Advanced Analytics and Data for PMU Applications

Bill Blevins-ERCOT

Prashant Palayam-Electric Power

Group

Initial PMU history

- Center for the Commercialization of Electric Technologies (CCET) initial PMU demonstration 3 PMUs in 2005
- 2010, CCET grant Department of Energy (DOE) under Award Number DE-OE-0000194 goal was to install PMUs at 13 additional locations.
- DOE project resulted in adding 76 PMUs at 35 locations.

Growth of PMU data within ERCOT

76 PMUs at 35 locations 2014

Potential PMU devices

Source: Synchrophasor Applications ERCOT STF Meeting Feb 5, 2014

Potential 7.5 Petabytes/Month in North America

Source: Big Data Best Practice Sean Patrick Murphy JSIS Salt Lake City May 23 2017.

ERCOT control room technology impacts

DOE Project lessons-PMU policies

- Phasor data repository design and implementation requirements and data archiving policies
- Data sharing policies (inside and outside ERCOT)
- Phasor data management policies (e.g. PMU naming convention, change management)
- PMU location selection principles and criteria
- PMU use cases
- Develop PMU rules for use cases

DOE Project lessons-PMU Best practices

- Validate data 2012-2014
 - Validated that all data received by ERCOT is faithfully archived in the appropriate phasor data base.
 - Developed phasor data performance standards .
 - Baselining study compared PMU data and SE data.
 - Cluster Analysis between PMUs which are electrically near and respond similarly.
 - Observe system changes during large CREZ buildout.

DOE Project-PMU Analytics

- Performed post-event analysis and forensics on grid events and disturbances
- Assessed low voltage ride through performance of wind generation
- Assessed the impact of wind generation on system inertial and governor frequency response
- Detected, monitored and analyzed power system oscillations and the interaction of wind generation
- Implemented a means of validating model-based predictions of generator response to disturbances

Operational Lessons learned

- Develop Real-time PMU systems that process PMU data.
- Systems should handle analytics for operators.
- Alarms and visualizations need to reduce the data into actionable information.

Phasor Simulator for Operator Training (PSOT)

Event Library Approach

- Using Off-line Simulations Tools
- Event Library = Simulated + Recorded events
- Event Streamer & Manager to replay events in library to RTDMS
- Visualization Tool RTDMS

Staff need training tools to become familiar and adopt PMU tools.

These tools need to be trained on along side the other operational tools.

Offline data Analytics

Power & Energy Society®

Phasor Grid
Dynamics Analyzer

Future Analytics – Event Mining

Oscillation Events by Location, Severity, Mode & Duration 4 Days, 5 Hrs, 40 Min 15 (~0.1Hz) Signal Location Event Event Start Event End Average Peak-to-Type Year Month Date. Date. Oscillatory HH:MM. HH:MM. Peak Magnitude 18, 16:32, 18, 17:32, 3.33 15 MW UTC-7:00 UTC-7:00 Name 1 MW 05. 02:32. 05. 02:50. 3.33 10 MW 2010 1 UTC-7:00 UTC-7:00 05, 02:32, 05, 02:50, 0.74 6 MW UTC-7:00 UTC-7:00 05, 02:32, 05, 02:50, 1.58

Poor and Negatively Damped Contingencies						
345kV C1	POWR2[unit20.6900]W1	MW	1.46	2		
345kV C1	POWR1[unit1 18.000]N1	MW	1.04	0		
345kV C2	POWR1[unit1 18.000]N1	MW	0.73	11		
345kV C3	POWR1[unit1 18.000]N1	MW	0.08	11		
345kV C1	VOLT [unit1 18.000]N1	VM	3.06	3		
345kV C1	FREQ [unit1 18.000]N1	FREQ	2.00	-2		

Automatic Event Miner

Frequency Events by Location, Severity, Timing & Count

Event #	Location	Event Year	Event Month	Event Date, HH:MM, UTC-7:00	**Frequency declined to (Hz)
Event 1	Signal Name 1	2009	3	18, 16:32	59.78
Event 2	Signal Name 5	2009	5	1, 5:10	59.85
+ Event 3	Signal Name 6	2009	8	5, 8:14	59.6
+ Event 4	Signal Name 10	2009	10	25, 22:10	59.75

Sharing Profile/Display with TDSP

Cloud Solution for Data Sharing

- Sharing Profile/Display with TDSP
- Generator and TDSP Operator Training

