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Abstract—Three novel data-driven methods are proposed to
model the dynamic response of Inverter-Based Resources (IBRs)
to high-frequency sub-cycle disturbances in power systems.
Real-world voltage and current waveform data from Waveform
Measurement Units (WMUs) are used from a IBR test site in
California. The proposed methods are designed based on Long
Short-Term Memory (LSTM) networks to capture nonlinear
patterns and complex temporal dependencies. They vary in terms
of the architecture of the LSTM networks and feature extraction.
Experimental results demonstrate significant improvements in the
achieved model accuracy, compared to two other recent state-of-
the-art data-driven methods in the literature. Furthermore, based
on the analysis of time-synchronized waveform measurements at
two different IBRs, it is shown that the proposed methods have
the potential to extend or transfer across different IBRs.

Keywords: Inverter-based resources, data-driven modeling, dy-
namic response, sub-cycle oscillations, LSTM, clustering, WMU,
waveform measurements, synchro-waveforms, real-world data.

I. INTRODUCTION

The dynamic behaviour of modern power systems is increas-
ingly influenced by inverter-based resources (IBRs). Recently,
NERC (North American Electric Reliability Corporation) has
reported several system-wide incidents that are caused by
the unexpected dynamic response of IBRs to transient dis-
turbances [1]. Post-mortem analysis of these incidents has re-
vealed the critical need for high-resolution monitoring of IBRs,
particularly during rapid, sub-cycle disturbances. Waveform
Measurement Units (WMUs) now offer a solution, providing
GPS time-synchronized voltage and current waveform mea-
surements at 64 to 512 samples per cycle [2], [3].

In this paper, we seek to use real-world waveform mea-
surements from WMUs at IBRs in a test site in California
to develop novel data-driven models to predict the dynamic
behavior of IBRs in response to sub-cycle oscillatory distur-
bances in power systems. A large number of such sub-cycle
oscillations were observed at the IBRs at this test site during
the six months period of this study. Of course, other typical
forms of disturbances were also present at this site, such as
voltage sags and faults. However, we did not consider those
disturbances if they did not cause sub-cycle oscillations.

A. Literature Review

Physics-based models are traditionally used to model the
dynamic behavior of IBRs; e.g., see [4]–[6]. However, they
require access to precise models of the internal components
and control loops of the IBRs. They may also encounter pra-
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ctical challenges, including computational complexity [7].
A recent alternative to physics-based modeling is to use

data-driven methods. Some data-driven methods are hybrid.
They use field data to identify the parameters of a physical
model [8], [9]. Some other methods, such as in [10], do not
require any knowledge about the physical model of the IBRs.
Since the focus in [10] is on phasor measurements, it cannot
capture the dynamics of sub-cycle events. The only existing
work that utilizes WMU data to model the dynamic response
of IBRs is the recent study in [11], where the models are based
on modal analysis and regression analysis. As we will show
in this paper, our methods outperform the models in [11].

In this paper, our approach involves using Long Short-Term
Memory (LSTM) networks [12]. LSTM has not been previ-
ously used for modeling the sub-cycle dynamic behavior of
IBRs. However, it has been used in various other applications
in power systems, such as to forecast loads [13], or to forecast
solar generation under different weather conditions [14].

B. Summary of Contributions

The contributions in this paper can be summarized as:
1) Three LSTM-based methods are proposed to achieve

data-driven models to capture the sub-cycle dynamic
behavior of IBRs. Approach 1 emphasizes extracting
the nonlinear relationships and temporal dependencies
between sub-cycle differential voltage (input) and sub-
cycle differential current (output) at the IBR. Approach
2 enhances the model by incorporating a new feature
to capture the pre-disturbance state of operation of the
IBR. Approach 3 further introduces a clustering pre-
processing step to classify and label the IBR’s pre-
disturbance conditions to be used as a new feature.

2) We show that the basic method in Approach 1 can reduce
the average modeling error by 25% and 37%, compared
to the two recent state-of-the-art methods in [11], which
are based on modal analysis and regression analysis,
respectively. The modeling error reduction can reduce to
60% and 67% in Approach 2. With regards to Approach
3, the error reduction is even further, to 85% and 88%,
subject to a proper selection of the number of clusters.

3) By making use of the time-synchronized waveform mea-
surements, we also investigate the sub-cycle dynamic
responses of two different IBRs of the same make, but
of different sizes at two different locations, when they
both respond to the same sub-cycle disturbance in the
system. We show that the model that is developed for
one IBR can be reused to some extent to also capture the
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Fig. 1. (a) a sub-cycle voltage oscillation disturbance, which in turn causes
agitation in the injected current by the IBR; (b) the corresponding differential
waveforms; (c) a data-driven model for the input-output relationship between
the sub-cycle disturbance and the sub-cycle response of the IBR.

sub-cycle dynamic response of the other IBR, subject to
making some minor adjustments in the original model.

The analysis in this paper is based on real-world waveform
measurements. No computer simulations is used in this paper.

II. PROBLEM STATEMENT

Consider Fig. 1(a), which shows the real-world waveform
measurements that are captured by a WMU at one phase
of a three-phase PV unit in California during a system-wide
disturbance. The voltage and current waveform measurements
are denoted by v(t) and i(t), respectively. The disturbance
causes a voltage oscillation event for a short period of time
(less than half of an AC cycle). This in turn causes a dynamic
response in the PV inverter’s current, which is oscillatory and
transient. Our goal is to model this dynamic response, by
solely using the waveform measurements at the IBR, without
access to the internal physical models of the IBR components.

Next, consider Fig. 1(b). It shows the differential waveforms
corresponding to the raw voltage and current waveform mea-
surements in Fig. 1(a). Given a waveform x(t), its correspond-
ing differential waveform is obtained as [15, Section 4.2.5]:

∆x(t) = x(t)− x(t− T ), ∀ t ≥ t0, (1)

where t0 is the start time of the event and T = 1/60 seconds
denotes the interval of the waveform. As we can see in Fig.
1(b), the differential waveforms provide clear signatures of the
sub-cycle disturbance and the sub-cycle response of the IBR.

Finally, consider Fig. 1(c). It shows the input-output rela-
tionship between ∆v(t) as the input time-series and ∆i(t) as
the output time-series. Our goal is to develop methods based
on LSTM to model the above input-output relationship.

III. APPROACH 1: BASIC LSTM MODEL

LSTM is a powerful tool for analyzing time-series. It can
learn complex temporal dependencies and nonlinear patterns.
In this section, we introduce our first model based on LSTM.

A. LSTM Architecture and Methodology for Approach 1

Fig. 2 illustrates the overall architecture of the LSTM model
in Approach 1. The input to this model is a window of
length lag of the most recent samples of the time-series of
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Fig. 2. Architecture of the proposed LSTM model in Approach 1.

the differential voltage waveform. The output of this model
is the present sample of the time-series of the differential
current waveform. Note that, while notations ∆v(t) and ∆i(t)
denote the entire time series of the differential waveform
measurements, notations ∆v[t] and ∆i[t] denote the samples
of these two time-series at any given time t. If there are N
samples in the differential voltage and the differential current,
then there will be N windows of length lag, traversing the
input signal, sample by sample, from left to right, in order to
reconstruct the entire current waveform response of the IBR.

The main objective of the LSTM model in Approach 1 is
to discern the relationship between each window of the most
recent samples in the input time-series and its corresponding
output. This relationship can be expressed as follows:

∆i[t] = f
(
∆v[t], ∆v[t− 1], ..., ∆v[t+ 1− lag]

)
, (2)

where we seek to identify the optimal choice of function f(·).
It is worth nothing that, prior to constructing the windows

of the input signal, the event data is partitioned into two sets:
training events and test events. Following the construction of
the input windows for all training events, the windows, along
with their corresponding outputs, are shuffled and further split
into training and validation data. This process guarantees a
diverse representation of the dynamics of the system across
different events, in both training and validation datasets.

The LSTM model in Fig. 2 incorporates two LSTM layers.
Each LSTM cell has three gating mechanisms [12]: input gate,
forget gate, and output gate, as shown below, respectively:

i[t] = σ(Wiix[t] + bii +Whih[t− 1] + bhi),

f [t] = σ(Wifx[t] + bif +Whfh[t− 1] + bhf ),

o[t] = σ(Wiox[t] + bio +Whoh[t− 1] + bho),

(3)

where xt is the input at time t and h[t − 1] is the hidden
state from the previous time step. The weight matrices W
and bias vectors b are parameters that are learned during the
training process. The gates in (3) are controlled by sigmoid
activation functions σ(·), which generate values between 0 and
1, determining the flow of information through the cell. A tanh
activation function is applied to the candidate cell state:

g[t] = tanh(Wigx[t] + big +Whgh[t− 1] + bhg), (4)

allowing the model to capture long-term dependencies. The
cell state that represents the long-term memory is modified by
the input gate, forget gate, and candidate cell state as

c[t] = f [t]c[t− 1] + i[t]g[t]. (5)

2



0 3 6 9 12 15 18 21
Test Event Number

0

10

20

30

M
S

E
 V

al
u
e

Modal Analysis [6]

Regression [6]

LSTM Approach 1

14.82
12.37

9.33

Fig. 3. Individual MSE values (and their averages in the dashed lines) for the
proposed LSTM model in Approach 1 in comparison with the state-of-the-art
modal analysis and regression analysis models in [11] for all Test Events.

The hidden state that serves as the short-term memory is
calculated using the output gate and the current cell state as:

h[t] = o[t] tanh(c[t]). (6)

Subsequently, a layer of a fully connected neural network
serves as the last layer in the LSTM networks architecture in
Fig. 2, generating the ultimate output of the network.

In Approach 1, the hyperparameters were set manually with
the commonly used values. The LSTM layers are initialized
with 64 units. The final Dense layer with 1 unit and a ReLU
activation function produces the output. The model is trained
using Adam optimizer (learning rate of 0.01) over the MSE
loss function. Thirty percent of the training data is used for
validation. The TensorFlow’s Keras API was used to build the
LSTM network, with its default random weight initialization.

B. Experimental Results and Performance Comparison

In this section, we compare Approach 1 with the Modal
Analysis method and the Regression Analysis method in [11].
To have a fair comparison, we use the exact same real-world
training and testing data sets in [11]. Specifically, we used
waveform measurements from a WMU at a 480 V / 100
kW PV unit over a six-month period. This dataset included
63 instances of sub-cycle system-wide disturbances, and the
corresponding responses of the IBR. As in [11], we designated
42 disturbances for training and 21 disturbances for testing.

The randomness inherent in the training of the LSTM model
is addressed by conducting 40 iterations of training and taking
the average. This helps mitigate the influence of stochastic
variations, ensuring a more robust and representative analysis.

The results are shown in Fig. 3. Here, we show the Mean
Square Error (MSE) for each method on each of the 21 test
cases. The horizontal dashed lines show the average MSE for
each method. Notice that, while the average MSE values for
the Modal Analysis and the Regression Analysis are 14.82 and
12.37, respectively, the proposed LSTM method in Approach
1 significantly reduces the average MSE value down to 9.33,
which indicates 37% and 25% improvements compared to
Modal Analysis and Regression Analysis, respectively.

IV. APPROACH 2: LSTM MODEL WITH ADDITIONAL
FEATURE LAYER ON PRE-EVENT CONDITIONS

Our second approach is motivated by the results that we
previously saw in Fig. 3. On average, the MSE values for
the LSTM model in Approach 1 demonstrated a significant
improvement while some of the test cases still had high MSE
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Fig. 4. Architecture of the proposed LSTM model in Approach 2.

values, as high as 20. Upon comparing the differential voltage
waveforms, we observed test cases where the two test events
had almost identical differential voltage waveforms, yet they
showed significant differences in their MSE values.

After further examination, our conjecture was that the cause
of the poor performance of Approach 1 in certain test cases
is the differences in their pre-event operating conditions. This
refers to the extent of the IBR being in steady-state versus
being in volatile conditions, shortly before the event occurs.

In this regard, we can treat not only the recent method in
[11] but also our own method in Approach 1 as two baselines
to evaluate the performance of Approach 2 and Approach 3.

A. LSTM Architecture and Methodology for Approach 2

To incorporate the pre-event condition to examine the above
conjecture, we focused on the characteristics of the differential
current waveform at the cycle immediately before the start
of the event. The differential current waveform in the cycle
immediately before the start of the event can be obtained as

∆i[t0 − T − 1 : t0 − 1]. (7)

If all the samples in (7) are zero, then the IBR was in a truly
steady-state condition. If there are several non-zero and large
samples in (7), then the IBR’s operation was not in a steady-
state condition; because the consecutive cycles had significant
differences even before the voltage oscillation event happens.

Hence, we consider the following new feature as a new input
to the model to indicate the pre-event condition of the IBR:

Γ = ∥∆i[t0 − T − 1 : t0 − 1]∥2. (8)

A large Γ indicates that the pre-event conditions at the IBR
was far from steady-state, such as due to a recent event that
is still affecting the behavior of the IBR, or due to an internal
dynamic in the IBR that has not yet reached its steady state.

Accordingly, we proposed a new architecture for the LSTM
model, as in Fig. 4. This new architecture directly incorporates
Γ as a new feature (new input). To leverage this new input,
a concatenation layer is introduced, positioned between the
second LSTM layer and the final layer of the fully-connected
neural network. The input size to this new layer is equal to
the output size of the second LSTM layer plus one, and its
output size is equal to the input size of the last layer.

In Approach 2, most of the LSTM parameters are similar to
Approach 1, except for the new concatenation layer. This new
layer has 64 units and employs a rectified linear unit (ReLU)
activation function to process the combined information.

3
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Fig. 5. Comparing Approach 1 and Approach 2: (a) the MSE values for each
test case; (b) the average MSE values versus the changes in the lag parameter.

B. Experimental Results and Performance Comparison

The results for comparing Approach 2 with Approach 1 are
shown in Fig. 5(a). Approach 2 outperforms Approach 1 in
every test case. On average, the MSE reduces from 9.33 to
4.90. These results are 67% and 60% better than the Modal
Analysis and the Regression Analysis methods, respectively.
In essence, Γ captures the operating conditions of the system
during each event. Hence, including Γ as a feature results in
improving the performance in our data-driven models.

Importantly, the above superior results for Approach 2 are
not sensitive to the choice of the LSTM parameters. For
example, regardless of the choice of the lag, the average MSE
is always much lower for Approach 2 than Approach 1.

V. APPROACH 3: LSTM MODEL BASED ON COMBINING
APPROACH 2 WITH FEATURE CLUSTERING

As we saw in Approach 2, considering Γ as a new feature
can incorporate the pre-event operating conditions of the IBR
into the LSTM model to enhance its performance. In this
section, we incorporate the pre-event conditions in a different
way, by clustering the events based on their values of Γ,
to represent each event based on the type of its pre-event
conditions. This was motivated by our observation that there
are similarities in the dynamic behavior of the IBR during the
events that have similar Γ. Therefore, a grouping of the events
based on Γ may help to improve the model’s performance.

A. LSTM Architecture and Methodology for Approach 3

Fig. 6 illustrates the architecture of the LSTM model in
Approach 3. Compared to the architecture of Approach 2 in
Fig. 4, we added a clustering module between input Γ and the
concatenation layer, to turn the raw value of Γ into a label
based on the cluster number of the event according to Γ.

Clustering is done using K-means clustering. The number
of clusters is set by parameter K. The unsupervised nature
of the clustering process is a critical aspect in this approach
in order to eliminate the need for any prior classification
knowledge with regards to the pre-event conditions.

B. Experimental Results and Performance Comparison

Table I provides a comparison between Approach 3 and
Approaches 1 and 2, for different choices of K. We can see
that the average MSE can reduce to as low as 1.85 when K =
4. This is a major improvement even compared to Approach
2. In fact, the average MSE in this case is 88% and 85% less
than the Modal Analysis, Regression Analysis, respectively.
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Fig. 6. Architecture of the proposed LSTM model in Approach 3.

TABLE I
PERFORMANCE OF APPROACH 3 FOR DIFFERENT NUMBER OF

CLUSTERS K IN COMPARISON WITH APPROACH 1 AND APPROACH 2

Method Approach
1

Approach
2

Approach 3
K=2 K=3 K=4 K=5 K=6

Average
MSE 9.33 4.90 9.93 3.92 1.85 7.70 3.00

However, it appears that the results in Approach 3 are
sensitive to the choice of K. Hence, while it is evident that
there is great potential in Approach 3 to benefit from a
clustering module, more research is needed in the future to
identify an unsupervised process to properly choose K.

VI. USING SYNCHRO-WAVEFORMS TO MODEL
THE DYNAMIC RESPONSE OF MULTIPLE IBRS

For the analysis in this section, we installed a second WMU
at the location of a second IBR on the same network, to
take advantage of time-synchronized waveform measurements
in the context of this paper. IBR 2 is made by the same
manufacturer but has a larger rated power and is connected to
a larger array of solar panels. It is also on a different feeder.

Accordingly, we were able to observe how the two IBRs si-
multaneously respond to the same sub-cycle voltage oscillation
events. An example is shown in Fig. 7(a), where we plotted the
time-synchronized raw voltage and raw current waveforms at
the two IBRs. We can see that the voltage disturbances are very
similar at the two locations. The dynamic responses of the two
IBRs, which are manifested in their current waveforms, are
also generally similar, but at different magnitudes. Another key
observation in Fig. 7(a) is the presence of higher distortions
in the current waveforms at IBR 2 than IBR 1, in the cycles
before the start of the event. Fig. 7(b) shows the differential
waveforms corresponding to the measurements in Fig. 7(a).

Inspired by the above observations, we collected 12 new test
events that were captured by both WMUs at the two IBRs. All
these test events are new, i.e., they are different from the 21
test events in Sections III, IV, and V. We applied the LSTM
model in Approach 2 to the new 12 test events. The average
MSE value was obtained at 4.69 for IBR 1. This further
confirms the robust performance of Approach 2; because the
results highly resemble the previous results in Section IV.

Next we applied the model that was developed for IBR 1
in Section IV to the data from IBR 2. The results are shown
in Fig. 8, where we plotted the average MSE across all the 12
new test events at IBR 2, versus a scaling parameter, denoted
by λ. In our analysis, we use parameter λ as follows:

4
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Fig. 7. Time-synchronized waveform measurements at two different IBRs
during the same sub-cycle voltage oscillation disturbance: (a) the raw wave-
form measurements; (b) the corresponding differential waveforms.

• First, we divide Γ from IBR 2 by scaling factor λ to make
it comparable to Γ in IBR 1. Then we apply the model
from Approach 2 from IBR 1 to the data from IBR 2.

• Once the dynamic response is estimated from the model,
we multiply the resulting differential current waveform
by λ to make the results applicable to IBR 2.

From the results in Fig. 8, the best performance is achieved at
λ = 1.7, which is very close to the ratio of the rated capacity
of IBR 2 to the rated capacity of IBR 1, which is 1.8.

The best average MSE value for IBR 2 in Fig. 8 is 14.63.
While this is not as good as the results that we obtained for
IBR 1 in Section IV, it is at the same level of accuracy that
was obtained in [11] for IBR 1 using Modal Analysis. This is
a surprisingly high accuracy, given the fact that the model was
developed based on the data from IBR 1, yet it was applied
nicely to the data from IBR 2 with very minor changes.

While we cannot make any major claim about the analysis
across IBR 1 and IBR 2, the above results are promising
to inspire future research to investigate the ability to extend
(or transfer) the proposed data-driven models across different
IBRs with no or little changes, using synchronized waveform
measurements. In the future, we may enhance the accuracy in
such model transfers by developing a series of LSTM-based
representative models for each type of IBRs from a larger
population of IBRs. Combining LSTM with techniques from
transfer learning may also be useful in this line of work.

VII. CONCLUSIONS

Three LSTM-based methods were proposed to use wave-
form measurements from WMUs to model the dynamic behav-
ior of IBRs in response to sub-cycle oscillatory disturbances.
The performance of the methods were evaluated using real-
world waveform data. The methods can significantly reduce
the modeling error, to half or less, compared to the state-of-
the-art methods based on modal analysis and regression. By
using time-synchronized waveform measurements from two
IBRs, it was shown that the methods have the potential to be
reused (transferred) across different IBRs. In the future, we can
expand our analysis to consider other types of disturbances,
such as voltage sags and different faults. Another direction for
future work is to optimally tune the hyperparameters of the
LSTM model. We also intend to enhance performance evalu-
ation by conducting sensitivity analysis, cross validation, and
different groupings of training and test samples assessments.
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Fig. 8. The results for applying the model (Approach 2) from IBR 1 to the
time-synchronized waveform data at IBR 2 using different scaling factors.

The findings in this paper can help utilities and independent
system operators (ISOs) to enhance their situational awareness
and improve stability and reliability of their networks. First,
our models can be used for condition monitoring and diag-
nostics at IBRs. Apart from comparing the behavior of similar
IBRs to identify abnormal dynamics, we can use our methods
to detect any significant changes in the dynamic behavior of
each IBR, indicating potential failures that may require inspec-
tion. Second, our models can be used in developing digital
twins for IBR, predicting their responses to power system
disturbances, and preventing undesirable tripping. Third, the
analysis is this paper can be employed to compare the dynamic
responses of a group of IBRs in a region, to predict any ripple
effects that may follow system-wide disturbances and potential
agitations in power production or momentary IBR secession.
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