IEEE PES GM2016

Panel: Domain-Specific Big Data Analytics Tools in Power Systems Chair: Prof. Hamed Mohsenian-Rad, UC Riverside

From data to actionable information: data curation, assimilation, and visualization

Zhenyu (Henry) Huang

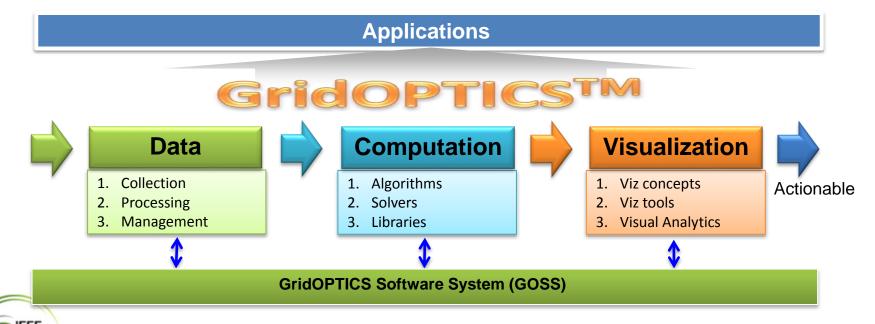
Chief Engineer/Team Lead
Pacific Northwest National Laboratory
July 19, 2016

Rich new data hold the promise to transform grid view and management

- Data sources are more diverse, with increased data volumes
 - SCADA → phasor
 - Market, weather/climate, cyber/communication, ...
 - Simulated data
- Generic 4 "V's": capture the data evolution in power grid.

	Today – SCADA data	Emerging – phasor data	Improvement
Variety	voltage + current	+ phase angle,	more information
Velocity	1 sample / 4 seconds	30-120 samples / second	~200x faster
Volume	8 terabytes / year	1.5 petabytes / year	~200x more data*
Veracity	unseen ms-oscillations	oscillations seen at 10ms	greater accuracy

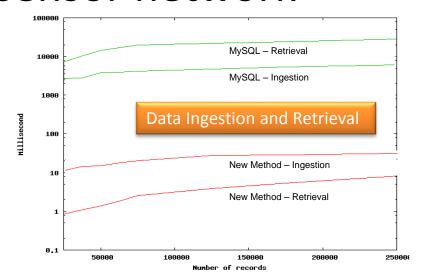
Transmission level only

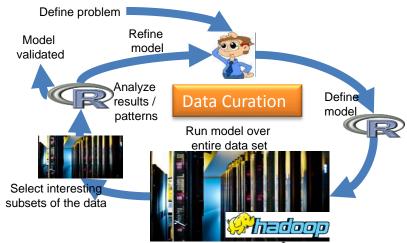

What to do with the data in domain-specific applications?

Power grid "Big Data" Challenge: making diverse data reliable, available and actionable

 GridOPTICS™: A suite of methodologies & software modules for accelerating the development and adoption of new data analytical tools for the power grid facing new complexity, stochasticity, and dynamics.

Power & Energy Societ

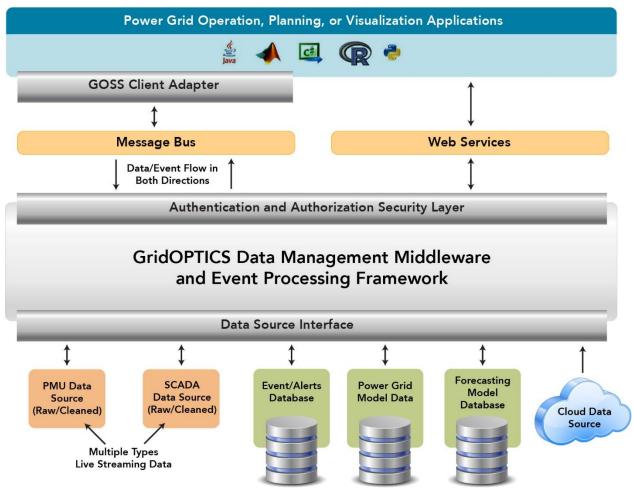



Real-time data ingestion, retrieval, curation from a distributed sensor network

Requirements

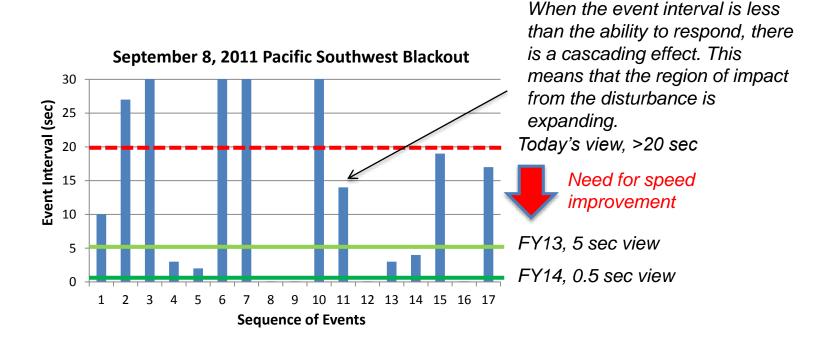
Power & Energy Soci

- Cyber-secure sensor network
- Data provenance and privacy
- Real-time processing
- Solution: scalable, flexible middleware and R/Hadoop statistical analysis capabilities
 - Data ingestion is 10³ times faster than MySQL
 - Linearly scales to many nodes
 - Data curation cleans data and detect events with confidence in real time



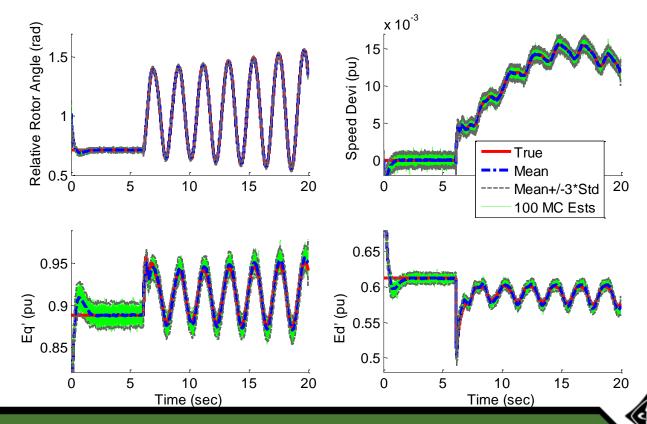
GOSSTM: link data to applications

https://github.com/GridOPTICS/GOSS



Data assimilation: State Estimation (SCADA + power flow model)

Fast State Estimation captures real-time changes and offers an opportunity to stop cascading



Data assimilation: Dynamic State Estimation (Phasor + DAE model)

• Estimating power system dynamics states (and parameters) in real time. Excellent tracking using Kalman filter with imperfect model and realistic conditions. Scalable to 1000s cores.

GridPACKTM: building blocks for scalable power grid computing

https://www.gridpack.org/

Applications

Algorithms

Solvers

Matrix Ops

Power flow analysis, state estimation/prediction, contingency analysis

Dynamic simulation, dynamic state estimation, small signal analysis Unit Commitment, Economic Dispatch, Financial Transmission Right

Nonlinear Equations: f(x)=b; g(x)=0

DAE, PDE, Kalman Filter Selective eigenvalue solution

Optimization: simplex, interior point, dynamic, genetic algorithm

Load balancing: static, dynamic

Ax=b: direct, iterative

pAx=pb: preconditioning

Numerical derivative; Jacobian

Sparse: multiply (M*M, M*V, V*V), inverse (M⁻¹), selective ops

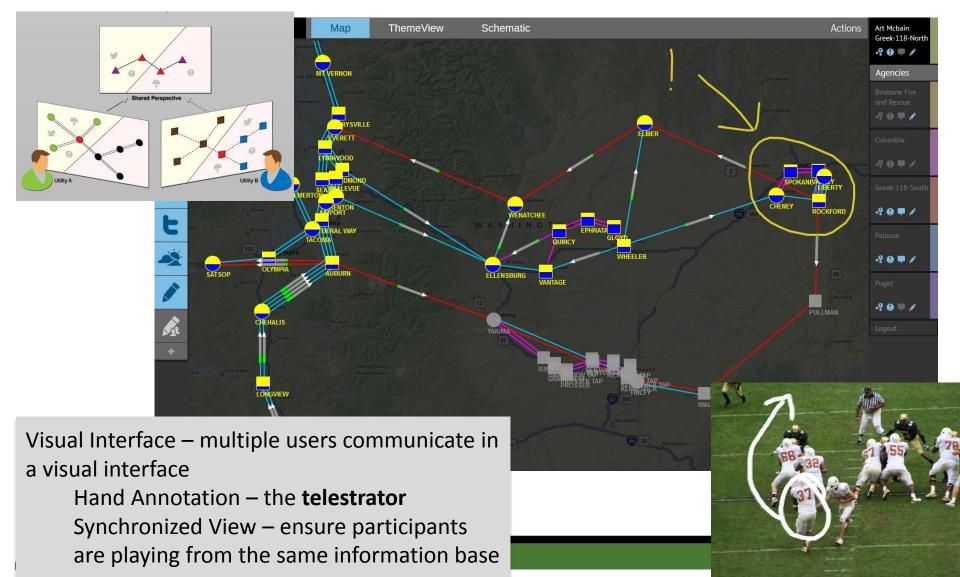
Dense: multiply (M*M, M*V, V*V), inverse (M⁻¹), selective ops

Visual analytics of massive Contingency Analyses for real-time decision support

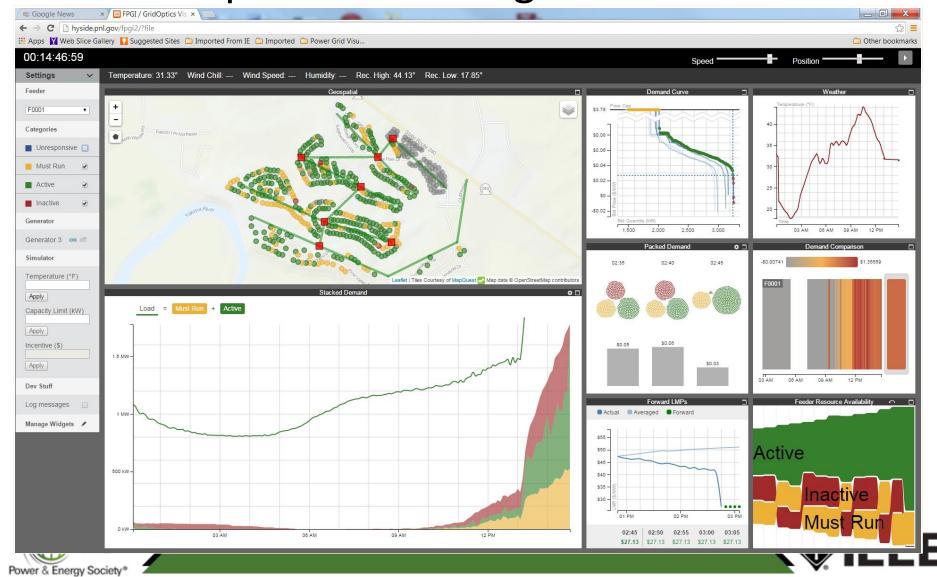
Contingency Analysis	Number of scenarios	Serial computing on 1 processor	Parallel computing on 512 processors	Parallel computing on 10,000 processors
WECC N-1 (full)	20,000	4 hours	~30 seconds 469x speed up	
WECC N-2 (partial)	153,600	26 hours	~3 minutes 492x speed up	~12 seconds 7877x speed up

Current tabular format

 Easy-to-interpret visualization of contingency analysis data


 Prioritized areas of concern and recommended corrective actions

 Operators reported 30% improvement in emergency response


New visualization tool

Shared Perspectives enable real-time collaborative decision making

Advanced modular visualization for easy exploration of large-scale data

Summary

- The increasing dependency of grid on data calls for an analytical architecture for converting big data into actionable information.
- GridOPTICSTM is an implementation of this analytical architecture, with building blocks (such as GOSS, GridPACK, and visualization modules) available for application development.
- Data curation, assimilation, and visualization are essential functionality supported by GridOPTICS, achieving high performance.

Acknowledgement

- PNNL Researchers: (Data and Computing)
 Bora Akyol, Poorva Sharma, Yin Jian, Steve
 Elbert, Shuangshuang Jin, Bruce Palmer,
 George Chin; (Power Engineering) Ruisheng
 Diao, Yousu Chen, Mark Rice, Jeff Dagle
- Former PNNL Researchers: Terrence Critchlow, Ning Zhou

Questions?

Further Information:

GridOPTICS: http://gridoptics.pnnl.gov/

GridOPTICS™ Software System (GOSS): https://github.com/GridOPTICS/GOSS

GridPACK™ (open-source HPC library): https://www.gridpack.org/

Interactive Visualization and Demo Center: http://vis.pnnl.gov/

Zhenyu (Henry) Huang

Chief Engineer/Team Lead

Pacific Northwest National Laboratory

zhenyu.huang@pnnl.gov

