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Outline

e Spatio-Temporal Correlation of Synchrophasor
Data

* Dimensionality Reduction for
— Anomaly Detection
— Data Quality Monitoring

* Online Identification using Real-time Dynamic
Data

— Selective Modal Analysis




Growth of Synchrophasors (Real-time Big Data)

. Phasor Measurement Units and Synchrophasor
North America Data Flows i the North American Power Grid

Reported by NASPI”

- By March 2012, 500
networked PMUs installed.

- >1700 PMUs installed by
2015.
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« More than 2000 PMU
[Beijing Sifa ng, 2013] . PMU map in North America as of Oct. 2014.

*NASPI: North American SynchroPhasor Initiative.
* http://www.eia.gov/todayinenergy/detail.cfm?id=5630

* Beijing Sifang Company, “Power grid dynamic monitoring and disturbance identification,” in North
@EEES American SynchroPhasor Initiative WorkGroup Meeting, Feb. 2013, 2013. ‘: l E E E
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Barriers for Real-time Application

Large sets of PMU data
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for the Analysis of Large Amounts of Power System Synchrophasor Data," in System Sciences (HICSS), 2015.
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Spatio-temporal Correlations
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Early Anomaly Detection & Data Quality
@ Monitoring (milliseconds to seconds)
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PCA for ERCOT Data

(a) Cumulative Variance for Bus Frequency in Texas Data
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(b) Cumulative Variance for Voltage Magnitude in Texas Data
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Scatter Plot for Frequency Data

x 10° 2D Scatter Plot for Bus Frequency in Owerall PCA Analysis 3D Scatter Plot for Bus Frequency in Overall PCA Analysis
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Observations

* High dimensional PMU raw measurement data lie
in an much lower subspace (even with linear PCA)

e Scattered plots suggest that
Change of subspace -> Occurrence of anomaly!

* But, what is the way to implement it?

* |sthere any theoretical justification?

Data-driven subspace change < Indication of physical
events or quality anomaly in wide-area power systems
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Novel Early Event Detection (NEED)

Early Event Detection

Synchrophasor Data ___»
Dimensionality Reduction Storage

Q : Phasor measurement unit : Raw measured PMU data
PDC: Phasor data concentrator : Preprocessed PMU data
L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality reduction of synchrophasor data for
(EEG early anomaly detection: linearized analysis,” IEEE Tran. Power Systems, 2014.
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Case Study 1

AREA 5 (WORLD) AREA 2 (LIGHTCO)
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Oscillation Event

A
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o disconnected
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Early Event Detection

During Oscillation Event
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Need for Online Data Quality Monitoring

( Current Practice ) ( Critical Needs )

(0 Utilities and vendors are N
developing more and more
synchrophasor-based
decision making tools.

%) There is an urgent need to

develop scalable, real-time
methods to monitor and

€ Synchrophasor data has improve synchrophasor data
much higher sampling rate quality.
and accuracy requirement
compared with traditional
SCADA data. J Conventional bad data

€ Typical bad data ratio of
synchrophasors in
California ISO ranges from

& 10% to 17% (in 2011) [6]. ) \.

Y

0 M. Wu and L. Xie, “Online identification of bad synchrophasor measurements via spatio-temporal correlations,” 19th
K Power Systems Computation Conference, Genoa, Italy, 2016.
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Physical Events or Bad Data?

Phase Angle Measured by A Western System PMU for A Recent Brake Test Event I
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Good Data vs Eventful Data vs Bad Data
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Features of Good / Eventful / Bad Data

VS Bad / Eventful Data VS Eventful Data

@ For a particular PMU curve, its bad data segment
® For a particular PMU curve, has weak spatial correlation with corresponding
its bad data segment and data segments of its neighboring PMU curves.

eventful data segment have
@ Its eventful data segment has strong spatial

weak temporal correlation
correlation with corresponding data segments of

with its normal data segment.
its neighboring PMU curves.
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Voltage Phase Angle after Data Correction
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[0 Spikes fixed using a smoothing filter

[ Corrected angle - excellent signal for analysis.
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Dynamic Data for Dynamic Systems

 Can we use PMU data to develop simple
models describing key system characteristics
in real time?

* Could we develop frequency-targeted system
identification to recover key system modes?

B. Wiseman, Y. Chen, P. R. Kumar and L. Xie, “PMU-based Reduced-order Modeling of Power System
Dynamics via Selective Modal Analysis,” IEEE T&D 2016.
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Data-driven Selective Modal Analysis

TABLE 1I
RESULTS OF TARGETED MODE SELECTION TABLE VI
COMPARISON OF EIGENVALUES FROM IDENTIFIED MODEL
Selected Eigenvalues Damping Ratio  Frequency (Hz)
A1,2 = —0.0917 + j7.6626 0.012 1.22 -
34 = —0.3607 £ j5.1037 0.071 081 Eigenvalues ond_order Model 28th-order' Model
As,6 = —0.1399 + 52.0713 0.067 0.33 A1,2 —0.0920 £ 57.6344  -0.0917% j7.6626
TABLE III

RELEVANT STATES IDENTIFICATION THROUGH PARTICIPATION FACTORS .
Bode Diagram

From: V,
ey

et TO: Wy

-0.092 £ j7.663  -0.361 £ j5.104  -0.139 + j2.076
-0.092 + j7.663  -0.361 + j5.104 -0.1394 + j2.069
True Value -0.0917 £ j7.6626 -0.3607 £ j5.1037 -0.1399 + j2.0713 Fig. 3

Eigenvalues  Relevant States  Individual NPF  Total NPF S I i i ™

A1,2 01, w1 2 x 0.4922 0.9844

03, w3 2 x 0.2456 s
A3, 64, wi 2x 0.2088 0.9088 =

54, wWa 2 x 0.1287 E
.6 83. w3 2% 0.1562 0.6298 §

TABLE IV

ESTIMATION OF SELECTED EIGENVALUES WITH SMA 15 , : : :

Iteration )\1,2 )\3’4 5.6 Gl == -- 'gﬂ-ardle;Mr‘)dslM "
0 -0.063 £j7.636  -0.006 & j5.223 -0.006 £ j1.762 3 el Sysiem ose
1 -0.094 + j7.665  -0.338 + j5.068  -0.337 + j2.183 g
2 -0.092 + j7.662  -0.364 £ j5.100  -0.055 + j2.040 a or
3 -0.092 + j7.663 -0.361 + j5.104 -0.184 +j2062 | TRIz=-o-ooo..
4 -0.092 + j7.663  -0.361 + j5.104  -0.123 + j2.082 .90 . .

5 -0.092 + j7.663  -0.361 + j5.104  -0.145 + j2.063 7 2 7 . 76 8 8 82
6 requency (rad/s)
7

Bode plot comparison of the identified and original models.

B. Wiseman, Y. Chen, P. R. Kumar and L. Xie, “PMU-based Reduced-order Modeling of Power System
Dynamics via Selective Modal Analysis,” IEEE T&D 2016.
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Summary

* Spatio-temporal correlations among synchrophasor
data offer unique opportunities to develop real-time,
scalable algorithms for

— Anomaly detection
— Data quality monitoring
— System identification
* Much more needs to be done!

— Grid model validation (in addition to components)

— Cyber attack awareness and countermeasures.
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