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Abstract—In this paper, a new optimization framework is
proposed to coordinate the operation of large, price-maker, and
geographically dispersed energy storage / battery systems in
a nodal transmission-constrained energy market. The energy
storage units are assumed to be investor-owned and independently-
operated, seeking to maximize their total profit. Various design
factors are taken into consideration such as the location, size, effi-
ciency, and charge and discharge rates of the energy storage units
as well as the joint impact of the energy storage operations on
the locational marginal prices. While the formulated optimization
problem is originally nonlinear and hard to solve, nonlinearities
are tackled both in the objective function and in the constraints
and the problem is transformed into a tractable mixed-integer
linear program, for which the global optimal solutions are found
for the charge and discharge schedules of each energy storage
unit. Both deterministic and stochastic design scenarios are
addressed. Various case studies are presented. It is observed that
transmission line congestion is often, but not always, desirable for
the coordinated storage systems. Locational diversity, practice of
arbitrage, robust design, self-scheduling versus economic bidding,
and the overall power system performance are also investigated.

Keywords: Energy storage, coordinated charge and discharge
schedules, transmission-constrained market, locational marginal
price, price-maker, arbitrage, mixed-integer linear programming.

NOMENCLATURE

N Set of all buses
G Set of generator buses
D Set of load buses
S Set of storage buses
L Set of transmission lines
x Storage discharge variable
y Storage charge variable
m Storage charge and discharge indicator
z Storage charge level
i, j Subscript indicating a bus
l Subscript indicating a transmission line
G Superscript indicating generator power
D Superscript indicating load power
S Superscript indicating storage power
SD Superscript indicating storage discharge power
SC Superscript indicating storage charge power
H Imaginary part of Y-bus matrix
C Capacity of transmission line
T Hourly market horizon
t Hourly time-slot index
K Number of random scenarios
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k Random scenario index
λ Locational marginal price
θ Bus voltage phase angle
a, b, c Price bids
ρ, φ, ψ Lagrange multipliers
σ, δ, ζ, ξ Lagrange multipliers
r, ω Auxiliary optimization variables
α, β Storage efficiency parameters
L A fixed large number

I. INTRODUCTION

The large-scale deployment of batteries and other energy
storage systems is one of the priority areas to build a smart
grid, as identified by the Department of Energy [1] and the
National Institute of Standards and Technology [2]. The ap-
plications of grid-scale energy storage are diverse and include
bulk energy support, synchronous reserve, non-synchronous
reserve, voltage support, and frequency regulation [3]–[5].

While many of the existing major battery projects in the
United States and elsewhere are fully or partially funded by the
state and federal governments [6]–[8], it is necessary to also
plan for a more sustainable option where the battery systems
are investor-owned and independently-operated. Such investor-
owned and independently-operated battery systems will have
to participate in the existing electricity markets. For exam-
ple, in California, the California Public Utilities Commission
has adopted an energy storage procurement framework that
requires the three large investor-owned utility companies in
California to install 1,325 MW of energy storage by 2020 [9].

With investor-owned independently-operated energy storage
systems being on the horizon, it is natural to ask the following
questions: What is the most profitable charge and discharge
schedule for a single energy storage system or a group of
geographically dispersed but coordinated energy storage sys-
tems in a wholesale electricity market? Is arbitrage an optimal
option? What is the impact of the energy storage systems
on the price of electricity when the energy storage systems
are large and price-maker? In a transmission-constrained
network, how does energy storage affect congestion?

Answering the above questions is the focus of this paper.
The contributions in this paper can be summarized as follows:
• An optimization-based framework is proposed to co-

ordinate the operation of large, price-maker, and geo-
graphically dispersed energy storage / battery systems
in a nodal transmission-constrained energy market. Both
deterministic and stochastic optimization scenarios are
considered. The objective is to maximize the total profit
of the coordinated energy storage units. To the best of our
knowledge, this problem has not been addressed before.
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• The proposed framework takes into account design fac-
tors such as the location, size, efficiency, and charge and
discharge rates of the energy storage units as well as the
joint / coordinated impact of the energy storage systems
operations on the locational marginal prices.

• While the formulated optimization problem is initially
nonlinear and hard to solve, the nonlinearities are tackled
both in the objective function and constraints and the
formulated optimization problem is transformed into a
tractable mixed-integer linear program. Accordingly, the
global optimal solution is obtained for the coordinated
price-maker operation of the energy storage systems.

• Several case studies are presented. The role of arbi-
trage, the impact of congestion on different transmission
lines, capacity of the congested lines, locational diversity,
robust design, self-scheduling, economic bidding, and
energy storage efficiency are investigated. Although the
analysis in this paper is from the viewpoint of the energy
storage systems with focus on profitability, the impact
of the coordinated price-maker operation of the energy
storage systems on the overall power system performance
is also studied in terms of the total generation cost.

The analysis and results in this paper can be compared
with three groups of papers in the literature on operating
batteries and other energy storage systems. First, there are
papers that optimize the use of batteries to improve efficiency
and reliability at distribution and microgrid level [10]–[12]
or at transmission level [13]–[16], but their focus is not on
the profitability and market participation aspects. In contrast,
the focus here is on investor-owned energy storage systems
that are primarily concerned with their own profit. Second,
there are papers that combine and co-locate batteries with
other energy resources, such as wind farms [17]–[19], solar
farms [20], [21], or demand response aggregators [22]–[24].
Accordingly, in these papers, the operations of battery systems
are often dependent on those of the other energy resources.

The third group, which includes [25]–[28], is particularly
close to this paper. The focus is similarly on the profitable
operation of investor-owned batteries and other energy storage
systems in wholesale electricity markets. However, the results
here are new and unique in at least two key aspects. First, the
prior studies in this third group, including [16], [25]–[28] do
not consider large and price-maker battery systems. Instead,
the focus has mostly been on relatively small and price-taker
battery and other energy storage systems. Second, the studies
in [16], [25]–[28] operate either single energy storage units
or a group of energy storage units that are not coordinated
for higher profit. In contrast, here, the focus is on coordinated
operation of geographically dispersed energy storage systems.
Accordingly, this paper addresses some interesting aspects
such as locational diversity and practice of arbitrage.

This paper is comparable also with the literature on energy
market participation in contexts other than coordinated energy
storage systems, e.g., see [29]–[32]. In particular, the problem
formulation here is related to the general class of mathematical
programming with equilibrium constraints (MPEC) problems
[33]. However, to the best of our knowledge, no prior study has

addressed the optimal coordinated scheduling and market par-
ticipation of large, price-maker, geographically dispersed stor-
age units that are investor-owned and independently-operated.

In this paper, the focus is only on bulk energy support and
the use of storage units in energy markets. Other, non-bulk
applications of storage units are beyond the scope of this paper.

II. PROBLEM FORMULATION

Consider a power grid with N as the set of buses and L as
the set of transmission lines. The transmission line between
buses i and j is denoted by (i, j). Let S ⊆ N denote the set
of buses where the energy storage units are located. Since the
focus in this paper is on coordinated charging and discharging
of energy storage systems, the storage units at all buses are
assumed to belong to the same firm. Suppose the day-ahead
energy market is divided into T = 24 hourly time slots. At
each time slot t = 1, . . . , T , and for each storage unit i ∈ S,
let mi[t] ∈ {0, 1} denote the type of the bid that is submitted
to the wholesale market. If mi[t] = 0, then unit i is charged
during time slot t. Accordingly, it submits a demand bid to the
energy market. If mi[t] = 1, then unit i is discharged during
time slot t. Accordingly, it submits a supply bid to the energy
market. Let xi[t] ≥ 0 denote the supply energy bid in MWh
that unit i submits to the wholesale market at time t. Also
let yi[t] ≥ 0 denote the demand energy bid in MWh that unit
i submits to the market at time t. The following constraints
assure submitting one type of bid at each bus at a time:

0 ≤ xi[t] ≤ mi[t]x
max
i , (1)

0 ≤ yi[t] ≤ (1−mi[t])y
max
i , (2)

where xmax
i and ymax

i denote the maximum discharge rate
and the maximum charge rate of the energy storage unit i,
respectively. The price bid in $/MWh that unit i submits to
the wholesale market at time slot t is denoted by ci[t].

Let zi[t] denote the charge level of unit i at time slot t. The
following constraints should hold at all times:

zmin
i ≤ zi[t] ≤ zmax

i , (3)

where zmin
i ≥ 0 and zmax

i ≥ 0 denote the minimum and
the maximum charge levels for energy storage unit i. Next,
suppose PSi denotes the amount of power that energy storage
unit i injects to the power grid during time slot t. If unit
i draws power from the grid, then PSi takes a negative
value. Without loss of generality, the energy storage units are
assumed to have ideal round-trip efficiencies:

zi[t+ 1] = zi[t]− PSi [t], (4)

The case with non-ideal energy storage units, together with a
few other extension scenarios, is explained in Section IV-A.

Next, optimization problem is formulated to coordinate
charging and discharging of energy storage systems in a nodal
electricity market. Let λi[t] denote the locational marginal
price (LMP) at bus i at time slot t. To maximize profit, the
following optimization problem needs to be solved:

max
T∑
t=1

∑
i∈S

λi[t]P
S
i [t]

s.t. Eqs. (1)− (4),

(5)
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where the variables are xi[t], yi[t], mi[t], and zi[t]. Here, λi[t]
and PSi [t] depend on not only xi[t], yi[t], mi[t], and zi[t];
but also the overall wholesale market conditions. Specifically,
λi[t] and PSi [t] are obtained once the ISO solves the following
economic dispatch problem across the power market:

min
∑
i∈G

ai[t]P
G
i [t]−

∑
j∈D

bi[t]P
D
i [t] +

∑
i∈S

ci[t]P
S
i [t]

s.t. PGi [t]− PDi [t] + PSi [t]

=
∑
j

Hij(θi[t]− θj [t]), ∀ i ∈ N ,

PG,min
i [t] ≤ PGi [t] ≤ PG,max

i [t], ∀ i ∈ G,
PD,min
i [t] ≤ PDi [t] ≤ PD,max

i [t], ∀ i ∈ D,
− yi[t] ≤ PSi [t] ≤ xi[t], ∀ i ∈ S,
− Cij ≤ Hij(θi[t]− θj [t]) ≤ Cij , ∀ (i, j) ∈ L,

(6)

where the variables are the power injection PGi [t] of each
generator i ∈ G, the power consumption PDi [t] of each load
i ∈ D, the power injection / consumption PSi [t] of each
energy storage unit i ∈ S , and the voltage phase angle θi[t]
at each bus i ∈ N . Notation G ⊆ N is the set of generation
buses and D ⊆ N is the set of load buses. For notational
simplicity, it is assumed that PSi [t] = 0, PGi [t] = 0, and
PDi [t] = 0, for any i /∈ S, any i /∈ G, and any i /∈ D,
respectively. For each generator i, ai[t] denotes the bidding
price for selling energy, and PG,min

i [t] and PG,max
i [t] are the

minimum and the maximum energy to be sold at time slot
t. For each load i, bi[t] denotes the bidding price for buying
energy, and PD,min

i [t] and PD,max
i [t] are the minimum and

the maximum energy to be purchased at time slot t. For each
line (i, j) ∈ L, Cij denotes the transmission capacity. Both
the primal and the dual variables in (6) are of importance.
Specifically, PSi [t] is a primal variable and λi[t] is a dual
variable. The latter corresponds to the power balance constraint
at bus i. Throughout this paper, parameter θ1 is zero.

III. SOLUTION METHOD

In this section, a method is presented to reformulate the
coupled nonlinear optimization problem in (5)-(6) into a single
mixed-integer linear program, whose global optimal solution
can be found within a short amount of computational time.
Here, two sources of nonlinearity need to be tackled. First,
the inherent nonlinearity in the definition of LMP term λs[t],
which comes from the fact that problem (6) needs to be
incorporated into (5) in form of a constraint. Second, the non-
convex nonlinearity in the objective function in (5) which is
due to the multiplication of LMP λi[t] to the energy storage
charging power injection / consumption variable PSi [t].

A. Nonlinearity in Constraints
One can write the Karush-Kuhn-Tucker (KKT) conditions

[34, p. 243] for the minimization problem in (6) as

PGi [t]− PDi [t] + PSi [t]

=
∑
j 6=i

Hij(θi[t]− θj [t]), ∀ i ∈ N , (7)

PG,min
i [t] ≤ PGi [t] ≤ PG,max

i [t], ∀ i ∈ G, (8)

PD,min
i [t] ≤ PDi [t] ≤ PD,max

i [t], ∀ i ∈ D, (9)
−yi[t] ≤ PSi [t] ≤ xi[t], ∀ i ∈ S, (10)
−Cij ≤ Hij(θi[t]− θj [t]) ≤ Cij , ∀ (i, j) ∈ L, (11)
ai[t]− λi[t]− σi[t] + δi[t] = 0, ∀ i ∈ G, (12)
−bi[t] + λi[t]− ζi[t] + ξi[t] = 0, ∀ i ∈ D, (13)
ci[t]− λi[t]− ρi[t] + %i[t] = 0, ∀ i ∈ S, (14)

−
∑
j>i

Hij(φij [t]− ψij [t])

+
∑
j<i

Hji(φji[t]− ψji[t])

+
∑
j 6=i

Hijλi[t]−
∑
j 6=i

Hjiλj [t] = 0, ∀ i ∈ N , (15)

φij [t](Cij +Hij(θi[t]− θj [t])) = 0, ∀ (i, j) ∈ L, (16)
ψij [t](Hij(θi[t]− θj [t])− Cij) = 0, ∀ (i, j) ∈ L, (17)

σi[t](P
G,min
i [t]− PGi [t]) = 0, ∀ i ∈ G, (18)

δi[t](P
G
i [t]− PG,max

i [t]) = 0, ∀ i ∈ G, (19)

ζi[t](P
D,min
i [t]− PDi [t]) = 0, ∀ i ∈ D, (20)

ξi[t](P
D
i [t]− PD,max

i [t]) = 0, ∀ i ∈ D, (21)
ρi[t](−yi[t]− PSi [t]) = 0, ∀ i ∈ S, (22)
%i[t](P

S
i [t]− xi[t]) = 0, ∀ i ∈ S, (23)

σi[t] ≥ 0, δi[t] ≥ 0, ∀ i ∈ G, (24)
ζi[t] ≥ 0, ξi[t] ≥ 0, ∀ i ∈ D, (25)
ρi[t] ≥ 0, %i[t] ≥ 0, ∀ i ∈ S, (26)
φij [t] ≥ 0, ψij [t] ≥ 0, ∀ (i, j) ∈ L. (27)

Since problem (6) is a linear (hence convex) optimization
problem and Slater’s condition holds, c.f. [34, p. 226], solving
problem (6) is equivalent to solving the system of nonlinear
equations in (7)-(27). Note that, the nonlinearity is due to the
complementary slackness constraints in (16)-(23).

For each transmission line (i, j) ∈ L, the nonlinear equation
in (16) holds if at least one of the following is true:

φij [t] = 0, (28)

or
Cij +Hij(θi[t]− θj [t]) = 0. (29)

Let us introduce a new binary variable rφij [t] such that rφij [t] =
1 if (28) holds and rφij [t] = 0 if (29) holds. The nonlinear
equation in (18) can be replaced with the following constraints:

φij [t] ≤
(
1− rφij [t]

)
L, (30)

Cij +Hij(θi[t]− θj [t]) ≤ rφij [t]L, (31)

where L is a large number compared to the storage capacity.
To verify the above statement, first, assume that rφij [t] = 1. In
that case, from (27) and (30), one can conclude (28), while
(31) is not binding. Next, assume that rφij [t] = 0. In that case,
from (11) and (31), one can conclude (29), while (30) is not
binding. Similarly, one can replace (17) and (18)-(23) with

ψij [t] ≤
(
1− rψij [t]

)
L, (32)

Cij −Hij(θi[t]− θj [t]) ≤ rψij [t]L, (33)
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and

σi[t] ≤
(
1− rσi [t]

)
L, (34)

PGi [t]− PG,min
i [t] ≤ rσi [t]L, (35)

δi[t] ≤
(
1− rδi [t]

)
L, (36)

PG,max
i [t]− PGi [t] ≤ rδi [t]L, (37)

ζj [t] ≤
(
1− rζj [t]

)
L, (38)

PDj [t]− PD,min
j [t] ≤ rζj [t]L, (39)

ξj [t] ≤
(
1− rξj [t]

)
L, (40)

PD,max
j [t]− PDj [t] ≤ rξj [t]L, (41)

ρi[t] ≤
(
1− rρi [t]

)
L, (42)

PSi [t] + yi[t] ≤ rρi [t]L, (43)
%i[t] ≤

(
1− r%i [t]

)
L, (44)

xi[t]− PSi [t] ≤ r
%
i [t]L, (45)

respectively. Note that, it is also needed to have

rφij [t], r
ψ
ij [t], r

σ
i [t], r

δ
i [t], r

ζ
i [t], r

ξ
i [t], r

ρ
i [t], r

%
i [t] ∈ {0, 1}. (46)

B. Nonlinearity in Objective Function

So far, optimization problem (6) has been reformulated as a
set of linear equality and inequality constraints over continuous
and binary variables. These constraints can be added into
problem (5) to model λi[t] and PSi [t] as functions of the
charging and discharging schedules and bidding choices of
the energy storage units. However, the resulted optimization
problem would still be nonlinear and hard to solve, due to the
non-convex nonlinearity in the objective function in (5). In this
section, it is explained how this nonlinearity can be tackled.
The analysis here is an extension of the results in [33, Section
6.4.3.1] to the case of coordinated energy storage systems.

The first step is to multiply both sides in (14) by PSi . After
reordering the terms, for each bus i ∈ S, the result becomes

λi[t]P
S
i [t] = ci[t]P

S
i [t]− ρi[t]PSi [t] + %i[t]P

S
i [t]. (47)

Next, note that from (22) and (23), one can write

ρi[t]P
S
i [t] = −ρi[t]yi[t], %i[t]PSi [t] = %i[t]xi[t]. (48)

After substituting the above in (47), it becomes

λi[t]P
S
i [t] = ci[t]P

S
i [t] + ρi[t]yi[t] + %i[t]xi[t]. (49)

Finally, the following equality is obtained if one sums up both
sides in (50) over all storage buses in the system:∑

i∈S
λi[t]P

S
i [t] =

∑
i∈S

ci[t]P
S
i [t] +

∑
i∈S

ρi[t]yi[t]

+
∑
i∈S

%i[t]xi[t].
(50)

Note that, the above expression still includes non-convex
nonlinear terms on its right hand side. Therefore, more steps
need to be taken in order to solve optimization problem (5).

Since problem (6) is a linear optimization problem and
Slater’s condition is satisfied, strong duality holds:∑

i∈G
ai[t]P

G
i [t]−

∑
i∈D

bi[t]P
D
i [t] +

∑
i∈S

ci[t]P
S
i [t]

=
∑
i∈G

σi[t]P
G,min
i −

∑
i∈G

δi[t]P
G,max
i [t]

+
∑
i∈D

ζi[t]P
D,min
i −

∑
i∈D

ξi[t]P
D,max
i [t]

−
∑
i∈S

ρi[t]yi[t]−
∑
i∈S

%i[t]xi[t]

−
∑

(i,j)∈L

φij [t]Cij −
∑

(i,j)∈L

ϕij [t]Cij ,

(51)

where the left hand side is the primal optimal objective value
and the right hand side is the dual optimal objective value
for problem (6). From (47) and (51), and after reordering the
terms, the objective function in problem (5) becomes

T∑
t=1

[∑
i∈G

σi[t]P
G,min
i −

∑
i∈G

δi[t]P
G,max
i [t]

+
∑
i∈D

ζi[t]P
D,min
i −

∑
i∈D

ξi[t]P
D,max
i [t]

−
∑

(i,j)∈L

φij [t]Cij −
∑

(i,j)∈L

ϕij [t]Cij ,

−
∑
i∈G

ai[t]P
G
i [t] +

∑
i∈D

bi[t]P
D
i [t]

]
.

(52)

The above expression is a linear function of variables σi[t],
δi[t], ζi[t], ξi[t], φij [t], ϕij [t], PGi [t], and PDi [t]. Therefore, the
nonlinearity in the objective function in (5) is now tackled.

C. Resulted Mixed-Integer Linear Program

Problem (5)-(6) can now be reformulated as

max (52)

s.t. (1)− (4), (7)− (15),

(24)− (27), (30)− (46),

(53)

where the optimization variables are mi[t], xi[t], yi[t], zi[t],
ci[t], PGi [t], PDi [t], PSi [t], θi[t], λi[t], σi[t], δi[t], ζi[t], ξi[t],
ρi[t], %i[t], φij [t], ϕij [t], rσi [t], r

δ
i [t], r

ζ
i [t], r

ξ
i [t], r

ρ
i [t], r

%
i [t],

rφij [t], and rϕij [t]. Problem (53) is a mixed-integer linear
program (MILP). It can be solved efficiently using any MILP
solver, such as CPLEX [35] or MOSEK [36].

IV. REMARKS AND EXTENSIONS

In this section, some pointers and remarks are discussed
about a few directions to extend the analysis in Section III.

A. Charge and Discharge Efficiency Parameters

Recall that for the system model in Section II, the storage
units are assumed to have ideal round-trip efficiencies. Sup-
pose αi ≥ 1 and βi ≤ 1 denote the efficiency of storage unit
i during discharging and during charging, respectively. These
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parameters can be incorporated into the problem formulation
by revising the equality constraint in (4) as follows:

zi[t+ 1] = zi[t]− αiPSDi [t] + βiP
SC
i [t]. (54)

Here, PSDi [t] denotes the power that energy storage unit i
injects to the power grid at time slot t if it is discharged; and
PSCi [t] denotes the power that energy storage unit i draws
from the power grid at time slot t if it is charged. If the energy
storage unit is ideal, then αi = βi = 1 and (54) reduces to
(4). The new variables PSDi [t] and PSCi [t] are modeled as

PSi = PSDi − PSCi , (55)
0 ≤ PSDi ≤ mi[t]x

max
i , (56)

0 ≤ PSCi ≤ (1−mi[t])y
max
i . (57)

B. Stochastic Optimization

The deterministic analysis in this paper can be extended to
the case where the energy storage system operator is uncertain
about the supply and demand bids that are submitted to the
wholesale electricity market. Under such alternative design
framework, the energy storage system uses the historical bid
data that are often available to public, e.g., see [37], and
coordinates its price-maker operation by solving a stochastic
version of the optimization problem in (5)-(6).

Suppose K denotes the number of random market scenarios.
Let λi,k[t] denote the LMP at bus i at time t under random
scenario k, where k = 1, . . . ,K. The energy storage system
seeks to coordinate its units such that it maximizes its expected
total profit. Accordingly, problem (5) needs to be replaced by
the following scenario-based stochastic optimization problem:

max
T∑
t=1

∑
i∈S

1

K

(
K∑
k=1

λi,k[t]P
S
i,k[t]

)
s.t. Eqs. (1)− (4),

(58)

where the variables are xi[t], yi[t], mi[t], and zi,k[t]. Note
that, since the charge levels of the storage units depend on
the market bidding outcome, a separate charge level variable
zi,k[t] is defined for each random scenario k. Accordingly,
constraints (3) and (4) should hold under every scenario k.

As in Section II, λi,k[t] and PSi,k[t] must be obtained
by solving an economic dispatch problem across the power
market. However, the key difference here is that there are K
different economic dispatch problems that need to be formu-
lated, solved, and integrated into the problem in (58), each
corresponding to one random scenario. Specifically, under
each scenario k, variables λi,k[t] and PSi,k[t] are obtained by

solving the following optimization problem:

min
∑
i∈G

ai,k[t]P
G
i,k[t]−

∑
j∈D

bi,k[t]P
D
i,k[t]

+
∑
i∈S

ci[t]P
S
i,k[t]

s.t. PGi,k[t]− PDi,k[t] + PSi,k[t]

=
∑
j

Hij(θi,k[t]− θj,k[t]), ∀ i ∈ N ,

PG,min
i,k [t] ≤ PGi,k[t] ≤ P

G,max
i,k [t], ∀ i ∈ G,

PD,min
i,k [t] ≤ PDi,k[t] ≤ P

D,max
i,k [t], ∀ i ∈ D,

− yi[t] ≤ PSi,k[t] ≤ xi[t], ∀ i ∈ S,
− Cij ≤ Hij(θi,k[t]− θj,k[t]) ≤ Cij , ∀ (i, j) ∈ L,

(59)

where the optimization variables are PGi,k[t], P
D
i,k[t], P

S
i,k[t],

and θi,k[t]. Note that, the system parameters ai,k[t], bi,k[t],
PG,min
i,k [t], PG,max

i,k [t], PD,min
i,k [t], PD,max

i,k [t] are now defined
separately for each random scenario k. The rest of the analysis
and the solution method are similar to those in Section III.

C. Self-Scheduling versus Economic Bidding

In practice, e.g., in the California Independent System
Operator (ISO) energy market, the bids are classified into two
types: self-schedule bids and economic bids. A self-schedule
bid does not include a price component. It indicates that the
buyer (seller) is willing to buy (sell) electricity regardless of
the price. An economic bid does include a price component.
It indicates that the buyer (seller) is willing to buy (sell)
electricity as long as the cleared market price is less (more)
than the submitted price bid. While the system model in this
paper is based on economic bidding, it can be adjusted easily
to allow self-schedule bidding. This can be done by adding
the following constraint to the optimization problem:

L(1−mi) ≤ ci ≤ L(1−mi). (60)

If mi = 0, then (60) reduces to ci = L. That is, if the
storage unit at bus i is charged, then the price component in its
demand bid is very large, making sure that the bid is cleared
under any market condition. If mi = 1, then (60) reduces to
ci = 0. That is, if the storage unit at bus i is discharged,
then the price component in its supply bid is zero, making
sure that the bid is cleared under any market condition. Note
that, under a deterministic problem formulation, the optimal
performance of self-schedule bidding is as good as economic
bidding. However, if the problem formulation is stochastic and
the storage operator is uncertain about the market conditions,
then economic bidding may outperform self-scheduling.

D. Robust Design and Risk Management

For the stochastic problem formulation in Section IV-B, the
goal is to maximize the expected / average total profit. One
can extend the analysis to also include robust design or risk
management. As an alternative for the optimization problem
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TABLE I
TRANSMISSION LINES

Line Buses Line Buses Line Buses Line Buses
1 (1,2) 12 (6,9) 23 (12,14) 34 (23,24)
2 (1,3) 13 (6,10) 24 (12,15) 35 (24,25)
3 (2,4) 14 (6,28) 25 (12,16) 36 (25,26)
4 (2,5) 15 (8,28) 26 (14,15) 37 (25,27)
5 (2,6) 16 (9,11) 27 (15,18) 38 (27,28)
6 (3,4) 17 (9,10) 28 (15,23) 39 (27,29)
7 (4,6) 18 (10,20) 29 (16,17) 40 (27,30)
8 (4,12) 19 (10,17) 30 (18,19) 41 (29,30)
9 (5,7) 20 (10,21) 31 (19,20) - -

10 (6,7) 21 (10,22) 32 (21,22) - -
11 (6,8) 22 (12,13) 33 (22,24) - -

in (58), consider the following optimization problem:

max minimum
k=1,...,K

(
T∑
t=1

∑
i∈S

λi,k[t]P
S
i,k[t]

)
s.t. Eqs. (1)− (4).

(61)

Here, the design goal is to maximize the worst-case total
profit, i.e., the lowest total profit that may occur among
the considered random scenarios. Compared to problem (58),
problem (61) is intended for a risk-averse operator. Note that,
problem (61) is nonlinear in its current form due to the use
of max function in the objective. One can transform problem
(61) into a linear mixed-integer program as follows:

max ω

s.t. Eqs. (1)− (4),

ω ≤
T∑
t=1

∑
i∈S

λi,k[t]P
S
i,k[t], k = 1, . . . ,K.

(62)

where ω is a continuous auxiliary variable. The rest of the
analysis is as in Sections IV-B and III. Note that, risk man-
agement can be conducted also by incorporating a financial
risk model, such as the conditional value-at-risk (CVaR) [38],
into the problem formulation in (58), e.g., see [27].

V. CASE STUDIES

In this section, the performance of the proposed method
is evaluated based on the IEEE 30bus test system [39], as
shown in Fig. 1. Here, the network includes 30 buses and
41 transmission lines, where G = {1, 5, 8, 13, 21, 23, 27, 28},
D = {2, 3, 7, 10, 11, 12, 14, 16, 17, 18, 19, 20, 22, 26, 29, 30},
and B = {4, 16, 24, 30}. The transmission lines are indexed as
in Table I. The generation and load data are given in Tables
II and III. Throughout this section, the power quantities are
in GW, energy quantities are in GWh, and price quantities
are in $1000/GWh or $/MWh. Each storage unit has 1 GWh
energy storage capacity. Unless stated otherwise, the energy
storage efficiency is assumed to be 100%. An entire day is
studied, where T = 24 time slots. Without loss of generality,
all generators are assumed to submit economic bids and all
loads are assumed to submit self-schedule bids. The MILP
problems are solved using CPLEX [35]. Parameter L is 1000.

If the transmission capacity constraints are relaxed, then, in
the absence of the storage units, the cleared market prices of
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Fig. 1. The IEEE 30-bus test network with four energy storage systems.

electricity are 41.4, 37.9, 35.7, 35.1, 36.2, 43.0, 52.5, 58.0,
50.5, 44.7, 42.5, 41.8, 41.1, 40.8, 41.9, 43.9, 47.6, 55.2, 63.0,
70.3, 66.0, 58.8, 52.6, and 46.1 $/MWh, matching the average
market profile in California energy market in March 2014 [40].

A. Not Congested versus Congested Scenarios

First, consider the case where no transmission line is
congested. The optimal charge and discharge schedules of
the energy storage units are obtained as shown in Fig. 2.
One can see that the energy storage units are charged during
off-peak hours 3, 4, 5, 12, 13, 14, and 15, and discharged
during peak hours 8 and 20. In presence of the energy storage
units, the cleared market price of electricity change to 41.4,
37.9, 35.7, 35.6, 36.2, 43.0, 52.5, 57.0, 50.5, 44.7, 42.5,
41.8, 41.1, 41.3, 41.9, 43.9, 47.6, 55.2, 63.0, 68.9, 66.0, 58.8,
52.6, and 46.1 $/MWh. The total profit that the coordinated
energy storage units make through their market participation
is $194,696. Note that, since the network is not congested, the
location of the energy storage systems does not matter in this
case. Accordingly, one could switch the schedules at different
storage buses and he/she would still see the same performance.

Next, consider the case where the transmission line between
buses 2 and 4, i.e., line 3, is congested. Since this line is
connected to an energy storage bus, its congestion is expected
to have noticeable impact on the operation of the energy
storage system. Suppose C2,4 = 0.2 GW = 200 MW. The
optimal charge and discharge schedules of the storage units
are obtained as shown in Fig. 3. One can see that the results
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TABLE II
GENERATION DATA

Bus Hourly Energy Bids
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1.9 1.4 1.9 2.6 1.6 1.0 1.9 1.6 2.2 2.1 1.8 1.9 1.8 0.8 1.3 2.1 1.9 2.3 2.2 1.8 2.4 1.4 2.2 1.0
5 1.4 1.4 1.3 1.4 1.8 2.1 2.2 2.2 2.1 1.9 1.1 1.6 1.3 2.1 1.7 1.4 1.3 2.2 2.4 1.3 2.2 2.1 1.9 1.3
8 1.0 0.8 1.3 1.9 1.4 1.0 2.1 2.2 1.4 1.0 1.6 1.8 1.8 1.9 2.1 2.3 1.4 2.2 1.9 2.3 1.6 2.2 2.4 2.2

13 2.2 1.6 2.2 1.1 2.4 2.6 1.7 2.2 1.1 1.1 2.1 2.1 2.4 1.1 2.3 1.8 1.7 1.8 1.9 1.1 1.8 1.9 2.1 1.1
21 1.3 2.1 2.1 1.8 1.4 1.1 1.4 1.4 1.6 1.4 1.9 1.6 1.9 1.3 1.0 0.9 2.2 1.4 1.7 2.6 2.1 2.1 1.1 1.9
23 1.8 1.4 1.1 1.0 1.3 1.4 1.3 1.8 1.4 1.3 1.4 1.4 1.4 2.6 1.4 1.9 1.9 2.0 1.8 1.4 2.1 1.6 1.7 1.6
27 1.9 1.6 1.6 2.4 2.2 1.9 2.7 1.3 2.2 2.1 1.3 2.2 1.3 1.7 1.9 2.1 2.1 1.8 1.4 2.4 1.4 1.9 1.3 1.0
28 1.1 1.8 1.8 1.4 1.3 1.6 1.3 1.3 1.5 2.2 2.6 1.8 1.1 1.4 1.1 1.6 1.7 1.6 2.2 1.7 1.9 1.1 1.6 1.8

Bus Hourly Price Bids
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 40.2 37.9 35.2 34.7 39.2 43.3 50.0 51.3 51.8 43.6 42.0 42.9 39.0 40.8 41.2 42.7 50.1 57.9 66.1 67.1 61.6 59.2 49.4 44.7
5 38.3 41.2 36.2 34.0 36.2 45.6 57.2 48.6 50.5 42.7 40.9 46.0 40.2 43.1 42.4 44.3 46.0 51.4 57.2 69.8 67.8 54.8 54.9 45.1
8 42.1 38.4 37.1 34.3 37.8 40.8 53.1 57.6 51.3 43.0 40.1 42.4 41.8 42.6 39.9 41.8 47.6 56.1 59.8 68.9 66.0 56.9 50.3 48.2

13 44.0 35.1 34.3 36.9 34.9 41.2 52.5 60.1 49.2 44.7 44.9 40.0 43.6 41.3 44.3 45.2 48.9 53.1 63.9 70.3 65.2 58.8 50.8 46.1
21 41.4 37.0 34.8 36.0 34.2 38.5 51.3 58.0 48.1 44.0 42.5 41.8 40.6 41.7 41.9 44.9 44.8 57.2 62.1 65.2 64.0 60.4 52.1 44.0
23 37.6 40.6 35.7 35.1 34.5 41.9 48.2 57.0 47.0 45.2 42.9 43.4 41.1 40.0 43.0 43.2 46.4 54.0 63.0 71.4 66.7 58.1 53.7 46.7
27 44.7 38.9 38.0 37.8 36.7 44.1 45.3 61.2 47.8 45.8 41.6 40.6 42.3 38.7 39.4 46.5 48.1 55.2 61.6 68.0 62.9 57.5 52.6 45.4
28 39.5 35.9 36.8 35.6 35.3 43.0 55.4 54.2 48.7 47.1 44.1 41.1 39.3 39.2 40.7 43.9 47.0 54.8 61.0 75.1 64.8 56.0 53.0 43.3

TABLE III
LOAD DATA

Bus Hourly Energy Bids
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
2 0.53 0.41 0.59 0.48 0.42 0.55 0.65 0.27 0.83 0.44 0.64 0.47 0.20 0.48 0.40 0.33 0.32 0.78 0.33 0.98 0.83 0.81 0.59 0.26
3 0.42 0.46 0.42 0.25 0.26 0.47 0.48 0.75 0.31 0.25 0.25 0.18 0.29 0.19 0.65 0.59 0.26 0.36 0.92 0.88 0.57 0.77 0.31 0.64
7 0.51 0.29 0.21 0.17 0.78 0.72 0.73 0.42 0.23 0.49 0.59 0.79 0.23 0.27 0.33 0.28 0.54 0.42 0.45 0.60 0.79 0.50 0.34 0.21
10 0.65 0.40 0.29 0.56 0.54 0.54 0.51 0.53 0.56 0.34 0.31 0.32 0.29 0.26 0.56 0.34 0.45 0.29 0.58 0.83 0.82 0.39 0.47 0.48
11 0.43 0.65 0.32 0.39 0.41 0.63 0.40 0.61 0.78 0.52 0.48 0.43 0.37 0.47 0.41 0.23 0.46 0.83 0.25 0.89 0.60 0.48 0.69 0.34
12 0.24 0.24 0.47 0.28 0.62 0.43 0.59 0.89 0.62 0.49 0.18 0.57 0.41 0.55 0.19 0.49 0.57 0.63 0.82 0.71 0.27 0.91 0.74 0.56
14 0.63 0.43 0.23 0.58 0.28 0.42 0.22 0.52 0.33 0.34 0.39 0.36 0.38 0.32 0.26 0.54 0.64 0.53 0.72 0.56 0.52 0.23 0.71 0.49
16 0.35 0.28 0.51 0.34 0.52 0.64 0.88 0.92 0.44 0.38 0.73 0.54 0.58 0.50 0.63 0.48 0.31 0.11 0.82 0.40 0.59 0.57 0.41 0.26
17 0.41 0.41 0.21 0.45 0.19 0.23 0.32 0.44 0.50 0.51 0.26 0.27 0.41 0.47 0.41 0.41 0.57 0.57 0.94 0.76 0.48 0.25 0.55 0.65
18 0.54 0.48 0.47 0.56 0.21 0.26 0.28 0.72 0.82 0.32 0.42 0.64 0.61 0.16 0.25 0.53 0.43 0.64 0.97 0.49 0.41 0.38 0.72 0.71
19 0.23 0.51 0.40 0.38 0.44 0.28 0.45 0.58 0.31 0.63 0.39 0.43 0.47 0.41 0.34 0.29 0.68 0.75 0.39 0.31 0.90 0.87 0.28 0.18
20 0.38 0.37 0.53 0.43 0.22 0.40 0.34 0.61 0.74 0.71 0.22 0.12 0.62 0.34 0.47 0.67 0.51 0.68 0.35 1.10 0.59 0.35 0.30 0.65
22 0.61 0.32 0.36 0.34 0.61 0.54 0.72 0.72 0.61 0.57 0.54 0.26 0.28 0.58 0.26 0.52 0.43 0.55 0.76 0.47 0.95 0.68 0.64 0.45
26 0.12 0.67 0.59 0.27 0.59 0.63 0.43 0.65 0.44 0.39 0.42 0.35 0.48 0.16 0.54 0.66 0.54 0.86 0.31 0.64 0.57 0.94 0.53 0.72
29 0.68 0.19 0.48 0.62 0.53 0.22 0.62 0.36 0.37 0.54 0.53 0.46 0.30 0.73 0.39 0.28 0.47 0.36 0.63 0.85 0.86 0.45 0.33 0.16
30 0.47 0.61 0.32 0.14 0.26 0.40 0.86 0.29 0.43 0.28 0.53 0.37 0.48 0.35 0.63 0.56 0.50 0.28 0.68 0.57 0.65 0.86 0.87 0.44

are different from those in Fig. 2. While peak shaving is
still conducted at t = 8, 20, the energy storage systems now
practice arbitrage at t = 4, 13, 14. For example, at hour 4, the
energy storage unit at bus 4 sells electricity to the market while
the storage units at buses 16, 24 and 30 purchase electricity.
The total profit that the coordinated storage system makes
through energy market participation is $201,831, i.e., 3.5%
higher than the profit where no line is congested. Interestingly,
this higher profit also comes with some benefits to the power
system as a whole, as it will be discussed in Section V-B.

The deviations in locational marginal prices from their base
values when transmission line 3 is not congested are shown
in Fig. 4(a) and (b) for cases without and with energy storage
units, respectively. One can see that congestion has caused
locational price diversity from the base levels. In particular,
the price is now lower than the base price at bus 2, which is
on one side of the congested line. Also, the price is now higher
than the base price at bus 4, which is on the other side of the

congested transmission line. Note that, under congestion, the
storage units conduct peak shaving not only across time but
also to some extent across location. Specifically, while price
deviation at peak hour t = 8 ranges from -17.40 $/MWh to
6.31 $/MWh when the energy storage units are not operational;
it ranges from -16.45 $/MWh to 4.77 $/MWh when the energy
storage units are operational.

The results for all 41 possible single-line congestion scenar-
ios are shown in Fig. 5. One can make multiple observations.
First, in 18 cases, i.e., the cases of congestion at lines 2, 3, 4,
7, 8, 11, 13, 14, 15, 17, 20, 23, 24, 29, 32, 35, 38, and 41, the
total profit increases compared to the case where no line is
congested. Some increases are significant. For example, when
the line between buses 6 and 10, i.e., line 13, is congested,
the total profit is $585,877. This is three times higher than
the profit where no line is congested. The coordinated storage
units practice arbitrage in all 18 cases. Second, in 13 cases, i.e.,
the cases of congestion at lines 1, 5, 6, 9, 10, 21, 22, 26, 28,
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Fig. 3. The optimal charge and discharge schedules of the four energy storage
units in Fig. 1 when transmission line 3 is congested.

31, 33, 34, and 37, the profit decreases compared to the case
where no transmission line is congested. While most decreases
are minor, the highest drop in profit occurs at 15.1% when
line 31 is congested. The noticeable drop in profit in this case
is inevitable in order to keep the economic dispatch problem
feasible. Note that, if no energy storage unit is available, then
the economic dispatch problem becomes infeasible when line
31 is congested. Finally, in 10 cases, the cases of congestion
at lines 12, 16, 18, 19, 25, 27, 30, 36, 39, and 40 network
congestion results in an infeasible network operation.

The above results were obtained using a computer with a
2.90 GHz CPU and 8.00 GB RAM. The time to construct
and solve the optimization problem without transmission con-
straints was 147 sec. As for the cases when a transmission line
is congested, the computation time was 152 sec on average.

B. Total Generation Cost

While the design in this paper is from the viewpoint of
the coordinated energy storage units to decide on how they
must coordinate their price-maker operation in a nodal energy
market to maximize their total profit, it is interesting to also
assess the impact of coordinated energy storage units on the
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Fig. 4. Locational marginal prices at all 30 buses when line 3 is congested:
(a) without energy storage operation; (b) with energy storage operation.
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Fig. 5. The total profit of the coordinated storage systems for different
congestion scenarios, and comparison with the case without congestion.

overall performance of the power system. Therefore, in this
section, the total generation cost is assessed with and without
the presence of coordinated energy storage units. The results
are shown in Fig. 6. One can see that, in all cases, the presence
of the coordinated energy storage units is in fact beneficial
to the power system as a whole. First, note that without the
energy storage units, the energy market is infeasible in 18
congestion scenarios. Adding the energy storage units to the
market resolves infeasibility in 8 of these 18 cases. As for
the 23 cases where the market is feasible even without energy
storage units, adding the energy storage units to the market
reduces the total generation cost in all 23 cases. On average,
the total generation cost reduces by 2.23% from $8,910,387
to $8,710,465. The situation is similar even if the network is
not congested. In that case, if the coordinated storage units
join the energy market, then the total generation cost reduces
by 2.24% from $8,874,464 to $8,675,742.

C. Locational Diversity

In this section, locational diversity is investigated by com-
paring the results in Section V-A with those where all the
energy storage units are located at one bus, rather than being



9

0 5 10 15 20 25 30 35 40
8500

8550

8600

8650

8700

8750

8800

8850

8900

8950

9000
T

ot
al

 G
en

er
at

io
n 

C
os

t (
$1

00
0)

Congested Line

 

 
Without Storage Units
With Storage Units

Fig. 6. The total power generation cost in the power system with and without
the presence of storage systems and for different congestion scenarios.

0
200
400
600

(a)

T
ot

al
 P

ro
fit

($
10

00
)

0
200
400
600

(b)

T
ot

al
 P

ro
fit

($
10

00
)

0
200
400
600

(c)

T
ot

al
 P

ro
fit

($
10

00
)

0 5 10 15 20 25 30 35 40
0

200
400
600

(d)

T
ot

al
 P

ro
fit

($
10

00
)

Congested Line

Not Congested

Fig. 7. The total profit of the coordinated energy storage units for different
congestion scenarios when all energy storage units are located at the same
bus: (a) all storage units are at bus 4, (b) all storage units are at bus 16, (c)
all storage units are at bus 24, and (d) all storage units are at bus 30.

distributed at four different buses. The results are shown in Fig.
7. These results are comparable with those in Fig. 5. First,
one can see that the number of infeasible market scenarios
has significantly increased, because placing all storage units
at one bus leads to limited opportunities to relieve congestion.
Second, even among those scenarios where the market is
feasible, the total profit of the storage units often decreases
when they are all moved to the same bus. For example, the
number of congestion scenarios at which the total profit drops
below the profit under $194,696, i.e., the profit where no line
is congested, is 19, 17, 18, and 21 for the cases where all
storage units are at buses 4, 16, 24, and 30, respectively.

D. Transmission Line Capacity

For the case studies so far it has been assumed that a
congested line has a transmission capacity of 0.2 GW. In
this section, the cases are considered where the transmission
capacity varies from 0.1 GW to 1 GW. The results are
shown in Fig. 8 for a few example congestion scenarios. As
expected, increasing the transmission line capacity results in
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Fig. 9. The impact of energy storage efficiency on the total profit of the
storage systems. The impact can differ across different congestion scenarios.

the profit approaching $194,696, i.e., the profit where no line
is congested. The results here confirm the earlier observations
that congestion can often (but not always) help coordinated
energy storage units make more profit in an energy market.

E. Storage Efficiency

In this section, the impact of energy storage efficiency is
examined on the profitability of coordinated energy storage
units. The total profit of the energy storage systems versus
the energy storage efficiency for three example congestion
scenarios are shown in Fig. 9. The efficiency at 95% is im-
plemented by selecting αi = 1.0256 and βs,u = 0.9744. The
efficiency at 90% is implemented by selecting αi = 1.0526
and βi = 0.9474. The efficiency at 85% is implemented
by selecting αi = 1.0811 and βi = 0.9189. Finally, the
efficiency at 80% is implemented by selecting αi = 1.1111
and βi = 0.8889. One can see that lower efficiency results in
less but still considerable profit. The rate of profit degradation
may or may not be the same for different congestion scenarios.
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F. Multiple Congested Transmission Lines

For all the case studies so far, only one transmission line
is assumed to be congested at a time. Of course, the results
may change if two lines are congested simultaneously. In
this regard, consider the case where line 3 is congested and
assume that a second line is congested as well. The results are
shown in Fig. 10. Here, the transmission capacity of the two
congested lines is assumed to be 0.2 GW. One can see that, in
one case, i.e., when lines 3 and 5 are congested, the network
total profit does not change compared to the case when only
line 3 is congested. In two cases, i.e., when lines 3 and 8 or
lines 3 and 13 or lines 3 and 23 or lines 3 and 38 are congested,
the total profit of the energy storage units is higher than the
total profit when only line 3 is congested. This means that dual
line congestion is advantageous to the energy storage units in
these cases. In contrast, there is one case, i.e., when lines 3
and 31 are congested, where the total profit of the storage units
is lower than the total profit when only line 3 is congested.
This means that dual line congestion is disadvantageous to the
energy storage systems in these cases.

Next, consider a scenario where one transmission line fails,

thus increasing power flow on the remaining transmission
lines. The results are shown in Fig. 11. All 41 transmission
lines are assumed to be capacity-constrained. Fig. 11(a) shows
the minimum capacity that is needed at the remaining trans-
mission lines when one line fails in order to keep economic
dispatch feasible. For example, when the transmission line
between buses 2 and 4, i.e., line 3, fails, the capacity of the
remaining lines must be at least 1.16 GW and 1.04 GW to
assure feasible dispatch without and with energy storage units,
respectively. On average, the use of energy storage units allows
handling line failure with 10% lower minimum (bottleneck)
capacity across transmission lines. Interestingly, such benefit
to the grid as a whole is accompanied with significant mone-
tary advantages for the energy storage units, as shown in Fig.
11(b). Specifically, the total profit of the coordinated energy
storage units is $545,792, $759,093, $643,043, $512,059 when
transmission lines 3, 12, 20, and 41 fail, respectively.

G. Stochastic Optimization and Robust Design

In this section, the design extensions in Sections IV-B, IV-C,
and IV-D are demonstrated. Suppose the storage units operator
is not certain about the behavior of other market players.
Yet, using historical bid data [37] and market simulation and
forecasting methods [41], [42], it can construct a statistical
model for the market parameters based on random scenarios.
For the sake of demonstration, assume that K = 3. The
first random scenario is based on the numbers in Tables
II and III. The other two scenarios are generated based on
random deviations from the parameters in Tables II and III. For
example, under the second random scenario, the hourly price
bids for the generator at bus 1 are 41.56 (+1.36), 38.66 (+0.76),
35.72 (+0.52), 36.50 (+1.80), 37.62 (-1.58), 39.07 (-4.23),
46.82 (-3.19), 56.00 (+4.70), 52.87 (+1.07), 46.68 (+3.08),
42.24 (+0.24), 39.06 (-3.84), 36.80 (-2.20), 41.94 (+1.14),
42.70 (+1.50), 38.68 (-4.02), 45.13 (-4.97), 57.66 (-0.24),
61.31 (-4.79), 72.67 (+5.57), 56.56 (-5.04), 63.51 (+4.31),
53.96 (+4.56), and 45.9 (+1.24). Note that, the numbers in
parenthesis indicate the amount of deviation from the numbers
in the first row in the second portion of Table II.

First, assume that the energy storage units are scheduled to
maximize the total expected profit, i.e., based on the optimal
solution of problem (58). Suppose no transmission line is
congested. If the energy storage units submit self-schedule
bids, then the expected total profit becomes $190,104. If the
energy storage units submit economic bids, then the expected
total profit becomes $192,951. One can see that, unlike in the
deterministic case, there is noticeable difference between self-
scheduling and economic bidding. This is because the price
components of economic bids act as filters to avoid charging
the energy storage units when the clearing market price is high
and discharging them when the market price is low.

For the self-scheduling design in the previous paragraph,
the total profit under random scenarios 1, 2, and 3 is
$190,691, $184,947, $194,675, respectively, where the average
is $190,104, as it was explained earlier. Accordingly, under the
the worst-case scenario, the total profit can be as low as

min{$190, 691, $184, 947, $194, 675} = $184, 947. (63)
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In order to increase profit under the worst-case scenario, one
can schedule the energy storage units based on the robust
design in Section IV-D, i.e., based on the optimal solution
of problem (61). In that case, the total profit under random
scenarios 1, 2, and 3 is $187,183 $187,405, $187,674, respec-
tively. The average of these three numbers is $187,421. One
can see that a robust design can considerably increase the total
profit under the worst-case scenario; however, this comes at
the cost of lowering the total profit on average.

VI. CONCLUSIONS

With the rise of investor-owned independently-operated
energy storage systems on the horizon, in this paper, a group of
large, price-maker, and geographically dispersed energy stor-
age / battery systems was considered that seek to coordinate
their charge and discharge schedules so as to maximize their
total profit in a nodal transmission-constrained energy market.
Such profit maximization problem was formulated as an op-
timization problem that takes into consideration the location,
size, efficiency, and charge and discharge rates of the energy
storage systems as well as the joint / coordinated impact of the
energy storage operations on the locational marginal prices.
Although the formulated optimization problem was initially
nonlinear, non-convex, and hard to solve, the nonlinearities
were tackled both in the objective function and constraints by
transforming the problem into a tractable mixed-integer linear
program, for which the global optimal solution was obtained.

The following conclusions can be highlighted based on the
presented case studies. First, transmission line congestion is
often, but not always, desirable for coordinated energy storage
systems. Congestion may create more price differential across
time slots, providing more opportunities for energy storage
systems to make profit through their charge and discharge
cycles. Second, while the design in this paper is from the view-
point of energy storage systems with focus on profitability,
the presence of energy storage systems in the energy market
seems to also benefit the overall power system performance by
reducing the total cost of generation. Third, arbitrage seems
to be the optimal choice among the energy storage systems in
all scenarios where congestion is beneficial to the coordinated
energy storage units. Fourth, locational diversity is critical
to assure profit for energy storage systems in transmission-
constrained networks. That is, it is preferred if a firm dis-
tributes its energy storage units across the power network
rather than installing them all in one location. Fifth, while
the results are sensitive to the efficiency of the energy storage
units, energy storage units with lower round trip efficiencies
can still experience considerable profit. Finally, although there
is no difference between self-scheduling and economic bidding
market participation in a deterministic scenario, coordinated
energy storage units do benefit from economic bidding when
their operator faces electricity market uncertainty.
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