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Background and motivation

* Data deluge — power system is not an exception
— Plethora of sensors (smart meters, smart phones, PMUs, ...)
— Networking technologies (high speed, low latency, 10T, ...)
— Powerful analytics hardware/software

* Evolving landscape
— More efficient and cleaner energy (smart grid, renewables, ...)
— Increasing demand (electric vehicle, data centers, ...)
— Resiliency against uncertainty
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Challenges and opportunities

* Big data challenges
— Large volume = compression, sketching
— High-rate 2 low-complexity, real-time processing
— Dirty =2 cleansing, correction, security
— Cyber-physical = closing the loop

* Opportunities
— Enhanced monitorability
— Power of statistical analysis/learning
— From model-based to data-driven (Let the data speak!)
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Online learning & optimization

* Online versus batch processing
— Low latency, real-time
— Streaming data
— Low-complexity update
— Track dynamic variations

* Universality, robustness

— No need of detailed models (rather, law of large numbers)
— Strong guarantees even under strategic (game) play
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Online convex optimization framework

 0OCO framework: game between a player and an adversary

— Ateachtimeslott=1,2,...,T

— Player chooses pt

— Adversary chooses c'(')

— Player suffers loss ct(p?) and receives feedback Ft

* 0OCO goal: produce {p’} such that regret becomes sublinear

~ )
T
T) := th{pt) —min Y c(p) with RC(T)/T — 0 as T — oo

\_ J

@’w o & IEEE



————
Application: Real-time pricing for DR

 Demand response via pricing
— Indirect load control via pricing/incentivization
— Privacy preserving; naturally decentralized

e Real-time pricing based on consumer preference
— Adjust energy pricing in real-time to shape load
— Set prices/incentives differently for different customers
— Load elasticity changes across consumer and time

Q: How to learn load elasticity robustly in real time
with minimal modeling assumptions?
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Problem formulation

E pj : price adjustment for customer & at time slot ¢

B [t :load level at slot ¢ without price adjustment

B 0}, : elasticity of consumer k at slot ¢

B 4! :load adjustment of customer & due to price adjustment jo
di = —6Lpt o' .= [0t,... 00"

E Aggregate adjusted load [ :=1' + 3, di =1 — o' p'

L. oL : 1 2
* Objective: minimize load variance ;) (l* ~0'p' - mt)
t=1

* Promote sparsity and fairness ..,

A
2

N\

T '
1
Minimize 3 [5 (1= 07p" —m") "+ Alp' + E||p*f||%]
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Algorithms

slot (t-1) slott
Two types of feedback PR NS NN
— Full feedback: Ft= ct() | |
— Partial feedback: F t = ct(p?) § T_ v |
. Full info. case: {dz },lt ! {Pi} {d H I
(better privacy) N o )

e Algorithm for full feedback case

— Composite objective mirror descent (COMID) [Duchi et al’10]

T T 1 sl

pi™l = argmin [—?}(ft 0! p' —m"e' p+=|lp —pll5+7 (;\HPHI + 3“11'”%)]
peP X ) 2 =

Y

Ve'(p')
— Provably achieves O(VT) regret bound
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Numerical test for EV charging case
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Online optimal power flow

* OPF is critical for efficient power system operation
— Min. costs due to generation, losses, consumer disutility, etc.
— Subject to: KCL, power balancing constraints

e Challenges
— Nonconvexity (= Convex relaxation)
— Uncertainties (e.g. renewable generation)

* Existing approaches typically need elaborate models of
uncertainty or computationally costly
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Online OPF formulation

* A two-stage setup

— Intime slot t -1, decide generation levels {Pg,n}, n € N, forslot t

— In time slot t, use the spot market to balance supply & demand

* Cost must capture both generation and spot market transaction

[N : t t
= P
9(Pg) X%O,{Pé,nl}r{lggé,n}y{@;,n}n%\:/ Il Fan)

subjectto V2 < X! <V. npneN
Xtooxt Xt Xt <V, (nn)EE
t{X'Y,} - P, + P, — P, —P,,=0, neN
tI‘{Xt?n} o Qg,n + Q?,n o Qf“,n o Qi,n — 07 nenN
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Simulated test results
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Online PMU data analysis

 Phasor measurement unit (PMU)

— High sampling rate: ~ 1 sample/20 ms
— Precise synchronization across a wide area using GPS
— Useful for monitoring dynamics of the power system

B Phasor Measurement Units in the
‘ North American Power Grid T 3 \

* Challenges withPMU data = - .7 /.
— Large volume of measurements g«”” J;
— Fast and accurate inference &% T
— Incomplete measurements %‘@'mr -r‘

— Corrupt measurements N
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Method .

" r
: N
* Robust subspace clustering model / N /
— Data points are assumed to liein a 2 ~
union of subspaces {S;} 52' \S.

— Subspaces can capture different modes of grid operation

* Low rank representation [Liu et al’13]

— Postulate data have subspace structures contaminated by
sparse outliers

Z~X+E X~DC

X : outlier-corrected component, E : sparse | '
D : dictionary, C : low-rank | '

— Our contribution: online algorithm
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Results

e Simulated PMU data

— 23-bus, 6-generator, 7-load test system simulated by PSS/E
— Linetripatt =10 and 110 sec; closed back at t =70 and 170
— Measurement Z are voltage magnitudes at all buses

— 5% of measurement are missing
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Conclusions and future work

* Online learning framework from machine learning
* Robust performance guarantees

* Versatile to various applications
— Demand response
— Power system monitoring and management

e Future directions
— More sophisticated learning techniques
— Closing the gap for cyber-physical interaction
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