PingThings

Leveraging Synchro-Waveforms in a Multiresolution Timeseries Platform

Justin Gilmer PingThings Inc.

IEEE PES 2025 - Emerging Synchro-Waveforms Data Analytics and Applications - Tuesday July 29th 2025

Power & Energy Society*

Outline

- 1. Intro
- 2. Contextualizing Power Grid Data
- 3. PredictiveGrid Platform's Multiresolution Approach
- 4. Key Capabilities and Features
- 5. Synchro-waveforms with Other Data Sources
- 6. Benefits and Challenges with Synchro-Waveform Data at Scale
- 7. Next Steps and Announcements

Terminology

Contextualizing Grid Data

- Report Rate
 - Data sent from a device(s) send to a data historian/timeseries store
- Sample Rate
 - Measurement rate of a device (!= to report rate in all cases)
- Point
 - (Time, value) tuple of data
- Stream/Signal
 - Timeseries that are made up of Points

Power Grid Data Types

Contextualizing Grid Data

Grid Timeseries Data

• 0.001Hz <-> MHz

AMI <-> SCADA <-> PMU/DFR <-> CPOW

• Events

Power Grid Data Types

Contextualizing Grid Data

- Grid Timeseries Data
 - 0.001Hz <-> MHz
 - AMI <-> SCADA <-> PMU/DFR <-> CPOW
 - Events
- Grid Metadata
 - Assets
 - Internal Metadata
 - Topology

Power Grid Data Types

Contextualizing Grid Data

- Grid Timeseries Data
 - 0.001Hz <-> MHz
 - AMI <-> SCADA <-> PMU/D
 - Events
- Grid Metadata
 - Assets
 - Internal metadata
 - Topology
- External Data
 - Weather
 - Space weather

A screenshot of GOES East Infrared Satellite Image - Latest 24 Hours Western Hemisphere over North America from 8/16/18. (Image credit: NOAA National Environmental Satellite, Data, and Information Service)

Data Storage and Analysis Challenges

Contextualizing Grid Data

- PMUs and event triggered POW are already data dense
 - Synchro-wave (WMUs) will increase this 100-1000x
- Many historians are great at storing one or a subset of these data
 - Data silos
- Holistic analyses of grid events are non-trivial
- Need for a unified/centralized data store and platform that is timeseries agnostic

A Report Rate Agnostic Platform

The PredictiveGrid's Multi-Resolution Approach

- Report rate is key to this challenge
- Need a solution that:
 - Agnostic to report rate of data
 - Quick traversal of timeseries through time (historical and real time)
 - Precomputed statistical summaries
 - Full access to the raw data at any time
 - Combines other data sources to the timeseries data
 - Useful interfaces for day-to-day users
 - High performance API access for data pipelines, SMEs, etc.
- PredictiveGrid Platform does this

A Report Rate Agnostic Platform

Utility Data Sources

Data Concentrator(s)

Historians

IOT/Devices

Grid Sensors

- . PMU
- . AMI
- . SCADA
- . Power Quality
- . IEDs
- . DFR
- . Continuous Point on Wave
- . Proprietary 3rd Party

External Data Sources

Weather

Environmental

Satellite (time series)

3rd Party Sensors

Key Characteristics

Key Capabilities and Features

- Report rate agnostic
- Fast data lookup and retrieval (millions of points per second per stream)
- Historical and real-time computations
- Cloud-backed, store as much data as needed
- Linearly scalable for data ingestion
 - Working with the GridProtectionAlliance (GPA), ingested 120M Points per second sustained
 - ~160_000 PMUs, ~4k WMUs
- No data silos
 - AMI, PMU, SCADA, CPOW, DFR, Space Weather, events, etc. all co-exist

PMU and POW

Synchro-Waveforms with Other Data Sources

POW and SCADA

Synchro-Waveforms with Other Data Sources

PMU, POW, AMI, Space Weather **Synchro-Waveforms with Other Data Sources**

03 AM

Mon Jul 14, 202

Thu 17

Our Experience

Benefits and Challenges of Synchro-Wave at Scale

- Benefits
 - Not limited to fundamental frequency of the grid for analysis
 - New, rich dataset for potential ML techniques, and new features/analyses
 - IBR dynamics have critical timescales that synchro-wave can measure!
 - Sub synchronous oscillation detection
- Challenges
 - Data density
 - Data quality
 - Large scale deployment and bandwidth needs
 - Lack of data standards

Where Are We Going?

Next Steps and Announcements

- Effective integration of multiple data sources and resolution will be necessary as grid becomes more dynamic
- Dataset fusion will be necessary for a holistic understanding of events
- Synchro-waveforms will be a part of this toolkit, deployed in key locations in the grid, supplemented by PMUs, DFRs, etc
- Challenge
 - PMUs are not in the control room for decision making, where does synchrowaveforms fit in the day-to-day grid operations?

POWER & Energy Society*

Announcement

Next Steps and Announcements

- PingThings previously had an ARPA-E grant called NI4AI
 - National Infrastructure for AI on the Grid
- Curated open source timeseries available to the academic and industrial community hosted on the PredictiveGrid platform
 - Distribution uPMU, POW, events, AMI, generation timeseries
- Could only host US-based data
- We are starting a similar initiative internally!
 - The PredictiveGrid Grid Data Commons Project
 - Supporting world-wide data sets!
 - Synchro-waveform can be hosted as well
 - More info to come in the fall at NASPI
 - Email: commons@pingthings.io

PingThings

Thank you!