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Abstract—Time-shiftable loads have recently received an in-
creasing attention due to their role in creating load flexibility and
enhancing demand response and peak-load shaving programs. In
this paper, we seek to answer the following question: How can
a time-shiftable load, that itself may comprise of several smaller
time-shiftable subloads, submit its demand bids to the day-ahead
and real-time markets so as to minimize its energy procurement
cost? Answering this question is challenging because of the inter-
temporal dependencies in choosing the demand bids for time-
shiftable loads, and also due to the coupling between demand
bid selection and time-shiftable load scheduling problems. Nev-
ertheless, we answer the above question for different practical
bidding scenarios and based on different statistical characteristics
of practical market prices. In all cases, closed-form solutions are
obtained for the optimal choices of the price and energy bids. The
bidding performance is then evaluated in details by examining
several case studies and analyzing actual market price data.

Keywords: Optimal price and energy bids, time-shiftable load,
day-ahead market, real-time market, demand side management,
multi-stage stochastic optimization, closed-form solutions.

I. INTRODUCTION

The deregulation of electricity markets has provided the
load entities with new and major opportunities to procure their
energy needs from diverse resources in a competitive market in
order to lower their energy expenditure. In the United States,
large consumers and load serving entities (LSEs) are already
eligible to participate in both the forward markets and the real-
time markets that are operated by several Independent System
Operators (ISOs), such as the Electric Reliability Council of
Texas (ERCOT) [1], the Pennsylvania-Jersey-Maryland (PJM)
Interconnection [2], and the California ISO [3].

In a typical two-settlement electricity market, load entities
can procure energy from a day-ahead market and a real-time
market [4]. Power procurement is facilitated by submitting
demand bids. The demand bids that are submitted to the day-
ahead market indicate an energy quantity and possibly also a
price quantity. The bids that are submitted (or metered) to the
real-time market only indicate an energy quantity [1]–[3].

In this paper, our focus is on finding optimal demand bids
for time-shiftable loads, a.k.a. deferrable loads with deadlines.
In brief, a time-shiftable load is a task that requires consuming
a certain total energy to finish, but its operation can be
scheduled any time within a given time frame, where the end
of such time frame is the deadline to finish operation. Some
examples of time-shiftable loads include: charging electric
vehicles [5], [6], intelligent pools [7], irrigation pumps [8],
water heaters [9], batch processes in data centers and computer
servers [10], [11], industrial equipment in process control and
manufacturing [12], [13], and various home appliances such
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as washing machine, dryer, and dish-washer [14]–[19]. Time-
shiftable loads have recently received a great deal of attention
due to their role in demand response and peak-load shaving
programs. In many cases, a time-shiftable load consists of
several smaller time-shiftable subloads or subtasks.

A. Summary of Technical Contributions

The immediate application of the designs in this paper is for
large time-shiftable loads in different sectors (or their LSEs)
to optimally bid in the electricity markets. But this work is
also beneficial to demand response programs, as it can help
utilities and aggregators to better exploit their time-shiftable
load potentials to lower their total energy procurement cost.

The analysis in this paper is challenging, first and foremost,
because of the inter-temporal dependencies in choosing the
demand bids for time-shiftable loads. Furthermore, the bid
selection problem for time-shiftable loads is inherently cou-
pled with the problem of time-shiftable load scheduling. The
contributions in this paper can be summarized as follows:

• A time-coupled multi-stage stochastic optimization prob-
lem is formulated for selecting price and energy bids to
the day-ahead market and energy bids to the real-time
market to operate time-shiftable loads with deadlines.

• Two design scenarios are considered: the case where per-
subload bidding is allowed; and the case where the time-
shiftable load is mandated by the market to submit single
demand bids, regardless of the number of its subloads.

• For each design, the impact and importance of holding
or removing the assumption on price independence across
the day-ahead and real-time markets are investigated.

• Several case studies are analyzed using PJM price data.
The impact of different price scenarios, subload configu-
rations and sizes, and bidding rules are investigated.

B. Related Work

The related work in the literature can be classified into three
separate groups. One thread of research that has emerged only
recently focuses on modeling and utilizing time-shiftable loads
in the context of smart grid and demand side management. For
example, the problem of scheduling time-shiftable loads under
different retail electricity pricing scenarios is addressed in [16],
[17], [19] for residential loads, in [12], [13] for industrial and
commercial loads, and in [20] for electric vehicle charging
stations. As another example, there are studies on optimiz-
ing the operation of time-shiftable loads for different design
objectives such as peak-load shaving [18], voltage control or
frequency regulation [21], and integration of renewable energy
resources [22]. However, the prior studies do not address the
issue of optimal demand bidding for time-shiftable loads.
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The second group of studies discuss the general problem of
demand bidding in deregulated electricity markets, but they do
not consider time-shiftable loads. For example, in [23], [24],
the authors explained how an LSE should bid in the wholesale
market based on some fixed or forecasted load data. In this
regard, our paper can be seen as an extension of [23], [24]
to the case of serving time-shiftable loads. The papers in this
second group also include [25], [26], where the focus is on
understanding the strategic interactions between bidding load
entities and bidding generators using game theory.

Finally, there are some recent studies on linking demand
response to market operations for price-elastic loads, where the
load is modeled using a concave utility function. For example,
the joint problem of power procurement and demand response
for price-elastic loads was addressed in [27], [28], with and
without the presence of renewable generators. Our work is
different in two key aspects. First, the studies in [27], [28] do
not - in any way - discuss the problem of selecting the demand
bids and the uncertainties that arise on whether the bids will
be cleared in the market. Second, since the focus in [27],
[28] is on price-elastic power loads, they do not address the
challenges with respect to inter-temporal dependencies that are
caused by time-shiftable energy loads and their requirements
on finishing certain jobs by certain deadlines. The papers in
this group also include [29], where new complex bidding rules
are proposed for demand response aggregators. In contrast,
here, we obtain the optimal price and energy bids for time-
shiftable loads based on the existing bidding structures.

II. PROBLEM STATEMENT

A. Two-settlement Electricity Market

Consider an organized wholesale electricity market, such as
the ones that are operated by PJM, ERCOT, and California ISO
in the United States [1]–[3]. Under a two-settlement market
framework, energy trading can be done at both day-ahead
markets and real-time markets. Load entities can participate
in these markets by submitting demand bids. In general, a
demand bid may or may not include a price component [4]. If a
demand bid includes both energy and price components, then it
indicates that the load is willing to purchase the given quantity
of energy only if the price is equal to or below the price bid.
Depending on the ISO, such demand bids are referred to as
Limit Order bids [1], Decrement bids [2], or Economic bids
[3]. If a demand bid includes only an energy component, but
not a price component, it indicates that the load is willing to
purchase the given quantity of energy, regardless of the price.
Such demand bids are referred to as Fixed Demand bids [1] or
Self-Schedule bids [3]. In this paper, our focus is on submitting
demand bids with price components, i.e., of type Limit Order,
to the day-ahead market, and bids without price component,
i.e., of type Fixed Demand, to the real-time market.

B. Time-Shiftable Load

The time-shiftable load model in this paper is similar to
those that are widely used in the demand response literature,
e.g., in [12], [13], [16]–[22]. A time-shiftable load is assumed

to comprise L ≥ 1 subloads, where for each subload l =
1, . . . , L, parameters αl and βl indicate the beginning and the
end of the time interval at which the operation of subload l
can be scheduled, where αl < βl. A higher βl − αl indicates
more time flexibility in scheduling the operation of subload l.
Parameter βl gives the deadline to complete the operation of
subload l. The operation of each subload l requires procuring
and consuming a total of el ≥ 0 MWh of energy to complete.

C. Optimal Demand Bidding Problem

Let us divide the operation time into T equal time-slots
based on the market bidding intervals and the time-shiftable
load scheduling horizon. For example, T = 24 for a daily
operation of a time-shiftable load over hourly market intervals.
The optimal demand bidding problem for a time-shiftable load
can be formulated as the following optimization problem:

Min
Bids

T∑
t=1

E
{
Cost (Procured Energy

During Time Slot t)
}

S.t.
β1∑
t=α1

[
Procured Energy for 1th Subload

During Time Slot t
]

= e1

...
βL∑
t=αL

[
Procured Energy for Lth Subload

During Time Slot t
]

= eL,

(1)

where E denotes the expected value. The above problem is a
T + 1 stage stochastic optimization problem [30]. At the first
stage, the Limit Order bids are submitted to the day-ahead
market. The other T stages correspond to submitting T Fixed
Order bids to the T bidding cycles of the real-time market.

The reason for problem (1) to be a stochastic optimization
problem is the uncertainty in the electricity prices, both at the
day-ahead market and at the real-time market. The variables
are all demand bids, which comprise T variables for the energy
components of the Fixed demand bids in the real-time market
and 2 T variables for the energy and price components for
the Limit Order demand bids in the day-ahead market. We
seek to choose the day-ahead and real-time demand bids so as
to minimize the combined expected cost of procuring power
across the two-settlement market, subject to completing the
operation of all subloads before their deadlines. Throughout
the paper, we assume that the time-shiftable load is price-taker.

III. THE CASE WITH ONE SUBLOAD

In this section, we address the special case with L = 1, i.e.,
when the time-shiftable load comprises only one subload. The
general case with L > 1 will be discussed in Section IV.

Consider the T + 1 stage bidding framework in Fig. 1. If
L = 1, then we can assume that α1 = 1 and β1 = T . Energy
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Fig. 1. The T +1 stage demand bidding framework for time-shiftable loads.

is procured from the day-ahead market by submitting Limit
Order bids p , p[1], . . . , p[T ] and x , x[1], . . . , x[T ], where
p is the vector of price bids and x is the vector of energy bids.
Once the day-ahead market is settled and the clearing market
prices a[1], . . . , a[T ] are realized, if a[t] ≤ p[t], then the
time-shiftable load procures the generation right of x[t] MWh
during time slot t. If a[t] > p[t], then no energy is procured
from the day-ahead market for time slot t. As we approach
the operation time, energy may be procured also from the real-
time market by submitting (or metering) Fixed Demand bids
y , y[1], . . . , y[T ]. Under Fixed Demand bidding, procuring
y[t] MWh of energy is guaranteed, but the cost of such energy
procurement is determined only after the real-time market is
settled and the clearing market price b[t] is realized [4].

A. Selecting the Optimal Bids to Real-Time Market

Assume that the bids p and x are submitted to the day-ahead
market; the day-ahead market is settled; and the day-ahead
prices are realized as a[1], . . . , a[T ]. The amount of energy
that is procured from the day-ahead market is obtained as

X =

T∑
t=1

I(a[t] ≤ p[t])x[t], (2)

where I(·) is the 0-1 indicator function. If a[t] ≤ p[t], then
I(a[t] ≤ p[t]) = 1; otherwise, I(a[t] ≤ p[t]) = 0. Note that,
0 ≤ X ≤ e1. Given X , and based on the bidding framework
in Fig. 1, the bid y[1] is submitted during the first cycle of the
real-time market. Once the first cycle is settled, the price b[1]
is determined. Then, given X , y[1], and b[1], the bid y[2] is
submitted during the second cycle of the real-time market.
These bidding cycles will continue until the last time slot
where, given X , y[1], . . . , y[T − 1], and b[1], . . . , b[T − 1],
the time-shiftable load submits the bid y[T ]. At each bidding
stage t, the goal is to minimize the expected value of the
energy procurement cost in the remaining T − t stages, while
ensuring that the total energy e will be procured by the time
that we reach the load deadline at the end of time slot T .

Theorem 1: If the number of subloads is L = 1, then, once
the day-ahead market is cleared and X in (2) is known, the
optimal energy bids to the real-time market are obtained as

y[t] = I(t = tb)(e1 −X), t = 1, . . . , T, (3)

where
tb = arg min

1≤t≤T
E{b[t]}. (4)

The proof of Theorem 1 is given in Appendix A. From
Theorem 1, once the day-ahead market is cleared, the demand
bidding process at the real-time market reduces to purchasing
the entire remaining energy e1−X at time slot tb, i.e., the time
slot with the lowest real-time market expected price during
time interval [1, T ]. Given the realization of price b[tb], the
cost of such real-time market purchase is b[tb] (e1 −X).

B. Selecting the Optimal Bids to Day-Ahead Market
Since submitting the bids to the day-ahead market is the first

stage in the T + 1 stage bidding process in Fig. 1, no prior
knowledge is assumed to be available. However, the decision
process must take into account the fact that once p and x are
submitted and the day-ahead market is cleared, then the bids
to the real-time market will be chosen as in (3). From (1), (2),
and (3), we can formulate the stochastic optimization problem
for selecting the bids to the day-ahead market as follows:

Min
p≥0,x≥0

E

{
T∑
t=1

I (a[t] ≤ p[t]) a[t]x[t]

+ b[tb]

(
e1 −

T∑
t=1

I(a[t] ≤ p[t])x[t]

)}

S.t.
T∑
t=1

I(a[t] ≤ p[t])x[t] ≤ e1, ∀a[1], . . . , a[T ],

(5)

where the first and the second lines in the objective function
denote the expected cost of energy procurement from the day-
ahead market and the real-time market, respectively. Here, the
price values a[1], . . . , a[T ] and b[tb] are random variables.

Since the inequality constraints in (5) must hold for any
realization of the day-ahead market prices a[1], . . . , a[T ], we
need any binary-weighted summation of the day-ahead market
energy bids x[1], . . . , x[T ] to be less than or equal to e1.
Therefore, the feasible set that is constructed by the infinite
number of constraints in (5) is equal to the feasible set that
is constructed by a single constraint

∑T
t=1 x[t] ≤ e1. From

this, and after removing the fixed term E{b[tb]}e1 from the
objective function in (5), we can rewrite problem (5) as

Min
p≥0,x≥0

T∑
t=1

E
{

(a[t]− b[tb]) I (a[t] ≤ p[t])
}
x[t]

S.t.
T∑
t=1

x[t] ≤ e1.

(6)

The difficulty in solving the above problem is the presence
of the 0-1 indicator functions. Nevertheless, we can obtain
closed-form solutions for problem (6) as we will show next.

1) Design I: Assuming Independent Markets: First, suppose
that the day-ahead market prices a[1], . . . , a[T ] are indepen-
dent from the price b[tb] at time slot tb in the real-time market.
In that case, the objective function in problem (6) becomes

T∑
t=1

E
{

(a[t]− E{b[tb]}) I (a[t] ≤ p[t])
}
x[t], (7)

where the outmost expected value is now with respect to only
a[t]. Therefore, we can show the following key theorem.
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Theorem 2: If the number of subloads is L = 1 and under
the market price independence assumption, the optimal price
bids to the day-ahead market are obtained as

p[1] = . . . = p[T ] = E{b[tb]}. (8)

The proof of Theorem 2 is given in Appendix B. From
Theorem 2, at optimality, all price bids to day-ahead market
are equal to the lowest expected price in the real-time market.
From (8), the objective function in (6) further reduces to

T∑
t=1

E
{

(a[t]− E{b[tb]}) I (a[t] ≤ E{b[tb]})
}
x[t]. (9)

Since at each time slot t and for any realization of a[t], we have
(a[t] − E{b[tb]})I(a[t] ≤ E{b[tb]}) ≤ 0, all the T expected
value terms in (9) are always non-positive. Therefore, the
problem of choosing the energy bids x boils down to the
following linear program with non-positive coefficients:

Min
x≥0

T∑
t=1

E
{

(a[t]− E{b[tb]}) I(a[t] ≤ E{b[tb]})
}
x[t]

S.t.
T∑
t=1

x[t] ≤ e1.

(10)

The next theorem explains the closed-form solution of (10).

Theorem 3: The optimal energy bids to day-ahead market
are

x[t] = I(t = ta)e1, t = 1, . . . , T, (11)

where

ta = arg min
1≤t≤T

E
{

(a[t]− E{b[tb]}) I(a[t] ≤ E{b[tb]})
}
. (12)

The proof of Theorem 3 is given in Appendix C. From
Theorem 3, if the time-shiftable load has L = 1 subload, then
it must submit only one non-zero energy bid to the day-ahead
market. The timing of such non-zero bid is ta that is calculated
as in (12). Since there is no reason to submit a non-zero price
bid p[t] if the energy bid x[t] is zero; from the results in
Theorems 2 and 3, we can rewrite the optimal price bids as

p[t] = I(t = ta)E{b[tb]}, t = 1, . . . , T. (13)

2) Design II: Not Assuming Independent Markets: Next, we
relax the assumption about the independence of day-ahead and
real-time market prices. Thus, we may no longer replace b[tb]
in (6) with E{b[tb]}. Accordingly, we cannot use Theorem 2
anymore. Nevertheless, we can still find a closed-form solution
for problem (6) through a slightly different analysis.

Suppose that the price bid vector p is already selected. Then,
the problem of finding the energy bid vector x becomes

Min
x≥0

T∑
t=1

E
{

(a[t]− b[tb]) I(a[t] ≤ p[t])
}
x[t]

S.t.
T∑
t=1

x[t] ≤ e1.

(14)

The above problem is a linear program, but its coefficients are
not guaranteed to be non-positive. For notational simplicity,
we denote the coefficient of variable x[t] in (14) as

C(t, p[t]) = E
{

(a[t]− b[tb]) I(a[t] ≤ p[t])
}
. (15)

The extension of Theorem 3 in this case is as follows.
Theorem 4: Given p, the solution of problem (14) is

x[t] = I(t = ta,p)I(C(ta,p, p[ta,p]) ≤ 0)e1, t = 1, . . . , T,
(16)

where
ta,p = arg min

1≤t≤T
C(t, p[t]). (17)

The proof of Theorem 4 is given in Appendix D. Note that,
if I(C(ta,p, p[ta,p]) ≤ 0) = 0, then all the coefficients in the
objective function in (14) are positive; and at optimality, we
have x[1] = . . . = x[T ] = 0. From Theorem 4, for the given
p, the optimal objective value in (14) is obtained as

I(C(ta,p, p[ta,p]) ≤ 0) C(ta,p, p[ta,p]) e1. (18)

If C(ta,p, p[ta,p]) ≤ 0, then the optimal objective value in (18)
is C(ta,p, p[ta,p]) e1; otherwise, the optimal objective value
is zero. From (17) and (18), and since e1 is a constant, the
problem of finding the optimal price bid vector p in (14) boils
down to solving the following optimization problem:

Min
p≥0

I(C(ta,p, p[ta,p]) ≤ 0)C(ta,p, p[ta,p])

= Min
p≥0

min
1≤t≤T

C(t, p[t])I(C(t, p[t]) ≤ 0)

= min
1≤t≤T

Min
p[t]≥0

C(t, p[t])I(C(t, p[t]) ≤ 0),

(19)

where the first equality is the direct result of the defini-
tion of ta,p in (17), and the second equality holds because
C(t, p[t]) I(C(t, p[t]) ≤ 0) depends only on p[t] but not on
p[1], . . . , p[t−1], p[t+ 1], . . . , p[T ]. Here, we use the fact that

min
v,w

min
{
f(v), g(w)

}
= min

{
min
v

f(v),min
w

g(w)
}
. (20)

From (19), finding the optimal price bid vector p ≥ 0 under
Design II is decomposed into T separate subproblems over
time slots t = 1, . . . , T . For each time slot t, we choose
the scalar price bid p[t] ≥ 0 such that we minimize the
corresponding coefficient term in (15), if it is non-positive.

Theorem 5: If the number of subloads is L = 1 and
we relax any market price dependency assumption, then the
optimal price bids to the day-ahead market are obtained as

p[t] = I(t = ta)p̄[t], t = 1, . . . , T, (21)

where

ta = arg min
1≤t≤T

E
{

(a[t]− b[tb]) I(a[t] ≤ p̄[t])
}
, (22)

and for each t = 1, . . . , T , we have

p̄[t] = arg min
p[t]≥0

E
{

(a[t]−b[tb]) I(a[t]≤p[t])
}

× I
(
E
{

(a[t]−b[tb]) I(a[t]≤p[t])
}
≤0

)
.

(23)
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The above Theorem is the direct result of the problem
formulation in (19) and the definitions in (22) and (23). The
values of p̄[1], . . . , p̄[T ] depend on the statistical characteristics
of the day-ahead and real-time market prices. Therefore, they
can be calculated offline and used later at the time of bidding.
Given the optimal price bid vector p from Theorem 5, the
optimal energy bid vector x is readily obtained using Theorem
4, where ta,p in (16) is replaced by ta in (22).

If the day-ahead market prices are in fact independent from
the real-time market price at time tb, then p̄[1] = . . . = p̄[T ] =
E{b[tb]}; and (21) reduces to (13), while (22) reduces to (12).

C. Case Study

Consider the PJM price data in Fig. 2; and assume that a
time-shiftable load with one subload seeks to procure energy
based on the bidding framework in Fig. 1. We assume that
α1 = 5:00 PM = 17, β1 = 10:00 PM = 22, and e1 = 5 MWh.
We have tb = 8:00 PM and E{b[tb]} = $41.07. For Design
I in Section III-B-1, the term E{(a[t] − E{b[tb]})I(a[t] ≤
E{b[tb]})} is obtained as -$7.21, -$5.17, -$4.60, -$4.15, -
$4.39, and -$5.09, for t = 17, . . . , 22. From (12), we have ta =
5:00 PM = 17. The bids to the day-ahead market are obtained
as p[17] = $41.07 and x[17] = 5 MWh; while p[t] = x[t] = 0
for any t 6= 17. The expected energy procurement cost is
calculated as $189.43. For Design II in Section III-B-2, the
bidding parameter p̄[t] in (23) is obtained as $44.01, $44.62,
$42.50, $32.14, $29.68, and $49.03, for t = 17, . . . , 22.
Accordingly, the terms E{(a[t] − b[tb])I(a[t] ≤ p̄[t])} are
obtained as -$3.49, -$1.34, -$0.41, -$0.03, -$0.02, and -$1.75.
From (22), we have ta = 5:00 PM = 17. The bids to the day-
ahead market are obtained as p[17] = $44.01 and x[17] = 5
MWh, with p[t] = x[t] = 0 for any t 6= 17. The expected
energy cost is calculated as $187.85. We can see that relaxing
the assumption on price independency between the day-ahead
and real-time markets can further lower the cost.

As a baseline for comparison, if energy usage is evenly
distributed from 5:00 PM to 10:00 PM and energy at each time
slot is procured only from the day-ahead market at the clearing
market price, then the expected cost of energy procurement
is $211.15. Compared to this baseline, Design I in Section
III-B-1 reduces energy cost by 11.0%. The energy cost further
reduces by 0.8% when Design II in Section III-B-2 is used.

If energy is procured only from the day-ahead market at the
hour with the lowest expected day-ahead market price, i.e., at
t = 17, then the expected energy procurement cost becomes
$200.12. Also if energy is procured only from the real-time
market at the hour with the lowest expected real-time market
price, i.e., at t = 20, then the expected energy procurement
cost becomes $205.33. Designs I and II outperform both cases.

IV. THE CASE WITH SEVERAL SUBLOADS

In this section, we consider the general case where the
time-shiftable load comprises of several smaller time-shiftable
subloads, i.e., L > 1. We consider two different scenarios
to submit the bids. The first scenario is per-subload bidding,
where for each subload l and at each time slot t, we submit one
bid pair pl[t] and xl[t] to the day-ahead market and one bid
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Fig. 2. Statistical characteristics of the day-ahead and real-time market prices
at PJM for reported data from January 1 to June 30, 2013. The shaded area
indicates the 90% confidence interval for day-ahead market prices. The data
in this figure is used for the case studies in Sections III and IV.

yl[t] to the real-time market. The second scenario is single
bidding, where, regardless of the number of subloads, we
submit only one bid pair p[t] and x[t] to the day-ahead market
and only one bid y[t] to the real-time market. It is clear that
by submitting per-subload bids we increase granularity and
allow a more fine-grained bidding process. Therefore, the per-
subload bidding is always no worse than single bidding. As
a result, there is no reason not to go for per-subload bidding,
unless the time-shiftable load is mandated by the market to
submit only a single bid despite having multiple subloads.

A. When Per-Subload Bidding is Possible

Under the per-subload bidding scenario, at each time slot
t, the time-shiftable load submits price bids pl[t], . . . , pL[t]
and energy bids xl[t], . . . , xL[t] to the day-ahead market and
energy bids yl[t], . . . , yL[t] to the real-time market. Of course,
for each subload l, there is no need for energy procurement
outside the time frame [αl, βl]; and we can trivially choose

pl[t] = xl[t] = yl[t] = 0,
t = 1, . . . , αl − 1,
t = βl + 1, . . . , T.

(24)

Since separate bids are submitted for each subload, and
with the assumption that the time-shiftable load is price taker,
the problem of selecting the bids is essentially independent
across different subloads. As a result, the optimal bids for
each subload is obtained by following the exact same steps
that we explained in Section III. For example, for the case of
Design I, where the day-ahead and real-time market prices are
independent, for each subload l, the optimal bids are

pl[t] = I(t = ta,l)E{b[tb,l]}, t = αl, . . . , βl, (25)
xl[t] = I(t = ta,l)el, t = αl, . . . , βl, (26)

yl[t] = I(t = tb,l) (el −Xl) , t = αl, . . . , βl, (27)

where
tb,l = arg min

αl≤t≤βl

E{b[t]}, (28)
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ta,l = arg min
αl≤t≤βl

E
{

(a[t]− E{b[tb,l]})I (a[t] ≤ E{b[tb,l]})
}
,

(29)
and

Xl = I(a[t] ≤ E{b[tb,l]})el. (30)

The optimal bids for the case of Design II with no assumption
on market price independency can be obtained similarly by
extending the related results in Theorems 1, 4, and 5.

Let us define L , {1, . . . , L}. From (25)-(30), for each
time slot t, the time-shiftable load submits exactly La[t] bids
to the day-ahead market and Lb[t] bids to the real-time market,
where La[t] and Lb[t] are the cardinalities of sets

La[t] = {l | l ∈ L, t = ta,l} , (31)

Lb[t] = {l | l ∈ L, t = tb,l} . (32)

Once the day-ahead market is settled and the market clearing
price a[t] is realized, the total amount of power that is procured
from the day-ahead market at time slot t is calculated as

X[t] =
∑
l∈La

I (a[t] ≤ E{b[tb,l]}) el. (33)

It is interesting to note that X[t] in (33) is in fact the demand
function of the time-shiftable load at time slot t, a measure
that is widely used in electricity market analysis [4].

As a case study, consider the example in Fig. 3, where
we have visualized the subload parameters of a time-shiftable
load with L = 10 subloads. Each line segment represents one
subload l, where the start and the end points denote parameters
α1 and βl, respectively. For example, for l = 1, we have
α1 = 17 and β1 = 22; and for l = 2, we have α2 = 11 and
β2 = 19. The optimal demand bids to the day-ahead market
for the example time-shiftable load in Fig. 3, based on both
Design I and Design II, are shown in Fig. 4. Here, again, we
assume that the electricity market prices are as in Fig. 2.

First, consider the demand bids in the first row in Fig. 4,
which are obtained based on Design I. There are non-zero
demand bids at six different hours: La[7] = {4, 5, 9}, La[8] =
{8}, La[14] = {3}, La[16] = {2, 6, 10}, La[17] = {1}, and
La[22] = {7}. As an example, consider the demand bid at
hour t = 7:00 PM. It consists of three segments, including
the segment for subload number 4. This is because ta,4 = 7.
To see why, note that α4 = 5 and β4 = 12; and the term
E{(a[t] − E{b[tb,4]})I(a[t] ≤ E{b[tb,4]})} is obtained as -
$2.80, -$2.82, -$3.64, -$2.36, -$0.92, -$1.48, -$1.21, and -
$1.16, for t = 5, . . . , 12. Also, from (28), we have tb,4 = 5,
tb,5 = 6, tb,9 = 4; and E{b[tb,4]} = $26.91, E{b[tb,5]} =
$28.95, and E{b[tb,9]} = $25.85. For the demand bid at hour
t = 7, the price bids are at $25.85, $26.91, $28.95; and the
energy bids are at e5 = 2, e5+e4 = 8 MWh, and e5+e4+e9 =
12 MWh. As another example, consider the demand bid at
hour t = 16 = 4:00 PM, which has only one segment. Since
tb,2 = tb,6 = tb,10 = 15, the price bid is at E{b[15]} = $39.30
and the energy bid is at e2 + e6 + e10 = 15 MWh.

Next, consider the demand bids in the second row in Fig.
4, which are obtained based on Design II. This time, there
are non-zero demand bids at seven different hours: La[3] =
{9}, La[5] = {4}, La[14] = {3}, La[15] = {8}, La[16] =
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Fig. 3. Parameters of an example time-shiftable load with L = 10 subloads.
For each subload l, the line segment starts from αl and ends at βl.

{2, 6, 10}, La[17] = {1}, and La[18] = {5, 7}. We can see
that there are some similarities but also some major differences
between the demand bids that are obtained based on Design I
and Design II. For example, the bid segment corresponding to
subload number 4 has now moved from 7:00 PM to time slot
t = ta,4 = 5:00 PM. From Theorem 5, the price component
for the demand bid for this subload is p̄4[ta,4] = $18.90.

When obtaining the optimal bids based on Designs I and II
in Sections III-B-1 and III-B-2, the expected cost of energy
procurement is calculated as $1,632 and $1,595, respectively.
For the baseline scenario that we defined in Section III-C,
the expected cost of energy procurement is $1,835. Compared
to the baseline, Design I reduces energy cost by 11.1%. The
energy cost further reduces by 2.3% when Design II is used.

If energy is procured only from the day-ahead market at the
hours with the lowest expected day-ahead market price, then
the expected energy procurement cost becomes $1,669. Also
if energy is procured only from the real-time market at the
hours with the lowest expected real-time market price, then the
expected energy procurement cost becomes $1,639. Therefore,
Designs I and II outperform both cases in this example.

B. When Per-Subload Bidding is not Possible

Based on the per-subload bidding mechanism in Section
IV-A, each subload can potentially create a new segment in
the total demand bid. As a result, the demand bids at certain
hours may have multiple segments, as in the cases of hour 7:00
AM and hour 6:00 PM in Fig. 4, with three and two segments,
respectively. This is an interesting observation, because in
practice, there is typically a limit on the number of segments
(stairs) in the demand or supply bids. For example, in the
California ISO day-ahead market, the number of bid segments
is limited to 10. Therefore, it is natural to ask the following
question: How binding, in terms of demand bidding efficiency,
is the limit on the number of segments in each bid? Clearly,
having the limit at 10 is no worse than having it at 9, and
having the limit at 9 is no worse than having it at 8, and so
on and so forth. Therefore, if any such limit is going to be
binding, then we should see it in the most restrictive scenario
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Fig. 4. The optimal demand bids to the day-ahead market for the example time-shiftable load in Fig. 3 with L = 10 subloads. The first row shows the
results based on Design I. The second row shows the results based on Design II. Only the hours with non-zero demand bids are shown here.

where the demand bid is limited to only one segment. Hence,
to gain insights, we examine such highly restrictive scenario
in this section. That is, we consider the case where the market
mandates each time-shiftable load to submit only one bid for
each time slot, regardless of the number of its subloads.

Because of the linear property of Fixed Demand bids and
the price-taker assumption, submitting L different bids y1[t],
. . . , yL[t] to real-time market at time slot t results in an
identical energy procurement as if we submit a single bid

y[t] =

L∑
l=1

yl[t]. (34)

Thus, by conducting a backward induction analysis similar to
the one in the Proof of Theorem 1, we can show that the single
optimal bid to the real-time market is obtained as

y[t] =

L∑
l=1

yl[t] =

L∑
l=1

I(t = tb,l) (el −Xl) , (35)

where Xl is the portion of the total energy that is procured
from the day-ahead market for consumption at subload l at
time slot t. For each subload l, notation tb,l is as in (28).

Next, we note that once the day-ahead market is cleared, the
time-shiftable load operator must distribute the total procured
energy I(a[t] ≤ p[t])x[t] across its subloads. This can be done
by using auxiliary decision variables x1[t], . . . , xL[t], where

x[t] =

L∑
l=1

xl[t], (36)

and for each subload l = 1, . . . , L, we must have

Xl =

βl∑
t=αl

I(a[t] ≤ p[t])xl[t] ≤ el, ∀a[1], . . . , a[T ]. (37)

Therefore, the stochastic optimization problem for selecting

the bids to the day-ahead market can be formulated as

Min
p,x

x1, . . . ,xL

E

{
T∑
t=1

I (a[t] ≤ p[t]) a[t]x[t]

+

L∑
l=1

b[tb,l]

(
el−

T∑
t=1

I(a[t]≤p[t])xl[t]

)}

S.t.
β1∑
t=α1

I(a[t]≤p[t])x1[t] ≤ e1, ∀a[1], . . . , a[T ],

...
βL∑
t=αL

I(a[t]≤p[t])xL[t] ≤ eL, ∀a[1], . . . , a[T ],

xl[t] = 0, l = 1, . . . , L, t /∈ [αl, βl],

x[t] =

L∑
l=1

xl[t], t = 1, . . . , T.

(38)

where for each time slot t, we define xl[t] , xl[1], . . . , xl[T ].
As in problem (5), we can replace the infinite number of in-
equalities for each subload with a single inequality constraint.
We can also eliminate the equality constraints on the last line
by substituting any x[t] with

∑L
l=1 xl[t] for all t = 1, . . . , T .

As for the objective function in (38), after reordering the terms,
and once we remove all fixed terms, it becomes

L∑
l=1

T∑
t=1

E
{

(a[t]− b[tb,l]) I (a[t] ≤ p[t])
}
xl[t]. (39)

Therefore, we can rewrite problem (38) as

Min
p,x1,...,xL

L∑
l=1

T∑
t=1

E
{

(a[t]−b[tb,l])I (a[t]≤p[t])
}
xl[t]

S.t. xl[t] = 0, l = 1, . . . , L, t /∈ [αl, βl],
βl∑
t=αl

xl[t] ≤ el, l = 1, . . . , L.

(40)
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Problem (40) generalizes problem (5). If we assume that the
prices in the day-ahead and real-time markets are independent,
then we can accordingly generalize Theorem 2. However, such
generalization provides only some bounds for p[t] rather than
an exact closed-form solution as in Theorem 2. Therefore,
next, we directly move to the general case of Design II,
where there is no particular assumption on the statistical
characteristics of the day-ahead and real-time market prices.

Suppose the price bid vector p is already selected. This
removes the coupling across different subloads in problem (40)
and allows us to decompose problem (40) into L separate
subproblems. Given p, for each l = 1, . . . , L, we must solve

Min
xl

βl∑
t=αl

E
{

(a[t]− b[tb,l])I (a[t] ≤ p[t])
}
xl[t]

S.t.
βl∑
t=αl

xl[t] ≤ el.

(41)

Next, let us denote the coefficient of variable xl[t] in (41) as

Cl(t, p[t]) = E
{

(a[t]− b[tb,l]) I(a[t] ≤ p[t])
}
. (42)

Similar to the case in Theorem 4, we can show that for a given
p and for each time slot t, at optimality, we have

xl[t] = I(t = ta,l,p) I(Cl(ta,l,p, p[ta,l,p]) ≤ 0) el, (43)

where
ta,l,p = arg min

αl≤t≤βl

Cl(t, p[t]). (44)

The optimal objective value in (41) for the given p becomes

I(Cl(ta,l,p, p[ta,l,p]) ≤ 0) Cl(ta,l,p, p[ta,l,p]) el. (45)

Therefore, we can rewrite problem (41) over p as

Min
p

L∑
l=1

I(Cl(ta,l,p, p[ta,l,p]) ≤ 0)C(ta,l,p, p[ta,lp])el

= Min
p

L∑
l=1

min
αl≤t≤βl

Cl(t, p[t])I(Cl(t, p[t]) ≤ 0)el

= Min
p

L∑
l=1

min
1≤t≤T

Cl(t, p[t])I(Cl(t, p[t]) ≤ 0)

× I(αl ≤ t ≤ βl)el.

(46)

Because of the summation over l, we cannot switch the two
min operators on the last line in (46). Therefore, unlike
problem (19), problem (46) is not separable. Nevertheless, we
can still follow the approach in Section III-B-2 and decompose
problem (46) in order to obtain a sub-optimal solution:

p[t] = arg min
p[t]≥0

L∑
l=1

E
{

(a[t]− b[tb,l]) I(a[t] ≤ p[t])
}

I
(
E
{

(a[t]−b[tb,l]) I(a[t] ≤ p[t])
}
≤0
)
,

(47)

where t = 1, . . . , T . Given the price bids in (47), the corre-
sponding optimal energy bids x are readily obtained using the
results in (43) and (44) and the relationship in (36).

In practice, the optimality gap for the above sub-optimal
solutions is very small. This can be verified by comparing
the expected energy procurement cost when we use (43) and
(47) with the expected energy procurement cost when we use
the optimal per-subload bidding solutions in Section IV-A.
For example, recall from Section IV-A that under per-subload
bidding, the total expected energy procurement cost for the
time-shiftable load in Fig. 3 is $1,595. Since per-subload
bidding is always no worse than single bidding, this number
gives a lower bound for the objective value of the minimization
problem in (40). Now, if we use the bids in (43) and (47),
the total expected energy procurement power again becomes
$1,595. Therefore, in this example, the optimality gap is zero.

V. ADDITIONAL CASE STUDIES

A. Other Price Data

Again, consider the subloads in Fig. 3. For the results in
Sections IV-A and IV-B, we used the price data in Fig. 2.
Next, we re-examine the results for ten different 6-months
PJM price data sets, as in Fig. 5. For each year, two sets of
results are shown here, one based on the data from January 1
to June 30 and another one based on the data from July 1 to
December 31. The Baseline is defined as in Section III-C.

We can see that all designs highly outperform the baseline,
while Design II slightly outperforms Design I in all cases.
Interestingly, the difference between per-subload bidding and
single bidding is relatively minor, suggesting that a mandate
on submitting only a single bid does not significantly increase
the time-shiftable load’s energy procurement cost. On average,
and across all ten price cases, the cost of energy procurement
for the Baseline, Single Bid - Design I, Per-Subload Bid -
Design I, Single Bid - Design II, and Per-Subload Bid Design
II, is $1,966, $1,669, $1,662, $1,623, and $1,617, respectively.

If energy is procured only from the day-ahead market at the
hours with the lowest expected day-ahead market price, then
on average, i.e., across all ten price cases, the expected energy
cost is $1,683. If energy is procured only from the real-time
market at the hours with the lowest expected real-time market
price, then on average, the expected energy cost is $1,672. We
can see that Designs I and II outperform both cases.

B. Other Subload Configurations

Next, we examine 20 scenarios with different subload con-
figurations. For each scenario, we randomly choose parameters
αl, βl, and el for L = 10 subloads. Furthermore, for each
scenario, we assume that the price data is randomly selected
from the ten different 6-months PJM price data sets that we
discussed in Section V-A. The results are shown in Fig. 6. We
can see that the trends are similar to those that we previously
saw for the particular subload configuration of Fig. 3. This
suggests that the advantages of the proposed design is not
specific to a particular subload configuration. On average,
and across all 20 randomly generated subload configuration
scenarios, the cost of energy procurement for the Baseline,
Single Bid - Design I, Per-Subload Bid - Design I, Single Bid
- Design II, and Per-Subload Bid Design II, is $2,339, $1,966,
$1,956, $1,910, and $1,904, respectively.
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Fig. 5. The expected energy procurement cost of the time-shiftable load with
subloads as in Fig. 3 based on ten different 6-months PJM price data sets.
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Fig. 6. The expected energy procurement cost of a time-shiftable load with
20 different randomly generated subload configurations, where L = 10.

If energy is procured only from the day-ahead market at
the hours with the lowest expected day-ahead market price,
then, on average, i.e., across all 20 randomly generated subload
configuration scenarios, the expected energy cost is $1,997.
If energy is procured only from the real-time market at the
hours with the lowest expected real-time market price, then,
on average, the expected energy cost is $1,958. Single Bid -
Design I and particularly the two approaches for Design II
outperform both cases. We see that restricting the number of
bids to only one segment may slightly hurt the bidder in some
load configurations. Although, even in those cases, Design II
can still provide a very efficient demand bidding performance.

C. Increasing the Number of Subloads

The results when we increase the number of subloads are
shown in Fig. 7, where each point denotes the average ex-
pected energy procurement cost across 20 different randomly
generated subload configuration scenarios. For example, the
results for L = 10 are the average of the results in Fig. 6.
As we increase L, the relative performance of the various
designs is more or less maintained. With L = 100 subloads,

10 20 30 40 50 60 70 80 90 100
1

3

5

7

9

11

13

15

17

19

21

23

Number of Subloads L

A
ve

ra
ge

 E
xp

ec
te

d 
C

os
t o

f P
ow

er
 P

ro
cu

re
m

en
t (

$1
,0

00
)

 

 
Baseline
Single Bidding − Design I
Per−Subloed Bidding − Design I
Single Bidding − Design II
Per−Subload Bidding − Design II

Fig. 7. The impact of increasing the number of subloads. Each point indicates
the average expected energy procurement cost across 20 random scenarios.

the average expected energy procurement cost for the Baseline,
Single Bid - Design I, Per-Subload Bid - Design I, Single Bid -
Design II, and Per-Subload Bid Design II, is $22,515, $18,847,
$18,730, $18,309, $18,213, respectively.

If L = 100 and energy is procured only from the day-ahead
market at the hours with the lowest expected day-ahead market
price, then, on average, i.e., across all 20 randomly generated
subload configuration scenarios, the expected energy cost is
$19,052. If energy is procured only from the real-time market
at the hours with the lowest expected real-time market price,
then on average, the expected energy cost is $18,721. The two
approaches for Design II always outperform both cases.

VI. CONCLUSIONS AND FUTURE WORK

We developed a multi-stage stochastic optimization frame-
work, together with several closed-form solutions, to optimally
select the demand bids for time-shiftable loads. Both per-
subload bidding and single bidding were considered. Using
PJM price data, the proposed designs were tested in various
case studies. The impact of different price scenarios, subload
configurations, and bidding rules were investigated. We ob-
served that, while per-subload bidding outperforms single
bidding, the performance loss for the latter is typically small.
Also, in general, it is preferred to take into account the statis-
tical dependence between the day-ahead and real-time market
prices. The designs in this paper can help large consumers,
LSEs, and utilities to better exploit their time-shiftable load
potentials to lower their energy costs in electricity markets.

The analysis and results in this paper can be extended
in several directions. First, the focus throughout this work
was limited to the most generic form of time-shiftable loads.
However, the same methodology can be applied to incorporate
more details about loads and their characteristics. For example,
one can take into consideration the limits on power usage at
each time slot, ramping constraints, and whether the time-
shiftable load is interruptible or uninterruptible. Second, it
is interesting to see how the results may change when we
relax the price-taker assumption. Such extension is particularly
important if we increase the penetration of time-shiftable loads
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in the electricity market to a level so that they become price-
maker, i.e., the time-shift in their demand creates noticeable
change in the price values. Third, when it comes to price-
maker loads, such as large utilities whose service territory
covers several trading nodes within a transmission network,
the congestion effect in the underlying transmission network
topology has to be considered in the bidding strategy.
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APPENDIX

A. Proof of Theorem 1

Using backward induction from dynamic programming, we
start from the last bidding stage at time slot T and go backward
in time to see how the bids are selected. Recall that, when it
comes to the time to submit the last bid, we already know the
values of X and y[1], . . . , y[T − 1], where

0 ≤ X +

T−1∑
t=1

y[t] ≤ e1. (48)

Therefore, in order to assure procuring total energy e1 before
deadline T , the only acceptable bidding scenario is to choose

y[T ] = e1 −X −
T−1∑
t=1

y[t]. (49)

Next, we move backward in time and examine the choice of
bid y[T−1]. At this stage, given X and y[1], . . . , y[T−2], and
also based on the knowledge that the bid in the last stage will
be chosen as in (49), we need to select y[T − 1] to minimize
the expected value of the cost of procuring power. Therefore,
we need to solve the following optimization problem

Min
y[T−1]

(
T∑
t=1

I(a[t] ≤ p[t])a[t]x[t]

)
+

(
T−1∑
t=1

b[t]y[t]

)

+ E

{
b[T − 1]y[T − 1]

+ b[T ]

(
e1 −X −

T−2∑
t=1

y[t]− y[T − 1]

)}

S.t. 0 ≤ y[T − 1] ≤ e1 −X −
T−2∑
t=1

y[t].

(50)

After reordering the terms in the objective function and once
we remove any term that does not depend on the optimization
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variable y[T − 1], problem (50) reduces to

Min
y[T−1]

(E{b[T − 1]} − E{b[T ]}) y[T − 1]

S.t. 0 ≤ y[T − 1] ≤ e1 −X −
T−2∑
t=1

y[t].
(51)

If E{b[T − 1]} ≤ E{b[T ]}, then, at optimality, we have

y[T − 1] = e1 −X −
T−2∑
t=1

y[t] ⇒ y[T ] = 0. (52)

Otherwise, we have

y[T − 1] = 0 ⇒ y[T ] = e1 −X −
T−2∑
t=1

y[t]. (53)

Therefore, any shortage of energy e1 − X −
∑T−2
t=1 y[t] that

is realized before the last two time slots will be purchased in
full at the time slot with the lowest expected market price.

Next, we examine the optimal choice of bid y[T−2]. At this
stage, we need to solve the following optimization problem:

Min
y[T−2]

E

{
b[T − 2]y[T − 2]

+ b[T − 1]I (E{b[T − 1]} ≤ E{b[T ]})

×

(
e1 −X −

T−3∑
t=1

y[t]− y[T − 2]

)
+ b[T ] (1− I (E{b[T − 1]} ≤ E{b[T ]}))

×

(
e1 −X −

T−3∑
t=1

y[t]− y[T − 2]

)}

S.t 0 ≤ y[T − 2] ≤ e−X −
T−3∑
t=1

y[t].

(54)

After removing the fixed terms, the objective function becomes(
E{b[T−2]} − E{b[T−1]}I (E{b[T−1]} ≤ E{b[T ]})

− E{b[T ]} (1− I (E{b[T − 1]} ≤ E{b[T ]}))
)
y[T − 2]

=
(
E{b[T − 2]} − E{b[T ]} − (E{b[T − 1]} ≤ E{b[T ]})

× I (E{b[T − 1]} ≤ E{b[T ]})
)
y[T − 2]

=
(
E{b[T−2]} −min

[
E{b[T ]} , E{b[T−1]}

])
y[T−2].

Therefore, we can rewrite the optimization problem in (54) as

Min
y[T−2]

(
E{b[T − 2]}

−min
[
E{b[T ]} , E{b[T − 1]}

])
y[T − 2]

S.t. 0 ≤ y[T − 2] ≤ e1 −X −
T−3∑
t=1

y[t].

(55)

If E{b[T − 2]} ≤ min
[
E{b[T ]} , E{b[T − 1]}

]
, then

y[T−2] = e1−X−
T−3∑
t=1

y[t] ⇒ y[T−1] = y[T ] = 0. (56)

Otherwise, we have y[T − 2] = 0. In that case, y[T − 1] and
y[T ] are set based on a comparison between E{b[T − 1]} and
E{b[T ]} and according to (52) and (53), where y[T − 2] = 0.
Thus, any shortage of energy e1 − X −

∑T−3
t=1 y[t] that is

realized before the last three time slots will be purchased in
full at the time slot with the lowest expected clearing market
price. If we continue this backward induction process down to
time slot t = 1, the optimal bids will be obtained as in (3). �

B. Proof of Theorem 2

Let F (p,x) denote the objective function in (5). Also let 1
denote a T × 1 vector with all entries equal zero. Finally, let
p−t = p[1], . . . , p[t − 1], p[t + 1], . . . , p[T ] denote the vector
of all price bids to the day-ahead market, except for p[t]. We
want to show that, at any time slot t = 1, . . . , T , we have

Min
p−t,x, 1Tx≤e1

F (p[t] > E{b[tb]},p−t,x)

≥ Min
p−t,x, 1Tx≤e1

F (p[t] = E{b[tb]},p−t,x)
(57)

and

Min
p−t,x, 1Tx≤e1

F (p[t] < E{b[tb]},p−t,x)

≥ Min
p−t,x, 1Tx≤e1

F (p[t] = E{b[tb]},p−t,x).
(58)

Together, the above two inequalities directly result in (8).
To show (57), first, we expand the expected value terms in

the objective function in (5) based on scenarios 1, . . . ,K with
probabilities π1, . . . , πK . Here, K can be an arbitrarily large
number to achieve any desirable accuracy. Let ak[1], . . . , ak[T ]
denote the realization of the day-ahead market price when
scenario k occurs. For any time slot t and for any p[t] >
E{b[tb]}, we divide set K = {1, . . . ,K} into three disjoint
subsets:

K1 = {k | ak[t] ≤ E{b[tb]}} , (59)
K2 = {k | E{b[tb]} < ak[t] < p[t]} , (60)
K3 = {k | p[t] ≤ ak[t]} . (61)

Accordingly, we can rewrite the objective function F (p,x) as∑
k∈K1

πkfk(p,x) +
∑
k∈K2

πkfk(p,x) +
∑
k∈K3

πkfk(p,x), (62)

where for each k = 1, . . . ,K, we have

fk(p,x) =

T∑
τ=1

(ak[τ ]−E{b[tb]}) I (ak[τ ]≤p[τ ])x[τ ]. (63)

From (59), (61), and (63), for each k ∈ K1 ∪ K3, we have

fk(p[t] > E{b[tb]},p−t,x)

= fk(p[t] = E{b[tb]},p−t,x).
(64)

Also, from (60) and (63), for each k ∈ K2, we have

fk(p[t] > E{b[tb]},p−t,x) = (ak[t]−E{b[tb]})x[t]

+

T∑
τ=1,τ 6=t

(ak[τ ]− E{b[tb]}) I (ak[τ ] ≤ p[τ ])x[t]
(65)
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and

fk(p[t] = E{b[tb]},p−t,x) = 0

+

T∑
τ=1,τ 6=t

(ak[τ ]− E{b[tb]}) I (ak[τ ] ≤ p[τ ])x[t].
(66)

By subtracting (66) from (65), for each k ∈ K2, we have

fk(p[t] > E{b[tb]},p−t,x)− fk(p[t] = E{b[tb]},p−t,x)

= (ak[t]− E{b[tb]})x[t],
(67)

where
ak[t]− E{b[tb]} > 0, ∀k ∈ K2. (68)

Finally, from (62), (67), and (68), we have

Min
p−t,x, 1Tx≤e

F (p[t] > E{b[tb]},p−t,x)

= Min
p−t,x, 1Tx≤e

(
F (p[t] = E{b[tb]},p−t,x)

+
∑
k∈K2

πkfk(p[t] > E{b[tb]},p−t,x)

−
∑
k∈K2

πkfk(p[t] = E{b[tb]},p−t,x)

)
≥ Min

p−t,x, 1Tx≤e
F (p[t] = E{b[tb]},p−t,x)

+ Min
p−t,x, 1Tx≤e

∑
k∈K2

πk

(
fk(p[t] > E{b[tb]},p−t,x)

− fk(p[t] = E{b[tb]},p−t,x)

)
= Min

p−t,x, 1Tx≤e
F (p[t] = E{b[tb]},p−t,x)

+ Min
p−t,x, 1Tx≤e

∑
k∈K2

πk(ak[t]− E{b[tb]})x[t]

= Min
p−t,x, 1Tx≤e

F (p[t] = E{b[tb]},p−t,x),

(69)

where the first equality is due to (62), the first inequality is
because maxx g(x) + h(x) ≤ maxx g(x) + maxx h(x), the
second equality is due to (67), and the third equality is due to
(68). This concludes the proof to show (57).

Next, in order to show (58), for a given time slot t and
p[t] < E{b[tb]}, we divide set K into three disjoint subsets

K1 = {k | ak[t] ≤ p[t]} , (70)
K2 = {k | p[t] < ak[t] < E{b[tb]}} , (71)
K3 = {k | E{b[tb]} ≤ ak[t]} . (72)

We can verify that (64) still holds in this case. From (63) and
(71), for any k ∈ K2, we have

fk(p[t] < E{b[tb]},p−t,x) = 0

+

T∑
τ=1,τ 6=t

(ak[τ ]− E{b[tb]}) I (ak[τ ] ≤ p[τ ])x[t]
(73)

and

fk(p[t] = E{b[tb]},p−t,x) = (ak[t]− E{b[tb]})x[t]

+

T∑
τ=1,τ 6=t

(ak[τ ]− E{b[tb]}) I (ak[τ ] ≤ p[τ ])x[t].

(74)

By subtracting (74) from (73), for each k ∈ K2, we have

fk(p[t] < E{b[tb]},p−t,x)− fk(p[t] = E{b[tb]},p−t,x)

= − (ak[t]− E{b[tb]})x[t],
(75)

where
− (ak[t]− E{b[tb]}) > 0, ∀k ∈ K2. (76)

The rest of the proof is similar to that of showing (57). �.

C. Proof of Theorem 3

Since the minimization in (10) is a linear program and all
coefficients are non-positive, the objective function is mini-
mized when x[ta], i.e., the variable with the lowest coefficient,
is maximized. From the inequality constraint in (10), this
means that at optimality, we have x[ta] = e1; and x[t] = 0, for
any t 6= ta. For the rare scenario when not even a single price
realization at any time slot in the day-ahead market may ever
drop below E{b[tb]}, all coefficients in (10) would be zero,
and at optimality, we would have x[1] = . . . = x[T ] = 0. �

D. Proof of Theorem 4

The minimization in (14) is a linear program. The low-
est coefficient in the objective function is denoted by
C(ta,p, p[ta,p]). If C(ta,p, p[ta,p]) > 0, then all the coefficients
in the objective function in problem (14) are positive and the
optimal solution is obtained as x[0] = . . . = x[T ]. Otherwise,
we can minimize the objective function if x[ta], i.e., the
variable with the lowest coefficient, is maximized. From the
inequality constraint in (14), this means that at optimality, we
must have x[ta] = e1; and x[t] = 0, for any t 6= ta. �
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