

Oscillation Countermeasures Based on Synchro-Waveform Technology and ADMS

Sungyun Choi, Ph.D. Assoc. Prof., Korea University sungyun@korea.ac.kr

Contents

- 1. Next-level WAMS based on WMU
- 2. WMU-based Oscillation Source Location
- 3. Coordinated WAMS-ADMS Framework
- 4. Conclusion

Motivation

- Sub- and super-synchronous oscillations are becoming increasingly common in modern power systems.
 - >5–80 Hz oscillations are reported in real-world power systems.
- These oscillations involve diverse inverter-based resources (IBRs) and grid conditions.
- Traditional PMUs are insufficient to capture high frequency dynamics—highlighting the need for Synchro-Waveform Technology.

WMU: waveform measurement unit (synchro-waveform)

- High-resolution measurement unit based on synchrowaveform technology.
- Enables accurate detection of power system oscillations, including sub- and super-synchronous oscillations.

Device	Measuring data	Reporting rate
WMU	Waveform	Max. 256 samples/cycle (Time synchronized)
PMU	Phasor for nominal frequency	Max. 2 samples/cycle (Time synchronized)
SCADA	Magnitude	1 sample for a few seconds

Next-level WAMS architecture

Monitoring Architecture

Monitoring Structure

Measuring Device

To-Be

Next-level WAMS based on WMU

 Hierarchical structure due to data volume and communication burden.

Wide-area monitoring

Regional monitoring

GPS time synchronization

WMU* WMU* WMU* WMU* WMU*

■ WMU, PMU SCADA

Recent Korean Project

- Project title: Development of Monitoring and Analysis Technologies for DC T&D
- Management: KETEP (Korea Energy Technology Evaluation and Planning)
- Budget: 22.86 million USD
- Period: 2025 Apr. 2029 Mar.

Sub-project Topics

- **1.** Development of WMU-based WAMS
- **2.** Advanced Modeling and Analysis of Stability
- 3. Field Implementation of WMU-based WAMS

Project Leaders

Korea University

Korea Electrotechnology
Research Institute

KEPCO KDN

DEF-based oscillation source location

• **Dissipating Energy Flow (DEF)** indicates whether a system component **injects** or **absorbs** oscillatory energy.

Each WMU observes oscillation within a specific grid region.

WMU-based DEF

 Calculates extended DEF from synchro-waveform data in an oscillation mode.

Case study: IBRs with different oscillation modes

- Test system: IEEE 14-bus system with IBRs
- Poorly-tuned IBR controls and weak grid conditions
- Two IBRs causes different oscillation mode.
- Disturbances: Slight increase of IBRs' active power

Modes (IBR1): 44 Hz, 76 Hz

| STATCOM | STATCO

Case study: IBRs with different oscillation modes

- Distinguishes oscillations at different frequencies and identifies their respective sources.
- Identifies IBR1 as the source of 44 Hz and 76 Hz oscillations

Case study: IBRs with different oscillation modes

- Identifies IBR2 and STATCOM as the source of 24.5 Hz and 95.5 Hz oscillations
- PMU-based DEF method identifies the source correctly within the frequency range that PMUs can capture (< 30 Hz).

Why Transmission-Level WAMS Alone May Miss the Full Picture

- WMUs are typically installed at transmission-level substations and line terminals, but deployment is often limited to main substations.
- As a result, WMAS can identify the region of oscillation source rather than pinpointing the exact node.

Why Transmission-Level WAMS Alone May Miss the Full Picture

- Oscillation detection at the transmission level may not reveal the true origin if the source lies within an unmodeled distribution substructure.
- As a result, taking effective mitigation actions becomes challenging due to limited visibility and control over the actual source.

Mutual Enhancement of WAMS and ADMS for Grid Stability

- WAMS detects oscillations at the transmission level and identifies the affected region.
- If the oscillation source is inferred to lie within the distribution networks, WAMS coordinates with ADMS to trigger targeted mitigation action.

Mutual Enhancement of WAMS and ADMS for Grid Stability

 Furthermore, ADMS enhances WAMS by supplying real-time topology, switching actions, and DER/ESS control data, enabling more accurate stability monitoring and validation of system stability.

Key Functions of ADMS for WAMS Real-time distribution network topology updates Switching operation and restoration actions (Control log) DER/ESS operational states

WAMS

'More Precise State Estimation'

'Improved Power System Monitoring'

'Enhanced Post-Event Playback Analysis'

4. Conclusion

5. Conclusion

Challenges Facing Modern Power Systems

- The growing integration of IBRs is driving an urgent need for advanced stability monitoring and enhanced stability measures, particularly in distribution networks as well as in transmission systems.
- WAMS, including WMUs at the transmission system, and ADMS at the distribution system can coordinate to improve overall system stability, including oscillation suppression.
- WAMS detects system instabilities and identifies their sources, enabling ADMS to collaborate in targeted actions that mitigate instability and support grid resilience.