmission after a paisket” = 1, then (7) is only a necessary constraint. It is shown that
lost in the network until reaching a successful transmissioheguality (7) is a sufficient constraint when= 2/3 [27].

each packet must be sentP, times on average over each link Now we show how the provided modeling covers the
e. Given the source transmission rates= (o, Vi e T, k € vehicular environment. Consider Fig. 1 in which an example

KC;), successful transmission probabiliti# = (P,, V e € downtown area is shown. There is an access point in every
&), and the link code rateR = (R., V¥ e € &), we can model other cross section and the one at the center of the area is

the aggregate traffic load on link € £ as denoted as the gateway. Access points correspond to nodes in
. set)V. There is a wireless link € £ between two adjacent
W, = a® ok (6) access points. Vehicles move in the streets continuouash E
€ R P K3 K2 . . . . H
el'e V2T kek, vehicle at each instant of time finds the nearest access point

and connects to it to transmit data to the gateway. The access
pointie€Z which is connected to a vehicle, represents source
node s; for flow i. The gateway corresponds to destination
nodet;. During the time that vehicles move in the area the set
of sources and thus the data traffic pattern changes.

From (6), the smaller the code rafe., the more redundant
data is added to the transmitted packets on linke &
leading to more reliable transmission (i.e., transmissidth
lower error probability). However, this will be at the codt o
increasing the traffic load on the link.

We can model the mutual interference among the wireless _
links in a network by using @ontention graphGe Ve, &c). B+ Problem Formulation
In the contention grapl', the set of vertice¥- represents  Considering (2), (3), (6), and (7), tmate-reliability tradeoff
the set of all wireless linkg in the network grapiz. There can be explained as follows. For each link £, byincreasing



the code raté?. we can reduce the traffic load per transmissioimear link capacity constraints such that for each liak &£
on each link. Thushigher transmission rates will be allowedwe have

with the sameclique capacity. However, this is at the cost of

less reliability and leads to more re-transmission attenast 1 ek k ek k

! _ : L] = C P <P.R. ce.
in (6). On the other hand, byecreasinghe code rateR,., we  P.R. c. ; k; % % = ;k%;al Qi =Felle Ce
canreducethe error probability in (3) which leads taigher ' ' (9)

probability of successful transmission along each rouath. qyever, these techniques are not applicable where mtiitipa
Therefore, we may select either higher transmission rates, ing is used and wireless transmissions incur intenfeze

with more packets being prone to error, or lower tranSmissigutact “we need to go through more elaborate steps in order
rates, but with higher percentage of correctly receivek@&C 1, pe able to solve problem (8) in the general case as will be
In this regard, the key question to be answered\ighat explained in detail next.

::)agigzlesvselogp{ﬁ;z?p:r?(c)jrrﬁgﬂ(e:e?teSR should be selected Recall that problem (8) is a non-convex optimization _prob-

To answer the above question, we formulate the followi Igm due to the_ three reasons listed garher, whgre one ofthemn
optimization problem. ' e exponentlall fqrms in the equality qonstrglnts with extp
Max-Min Faimess Problem: to error propabﬂmes. We start py tackllpg th_|s source ofm.
convexity. First, we replace this equality with an ineqtyali

>rgaz)<i<rr11ai§% minierrzwm Z of This does not degrade the performance of the algorithm
> - ! ) keK; because it overestimates the unreliability in the netw&ik.
i ck ok notational simplicity, we rewrite the error probability)(8s
subjectto e > D ataei<vy, plicity P y)(
eeq i€ ke,
VQeQ, P.<1-X, exp(L. R.), Ve€ck&, (10)
P, =1—2 TFoe—Re) Veck&,

8)
_ 9—TRpe _
where Ry = (Rq., V e € &) denotes the vector of cut-off WhereXe = 2777, and L, = T'In 2.

rates for all links in the network. The objective function in Recall that for each linke € £, we have0 < R. < Rq..
(8) is the minimumreceiving rate among all sessions in th&Ve useTaylor series expansioto write inequality (10) as
network, where for each sessiore Z, the receiving rate is

as in (2). By solving (8), we can find and R such that the 2 (Le Re)"
minimum throughput across all sessions is maximized. Motic Pes1-Xe Z nl Veel. (11)
that we could also maximize the aggregate network through- n=0

put. However, the aggregate network throughput maxinopati
problem doesot take into account any notion of fairness a
the objective is to maximize thetal network throughput. As N
a result, the optimal solution may lead to starvation in some < (L, R)"™

sessions. Max-min fairness solution avoids starving arthef Fesl-X. Z %’ Veel. (12)
sessions and balances the performance in the network. We wil n=0

discuss solving problem (8) in Section III.

g:learly, for someboundedinteger N, >> 1, we have

Unlike the exponentialerror probability model in (10), the

model in (12) is inpolynomialform. For (12) to approximate

(11) accurately, we needV. to be large enough such that
(LeR.)Ne < N.!. We investigate the value d¥. necessary

for obtaining a good approximation in Section I1V-D.1.

In this section, we propose aterative algorithm to solve By exploiting theworst-casepacket error probability (12)

the max-min fairness optimization problem to achieptimal i problem (8), we rewrite the max-min fairness problem as
allocation of source transmission ratasas well asoptimal

channel code rate® in the network. In general, problem L - &

(8) is non-convexand difficult to solve. Note that the non- a>0,n[1)3)](3|r5n]|320?13>0 m'r}'enz‘”m %

convexities in problem (8) come from the following three _ kei’ck 11 1
sources: (a) Theninimumterm in the objective function. (b) ~ SUPeCt to Y>> ataf PR e <,

IIl. OPTIMAL TRANSMISSIONRATE AND CHANNEL CODE
RATE ALLOCATION

A. Max-Min Fairness

The exponentiaforms in the equality constraints with respect c€QieT keks

to error probabilities. (c) Th&actionalforms in the inequality N1 vQeQ,

constraints with respect to clique capacities. Pe n Xe Z (Lelle)" 1
Most of these challenges are caused by the fact that, unlike 1-X 1-X. &~ n! -

many of the existing related work in the literature on rate- VecE.

reliability tradeoff (e.g., in [4]), we take into account ftipath (13)

routing and wireless interference. For example, if the oetw The objective in (13) is to maximize the utility of the trans-
is wired such that no interference occurs among transnmissiomission session with the minimum value. We can replace the
then the clique capacity constraints would reduce to séveminimum function in the objective function by introducing a



new auxiliary variablet and a set of new constraints as

minimize t=1
t>0, -0, 0<R=<Ro,P>0
subjectto ¢t < E o, VieT,

keK;

Z Z Z afk af PR et <y,

ecQ €L kek;

VQeoQ,
P X, &SN (LeRo)”
e e e € <
1—Xg+1—xg22 a =h
Veecf.
(14)

(17), the max-min fairness problem becomes

minimize t—1
t>0, &/fs<a=f.6&, 0<R=<Ro, P+0

~k A
k 70(,LA7;
subjectto At H (aj€> <1,
%
keK; H
Viel,
1 ek k p—1 —1
LYY Y atabr o<
eceQ €L keK;
vV Qe Q,
P X, & (LeRo)m
e € e € <
1—Xe+1—Xenz::1 n! ==
Veef.
(18)

The objective function and constraints in problem (14) afEhe above problem is geometric programwhich can be

signomials i.e., polynomials withboth positive and negative
terms. Therefore, we can appdyjgnomial programmingech-
nigues [28] to solve problem (14).

Consider the first constraint in (14). We follow the signoimi
on the right-hand side of this inequality, which is a funotif
only «, as amonomiaj i.e., a polynomial with onlyoneterm

and positivemultiplier. This approximation can be performe
around some initial poin&. For a parametef; > 1, which

OCA'L / ( )
) k' eK;

k
(> i
Vacelalfs fsal,
15

for any i € Z, where[&/fs, fs&] is a small neighborhood
around initial pointa. The closer f, is to 1, the more

~ k'
(077

~
~ y

I

ke,

> o
ke,

accurate the approximation of (15) will be at the cost of glow

convergence of the algorithm. For simplicity of notatioar f
any i € Z, we defineA; which only depends on the initial
point &, as

A7t =" al (16)
ke,

6:
From (15) and (16), the first constraint can be approximated

around the initial pointx as

—arA;
) e

The above constraint is posynomigli.e., a polynomial with

k
o
— Viel.

At H ( (17)
keK;

Q;

a
programming techniques [28] to approximate the polynomigf

converted into @onvexproblem (cf. [28], [29]). Thus, problem
(18) is a tractable optimization problem that can be solved
efficiently usingconvex programmingechniques such as the
interior point method[30]. We can solve the signomial pro-
amming problem (14) by iteratively solving (18).

We now present Algorithm 1 to solve the max-min fairness
problem in (8). Algorithm 1 starts by initializing various

&ystem parameters. The initial end-to-end transmissites ra

& are selected such that problem (18) is feasible. Several
iterations are performed, where in each iteration, we solve
the geometric programming problem (18) in Line 5 by using
the interior point method [30]. Given the optimal transriuss
rates a,p: in each iteration, we update parametérs for
any: € Z according to (16) and correspondingly reformulate
problem (18) to be solved again in the next iteration. The
iterations continue until the optimal objective valtyg; which

is obtained in the current iteration doest change compared

to the optimal objective valug,, in the previous iteration. The
convergence of the algorithm in each iteration is guarahtee
since the interior point method is used [31]. The convergenc
of Algorithm 1 is also guaranteed [28, p. 115].

Algorithm 1 : Algorithm to solve max-min fair resource
allocation problem (8).

1: Initialize fs, T, N., Roe, Xe, Le, ce, v, anda¥ for each
ec&,iel,andk € K,.

2: Settyps = —00; € := 105,

3: repeat

4 toig = topt-

5. Solve problem (18) to obtaiao},t, Rope, andiop,.

Updatea := o, and updated; as in (16) for each
1€ 1.
until |t0pt — told| <e.
Optimal end-to-end data rates @&,,;; Optimal per-link
code rates :=R,,:.

7:
8:

In case any change happens in the network (e.g., change
in the network topology, the number of network users or
the traffic pattern), the input parameters of the formulated
problem are updated and the corresponding new solution is
obtained. Clearly, this can be time consuming if the changes

only positiveterms. Replacing the first constraint in (14) withare very frequent. To cope with frequent changes in dynamic



environments, we modify the proposed algorithm such that (12 5 {4 s )
it updates the last end-to-end data rate veetgy; to obtain i e L - /l
the new initial pointa for the new problem. This improves ( 6\/4”"\ 7 8 ) ( 9)
the convergence speed of the algorithm compared to the T I T
case where the existing solution is ignored and the problem Y
. . (10 (112 {13
is solved from scratch. The update process is to remove g R N
the entries for the users who left the network and also to ,,L . S

add new entries for the new users who have just joined (“f)*;”/;“ \kf%’i\”]‘

the network. The new entries must be chosen such that the I I -
problem remains feasible (i.e., small values must be chosen (ig?;] :’iwi}»{\'zo}

In case of topology changes, the algorithm finds new routing
paths and update& accordingly. As mentioned before, therig. 2. A sample network topology with 20 nodes randomly fedain a
algorithm is executed in a central node (e.g., the gatewa5y)< 5 grid. The network includes five sessioris— 16, 3 — 13, 2 — 8,
. . . . 4 — 17, and6 — 20. There are 4, 2, 2, 1, and 3 routing paths available
and the required information (e.g., channel state infolonat ¢, ihese'sessions, respectively.
location of users) is transferred through control messalges
case of the example vehicular network in Fig. 1, the problefg1) becomes
is reformulated and solved in specific time instants in themaximize ¢

gateway and the solution is passed on to the access points*~% ¢

. B _
through control messages. subject to ¢ < Z Qi Viel,
We note that Algorithm 1 needs to be used to update the ek ok
af
code rates as well as end-to-e_nd data rates Wh_enever new ZZ Z — oFf < RPy, VQeo,
channel measurements are available, particularly in angadi ceQ ic kek,; ¢
or mobile environment. We will investigate the impact of our (22)

design in a fast fading environmentin Section IV-H. Morepvewhich is alinear programmingoroblem. To find the best fixed
we will discuss non-adaptive channel coding in Section IIFode rate, we can solve problem (22) for different values of

B for the case when parameters change faster than the tifi& [0, Ro] and choose the solution with the highest objective
required for the algorithm to converge. value. With non-adaptive channel coding, we significantly

decrease the computational complexity of solving the bl

. . at some cost in performance. This can particularly help in

B. Non-adaptive Channel Coding dynamic environments where there are frequent changes in
In this section, we simplify the system model in Sectiothe system parameters.

[lI-A and assume that the channel code ratéxsdand is no

longer an optimization variable in our design. That is, IV. PERFORMANCEEVALUATION

R.=R, Veck. 19) .In this section, we assess the p_erfprmance of our propqsed
joint channel coding and transmission data rate allocation
The impact of such an assumption is two-fold. First, it caalgorithm (Algorithm 1). In our simulation model, we consid
simplify the clique capacity constraints in problem (8) as f network topologies wher& =|V|= m(m —1) wireless nodes
each maximal cliqu&) € Q, we have are positioned on am x m square grid withrandomlyselected

1 1 ack grid locations. As an example, for the network in Fig. 2, we
ek k _ _— 4
P P I K it ) DD DD Dy

af <v  havem = 5 andV = 20. The network includesn source

e€eq i€ kek; e€Q i€T kek; and destination pairs, with potentially many availabletiroy
ek aths from the source node to the destination node. In Fig. 2
ai k p g ’
= ZZ Z o <RPuv, there arefour available routing paths from source node 1
e€Q i€T keK; to destination node 16. They includé(1,2), (2,3), (3,8),

(20) (5,11), (11,16)}, {(1,2), (2.7), (7.8), (8.11), (11,16)},
which is simply alinear inequality constraint. Second, since{(1,6), (6,7), (7,8), (8,11), (11,16)}, and {(1,6), (6, 10),
we are adding the extra equality constraints into probleth0,14), (14,15), (15,16)}. Unless stated otherwise, the rest
(8), any solution we achieve would tsub-optimal In the of the system parameters are selected as folldivs= 10,
non-adaptive channel coding case, the max-min fair resoul¥e = 15, fs = 1.1, Ro. = 1, v = 2 [27].

allocation problem (8) is reformulated as Without loss of generality, we choose the link capacity,
o o . ce for each linke € &, to be equal to 1. Therefore, the
maximize mlrzuerrzwm Z Q; transmission data rates;, obtained in the optimal point can
kel be interpreted as the vector nbrmalizedtransmission rates.

ek
subject to Z Z Z % of < RPv, VQeoQ, If the algorithm is being executed for the first time, we set th

S0 e heks initial data rates to bemall i.e., &¥ = 0.01 for all i € Z and

(21) anyk = 1,...,K;, in order to guarantee a feasible starting
where P = 27(F=Fo) By introducing an auxiliary variable point for Algorithm 1, as we already discussed in Section IlI
and considering the worst case for error probabilitiesbjgm A. Otherwise, in case of updating the current rate vector, we
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Fig. 3. Comparison between the performance of adaptivenghecoding . o )
in single-path and multipath routing networks in terms o€ tachieved Fig- 4. Comparison between the performance of multipathimgwvith and
normalized minimum throughout. without per-link channel coding in terms of the achieved normalizedimum

throughput among the end-to-end sessions, when the scalee afietwork
increases and the number of nodes varies from 6 to 42.

set the new entries for the new routing paths equa).ed.

To solve the geometric programming problems, we use theobability model for BPSK modulation for the case without
MOSEK software [32]. channel coding:

Po=(1-QWvm0)", (23)

denotes the Gaussian Q-function:

A. Multipath vs. Single-path Routing

We first study the performance enhancement achieved ‘P!{Jere@(')
using multipath routing compared to single-path routimgthie Q(x) = \/LQ_F I exp(_u;)d% (24)
latter case, each source only uses one (out of possiblyadgver ] ) ]
of the available shortest paths to its corresponding ctiin. and~. denotes th_e SNR at the receiver node of wireless link
We compare our proposed algorithm with the one in [4} € - For a received SNR equal ®dB, we haveP. = 0.4
where both channel coding and transmission rate allocatitf¥f 7' = 40. Our comparison reveals threinimumachievable
is performed in a single-path routing system. performance gain by the use of channel coding. This is becaus

By solving the max-min fair resource allocation probleni/® Use the exack: for the case without channel coding but
(8) for the single-path routing (as in [4]) and also for th& lower bound (worst case) for the case with channel coding.

multipath routing cases (as in our proposed design), tﬁ@; shown in Fig. 4 a major performance gain can be achievgd
optimal end-to-end data rates are obtained. Recall that #{ith channel coding. The achieved performance degrades in
objective value in problem (8) is theninimum throughput both cases when the size of the network increases. This is

among all five sessions. In Fig. 3, each point represerﬂ%cause as the_number of users increases_, thg interference
the averaged performance gain ovér random topologies. " _the network increases. _For the results in Fig. 4, each
We can see that the performance gain (i.e., the ratio of tR8INt represents the normalized throughput averaged dver 5
averaged performance under multipath routing to the aeerag@ndomly generated network topologies.

performance under single-path routing) directly depemdhe

number of available (and used) routing paths. It monotdiyicaC. Convergence Properties of Algorithm 1

increases as the number of available routing paths incsease Recall that each iteration of Algorithm 1 includes a func-
This increase is due to the aVElI'abI'IW of additional palhe tion approximation Step and a geometric programming Step_
algorithm can distribute the load to the paths which expeee Considering the network topology in Fig. 2, the convergence
less interference. Therefore, the sending rates are sete#n of the objective value for problem (8), when Algorithm 1 is
this case, the minimum network throughput can be enhanagskd, is shown in Fig. 5. The objective value for problem$8) i
by 22% on average when the average number of paths fgfe minimum throughput among all sessions. From the results
each session isnly twa This enhancement increasesit@ in Fig. 5, Algorithm 1 converges after around 50 iterations.
when the average number of routing paths increases to thrggnilar results can be obtained for other network topolsgie
This is because the algorithm can inject the packets into the

paths experiencing less interference. D. Impact of Various Design and System Parameters

) _ 1) ParameterN,: In Section lll, we use the approximation

B. Channel Coding vs. No Channel Coding in (12) to convert problem (8) into a tractable geometric

Next, we study how channel coding can improve thgrogramming problem as in (13). We can improve the accuracy
achieved network throughput in multipath routing system. of the approximation in (12) by increasing the value Néf.
Since equality (3) models the worst case condition (i.ddowever, this would be at the cost of making problem (13)
provides upper bound on the error probability) and the errorore complicated to solve. In this section we are interested
probability is equal tol in the absence of channel codingin choosing N. to obtain a reasonable accuracy with low
we use the following exact successful packet transmissioomputational complexity. Consideriti§ random topologies,
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random network topologies in Fig. 7, where the coding block
the simulation results, wheV, varies from 1 to 20, are lengthT" varies from 10 to 100. The minimum throughput in
shown in Fig. 6, where each point indicates the averagée network increases in all threg_topplogies when the gpdin
optimality error observed for alb0 topologies. By obtaining Plock length (and thus the reliability) increases.
the difference between the achieved network throughput at a
particular choice ofV, and that atV. = 20 (as the optimal E. Adaptive vs. Non-adaptive Channel Coding

thrqughput) and computing the r_atio of this difference te th_ In this section, we show how choosing the code rate for
optimal throughput, we can define a measure for assessiig, jink individually (i.e., adaptive channel coding) daad
the optimality error. Fig. .6 shows that thg optimality errory, gifferent optimality and computational complexity résu
approachegerowhen N, is around 12 or higher. compared to the case when channel coding is non-adaptive.
2) Parameterf,: Another approximation in Section Il is Recall from Section 1ll-B that in a non-adaptive channel
the monomial approximation in (15). The approximation igoding scenario, we assume that all wireless links useahe
made at each iteration within a close neighborhood of initigode rateR as expressed in (19). In this case, for each fixed
point &. The size of the neighborhood is denoted by desigr, problem (8) becomes lmear programming problem. This
parameterfs. In general, although we can increase the speegln significantly reduce the computational complexity, ibut
of convergence by increasing the value fof it would be at may result in a loss in performance.
the cost of a lower accuracy in the approximation. Consideri - Consider the network topology in Fig. 2. Here, we examine
such a tradeoff and based on our simulation results, wetselggrious choices of non-adaptive code r&tavithin the feasible
[s = 1.1, for a relatively good performance in terms ofange [0,Ro]. We can see in Fig. 8 that by using non-
approximation accuracy, with a fast convergence speed. adaptive channel coding, the highest throughput is acHieve
3) Parameter: In general, when we increase the codingvhen the code rate on all links is equal to 0.74. At this
block lengthT for a given code rate, the probability of errompoint, we reach almost the optimal value that is achievable
decreases. This can be seen in (3). By increa%ingne can by using adaptive channel coding. It is also interesting to
allocate a higher code rate to a wireless link, while acligvi investigate the distribution of the optimal adaptive codes
the same probability of error, i.e., the same reliabilityasiere. of all wireless links, compared to the optimal non-adaptive
On the other hand, the more reliable links let the algorithocode rate. We can see in Fig. 9 that in the adaptive channel
allocate higher end-to-end data rates, leading to improyed coding case, the optimal code rates for various links can be
timal objective values in problem (8). This is shown for #hresignificantly different. It is interesting to note that thede
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among all wireless links of the network topology in Fig. 2. in the network. We compare two cases where the previousiaolistexploited

and the case where the previous solution is ignored. Evedytibde slots:

. . . . . (a) five links are added and five links are removed, (b) a newgfaource-

rates corresponding to the links which are not in any routing@stination nodes is added, (c) a pair of source-destinatésle is removed,

path (i.e., link21) are chosen to bé&. Moreover, links which (d) a random pair is added and another random pair is removed.
are used in many routing paths have code rates close to the
corresponding non-adaptive channel code rate4j.
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Speed=20 km/|——Proposed Algorithm
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F. The Effect of Dynamic Changes on the System Performance

In this section, we study the effect of dynamic topology
changes as well as changes in the number of network users
on the network performance. As mentioned in Section IlI-A,
whenever the setting of the network changes, the algorithm
solves the new problem by updating the last obtained end-to-
end data rate vector, which is used as the new initial point VYV
for faster convergence. This may be beneficial especially in % 100 200 300 400 500
dynamic environments such as vehicular networks where the Iteration Number
vehicles move constantly. Fig. 10 shows the convergendeeof ﬁiig. 11. The convergence of the algorithm is shown for dfférspeeds.
algorithm when changes happen in the network and comparesalculations occur every 5 seconds if needed.
it with the case when the algorithm does not use the available

in_formation r.eIated to the previoug state of the network. .l ateway. The network recalculates the optimal data ratds an
Fig. 10 (a.l)’ five randomly chosen links are added to and fi fannel code rates evebyseconds based on the most recent
randpm links are Temo"ed from the F:urrent topology_ ev_e%pology characteristics of the network. Clearly, the leigh
10(()jt|m_e SI(:;Z' :jn Fig. 1(()) (tt.))’ a nle\;v pa;]r_lof _501|J:r_ce-(1jgst|nat|otrﬂe speed of the vehicles, the larger will be the changesein th
nodes 1s adde e".em.’ Ime Slots while in F1g. (c) a network. This can lead to a performance degradation. Fig. 11
pair of source-destination node is removed from the networéhows the convergence of the adaptive scheme compared to
Finally, in Fig. 10 (d).’ a randomly chosen_ pair s addgd andtﬁ‘e optimal value when the vehicles move with velocities of
randomly chos_en pairis r(_emove_d eveQO_tlme slots. Fig. 19 20, 40, and 80 km/h. The rates are updated 100 times in a
shows that using the a_vall_a_\ble Infqrmatlon from the Presiolng second period. It is shown in Fig. 11 that the number of
state of the network significantly increases the CONVEr8eNGstants where the performance of the network deviates from

speed of the algorithm. the optimal solution increases when vehicles speed up. It is
interesting that while the vehicles move in the area, thevogit
G. The Effect of Mobility on the System Performance solution does not change. This is because the destination
In this section, we study the effect of mobility in a vehiaulafor all data flows is the gateway and therefore there is a
network on the performance of our proposed design. Inb@ttleneck around that node. Thus, although the sourcesnode
vehicular network, users (i.e., vehicles) are always mgvirthange, the bottleneck remains and the achieved aggregate
and in each instant, they connect to the nearest access(poirtbroughput remains unchanged. However, the allocated rate
mesh node) for network provisioning. This results in dyramiorresponding to different access points change suchtteat t
changes in the traffic pattern which in turn leads to perfominimum throughput also remains optimal.
mance degradation in the system. The degree of performanc&he average minimum throughput of the network over 20
reduction depends to the coverage area of the access paiatelom scenarios is shown in Fig. 12 when the speed of the
as well as the speed at which the vehicles move. Considehicles changes froni0 to 100 km/h. We observe that the
the example downtown area shown in Fig. 1. There are tamerage performance degrades when the speed increases unde
cars which move in random directions. In each instant, theglaptive channel coding because more changes occur between
connect to the nearest access point to communicate with the® successive problem reformulation. However, the perfor

0
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Fig. 12. Performance of the algorithm is studied in the dowmt area of Fig. 13. Performance trend in a fading channel for 50 chasnapshots.
Fig. 1 when vehicles move with different speeds.

. . ) ._the performance degrades. On the other hand, we showed that
manceremains optimalunder non-adaptive channel COd'ngnon—adaptive channel coding is able to follow the dynamic

This is because non-adaptivg channe[ coding is less Comp&%nges and provides a high performance for the network
and converges faster to the final solution. without substantial sub-optimality.

H. Impact of Fading
) ] ) V. CONCLUSION
Finally, we study the impact dadingon the system perfor-

mance when Algorithm 1 is used. Recall from Section IlI-A We considered the problem of jointly using per-link channel
that we can incorporate the impact of fading by separatatpding in wireless networks and multipath routing. In this
solving problem (8) for each wireless channel realizatigth w regard, we focused on per-link channel code rate selectidn a
fading gainsf. and corresponding cut-off rates as in (4) andnd-to-end transmission data rate allocation and forredlat
(5). In this case, Algorithm 1 is invoked every time newnax-min fairness optimization problem, which is of interies
channel measurement data becomes available. We refertto eaghicular network applications to offer fair and consisata
channel measurement data as channel snapshot rates. Unlike the case of single-path routing, solving -
Simulation results for the network topology in Fig. 2 folem in a multipath routing network is hard and involves non-
50 different channel snapshots are shown in Fig. 13. In ogonvex programming. We tackled the non-convexity by using
simulation model, we generate the fading gains for each-chappropriate function approximations and iterative teqghas
nel snapshot based on a random realization of the Rayleifgbm signomial programming. We proposed a novel code and
fading distribution. For the results in Fig. 13, we compardata rate selection algorithm which uses the availablemnée
the performance of two design scenarios. The first desigon related to the latest optimal solution in order to cagee
is an adaptive channel coding scheme based oratleeage faster in highly changing conditions. Moreover, we studied
fading information. That is, solving problem (8) onbnce different variations of our proposed per-link channel coate
by assuming that the fading gains take their average valusgdection and end-to-end data rate allocation algorithordier
within the Rayleigh fading distribution. On the other handp address both adaptive and non-adaptive channel codihg an
in our second design, we solve problem (8) once dach also the impact of fading. Simulation results confirm that
channel snapshot. We can see that on average, the latter ¢gsesing channel coding jointly with multipath routing, we
(solid line) can improve the minimum throughput among attan significantly improve the end-to-end network perforogan
end-to-end sessions by a factor @tompared to the former compared to the case when only channel coding or only multi-
one (dash line). The achieved performance improvement ispath routing is used. We also showed through simulatiorts tha
the cost of a significantly higher computational complegiitye as a sub-optimal approach with less complexity, non-adapti
to the requirement of solving problem (8) for each snapshahannel coding achieves a high degree of optimality. Algiou
which may not always be desired in practice. The snapshois algorithm needs to be executed in a centralized manner,
in which the minimum throughput among the sessions is zeitocan be applied in certain applications such as vehicular
denote the scenarios where there is at least one link in #ispanetworks where stationary mesh nodes provide connectivity
of one session that has an instantaneous cutoff rate whictfdsmoving vehicles. The centralized solution can also ketus
less than its assigned code rate. This does not happen if #sea benchmark for distributed algorithms to be developed
code rates are updated according to the channel informatinrthe future. The investigation of distributed end-to-efada
in each snapshot. and channel code rate allocation approaches using Lyapunov
In summary, we showed that the adaptive channel codistability theory is an interesting topic for future work. éther
approach converges to the optimal solution in the preseringeresting extension of our work would be to include networ
of dynamic changes in the network due to channel variationsding across different end-to-end paths in our joint desig
and mobility. However, if the changes occur too frequentlyhich may introduce new challenges in terms of solving the
the algorithm may fail to follow the changes fast enough arfdrmulated optimization problem.
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