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Background and motivation

• Data deluge – power system is not an exception

– Plethora of sensors (smart meters, smart phones, PMUs, …)

– Networking technologies (high speed, low latency, IoT, ...)

– Powerful analytics hardware/software
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• Evolving landscape

– More efficient and cleaner energy (smart grid, renewables, …)

– Increasing demand (electric vehicle, data centers, ...)

– Resiliency against uncertainty



Challenges and opportunities

• Big data challenges

– Large volume  compression, sketching

– High-rate  low-complexity, real-time processing

– Dirty  cleansing, correction, security

– Cyber-physical  closing the loop
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• Opportunities

– Enhanced monitorability

– Power of statistical analysis/learning

– From model-based to data-driven (Let the data speak!)



Online learning & optimization

• Online versus batch processing

– Low latency, real-time

– Streaming data

– Low-complexity update

– Track dynamic variations
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• Universality, robustness

– No need of detailed models (rather, law of large numbers)

– Strong guarantees even under strategic (game) play



Online convex optimization framework

• OCO framework: game between a player and an adversary
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– At each time slot t = 1,2,…,T

– Player chooses pt

– Adversary chooses ct(.)

– Player suffers loss ct(pt) and receives feedback Ft

• OCO goal: produce {pt} such that regret becomes sublinear

with                          as



Application: Real-time pricing for DR

• Demand response via pricing

– Indirect load control via pricing/incentivization

– Privacy preserving; naturally decentralized
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• Real-time pricing based on consumer preference

– Adjust energy pricing in real-time to shape load

– Set prices/incentives differently for different customers

– Load elasticity changes across consumer and time

Q: How to learn load elasticity robustly in real time
with minimal modeling assumptions?



Problem formulation
• Model
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: price adjustment for customer k at time slot t

: load level at slot t without price adjustment

: elasticity of consumer k at slot t

: load adjustment of customer k due to price adjustment

Aggregate adjusted load

• Objective: minimize load variance

• Promote sparsity and fairness

Minimize



Algorithms

• Two types of feedback

– Full feedback: F t = ct(.)

– Partial feedback: F t = ct(pt) 
(better privacy)
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• Algorithm for full feedback case

η: step size parameter

− Composite objective mirror descent (COMID) [Duchi et al.’10]

− Provably achieves O(√T) regret bound



Numerical test for EV charging case
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Energy Pricing for Demand Response," IEEE Trans. on Smart Grid, 2016 (to appear)



Online optimal power flow

• OPF is critical for efficient power system operation

– Min. costs due to generation, losses, consumer disutility, etc.

– Subject to: KCL, power balancing constraints
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• Challenges

– Nonconvexity ( Convex relaxation)

– Uncertainties (e.g. renewable generation)

• Existing approaches typically need elaborate models of 
uncertainty or computationally costly



Online OPF formulation
• A two-stage setup
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− In time slot t -1, decide generation levels                                for slot t

− In time slot t, use the spot market to balance supply & demand 

• Cost must capture both generation and spot market transaction

subject to



Simulated test results
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Conf. on Signals, Systems, and Computers, Pacific Grove, 

CA, Nov. 2014.



Online PMU data analysis

• Phasor measurement unit (PMU)
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− High sampling rate: ~ 1 sample/20 ms

− Precise synchronization across a wide area using GPS

− Useful for monitoring dynamics of the power system

• Challenges with PMU data

– Large volume of measurements

– Fast and accurate inference

– Incomplete measurements

– Corrupt measurements



Method

• Robust subspace clustering model

– Data points are assumed to lie in a
union of subspaces

– Subspaces can capture different modes of grid operation
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• Low rank representation [Liu et al.’13]

– Postulate data have subspace structures contaminated by 
sparse outliers 

,              
X : outlier-corrected component, E : sparse
D : dictionary, C : low-rank

− Our contribution: online algorithm



Results
• Simulated PMU data

– 23-bus, 6-generator, 7-load test system simulated by PSS/E

– Line trip at t = 10 and 110 sec; closed back at t = 70 and 170

– Measurement Z are voltage magnitudes at all buses

– 5% of measurement are missing
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5% missing
Some transient

Missing 

reconstruction

(normalized MSE

= 4 X 10-5)

Event detection

Y. Lee and S.-J. Kim, ``Online robust subspace clustering for analyzing incomplete synchrophasor

measurements,” in Proc. IEEE GlobalSIP, Washington, DC, Dec. 2016.



Conclusions and future work

• Online learning framework from machine learning
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• Versatile to various applications

– Demand response

– Power system monitoring and management

• Robust performance guarantees

• Future directions

– More sophisticated learning techniques

– Closing the gap for cyber-physical interaction


