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Abstract—The aggregate capacity of wireless ad-hoc networks can be increased substantially if each node is equipped with multiple
network interface cards (NICs) and each NIC operates on a distinct frequency channel. Most of the recently proposed channel
assignment algorithms are based on combinatorial techniques. Combinatorial channel assignment schemes may sometimes result in
computationally complicated algorithms as well as inefficient utilization of the available frequency spectrum. In this paper, we analytically
model channel and interface assignment problems as tractable continuous optimization problems within the framework of network utility
maximization (NUM). In particular, the link data rate models for both single-channel reception and multi-channel reception scenarios
are derived. The assignment of both non-overlapped and partially-overlapped channels are also considered. We then propose two
distributed multi-interface multi-channel random access (DMMRA) algorithms for single-channel reception and multi-channel reception
scenarios. The DMMRA algorithms are fast, distributed, and easy to implement. Each algorithm solves the formulated NUM problem
for each scenario. DMMRA requires each node to only iteratively solve a local, myopic, and convex optimization problem. Convergence
and optimality properties of our algorithms are studied analytically. Simulation results show that our proposed algorithms significantly
outperform utility-optimal combinatorial channel assignment algorithms in terms of both achieved network utility and throughput.

Index Terms—Multi-interface multi-channel wireless ad-hoc networks, random access, persistent probabilities, network utility maxi-
mization, convex optimization, single-channel reception, multi-channel reception, partially overlapped frequency channels.

✦

1 INTRODUCTION

Multi-interface multi-channel wireless ad-hoc networks
have recently received increasing attention especially un-
der the context of wireless mesh networks (cf. [1]–[11]).
Various applications include community and neighbor-
hood networking, enterprise networking, and metropoli-
tan area networking [12]. The IEEE 802.11s standard-
ization project also includes using multiple frequency
channels for wireless mesh networking [13].

In a multi-interface multi-channel wireless network,
each node is equipped with multiple (usually 2 or 3)
network interface cards (NICs). Each NIC operates on
a distinct orthogonal frequency channel. The number of
channels varies from 3 (as in IEEE 802.11b/g) to 12 (as in
IEEE 802.11a). Using orthogonal channels can reduce the
interference among simultaneous transmissions and sub-
stantially increase the network capacity. It has recently
been shown in [14] that the performance can further
improve if not only the orthogonal channels, but also
the partially overlapped frequency channels are used.

There exists a wide range of related work aiming
to design efficient channel and interface assignment
algorithms. Some of them (e.g., in [8], [9]) focus on
heuristic schemes, while the others take the analytical ap-
proach and formulate channel and interface assignment
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as optimization problems with various objectives such
as throughput maximization [4], [5], [7], fair resource
allocation [2], and network utility maximization [1].

A common approach in optimization-based channel
assignment is to formulate channel and interface assign-
ment as combinatorial problems: each NIC is assumed to
operate over exactly one channel, either permanently or
for a long period of time. Examples include the formula-
tion of integer optimization problems [1], [2], mixed-integer
optimization problems [3], and graph coloring problems [6],
[7]. Knowing that most combinatorial problems are NP-
hard [11, Appendix A], finding the optimal solution
may require examining all the possible combinations
within the search space. Thus, combinatorial channel as-
signment is usually computationally complicated. Their
distributed implementation is also very challenging due
to issues such as the ripple-effect problem [7], [11].

In this paper, we improve optimization-based channel
assignment in complexity and distributed implementation
aspects. We focus on random access systems which are
appropriate for distributed deployments. Our proposed
schemes to find optimal link and node persistent prob-
abilities can be applied to the existing medium access
protocols by using the mapping between persistent prob-
abilities and contention window sizes [15].

The key contributions of this paper are as follows:

• We formulate optimization-based channel and inter-
face assignments in random access systems, where
the optimization variables are transmission and lis-
tening probabilities in each wireless node. This
includes elaborate mathematical modeling of the
achievable data rate on each wireless link.



• We study channel and interface assignment not only
in NICs with single-channel reception, but also in
NICs with multi-channel reception. Although multi-
channel reception is not widely used in practice, its
deployment is feasible, making it a promising can-
didate for future ad-hoc networking architectures.

• Unlike most of the existing channel assignment
schemes, here we address assigning not only or-
thogonal channels, but also partially overleaped
channels. This better utilizes the frequency spectrum
and further improves the network performance.

• We propose a fast, distributed, and easy to im-
plement algorithm, called distributed multi-interface
multi-channel random access (DMMRA), to solve a net-
work utility maximization problem in multi-channel
random access systems. We prove that DMMRA
outperforms combinatorial channel assignment. We
also analytically study the optimality and conver-
gence properties of the DMMRA algorithm.

• Performance Improvement: Simulation results show
that the DMMRA algorithm with single-channel re-
ception leads to 36% and 23% higher network utility
and aggregate throughput compared to the utility-
optimal combinatorial interface assignment and channel
allocation algorithm in [1]. When multi-channel recep-
tion model is implemented, the utility and through-
put further increase by 57% and 71%, respectively.

This paper differs from the existing related work in
the literature in several aspects. The algorithms in [2]–[6]
are centralized, while we propose a channel and interface
assignment algorithm which can be implemented in a
distributed fashion as long as the wireless nodes can
exchange some control messages with their two-hop
neighbors. On the other hand, our focus is on random
access models where each node independently selects
its own transmission and listening probabilities; how-
ever, the algorithms in [4], [5] focus on scheduling-based
medium access control. Similar to [3]–[5], we formulate
channel assignment as a continuous optimization prob-
lem. However, the optimization problems in [3]–[5] are
first formulated as discrete (i.e., combinatorial) problems,
then simply converted to continuous problem by simply
relaxing integer constraints, leading to major optimal-
ity losses. Our results are also related to the multi-
channel random access models in [8]–[10]; however, the
proposed schemes in [8]–[10] are heuristic (such as the
multi-channel extension of the IEEE 802.11 distributed
coordination function in [8]), while here we consider
analytical modeling of random access in various multi-
channel scenarios. Finally, none of the prior work in [1]–
[11] address partially overlapped channel assignment
and multi-channel reception.

The rest of this paper is organized as follows. The
data rates for various scenarios are modeled in Section
2. The NUM problems are formulated in Section 3. The
DMMRA algorithms are proposed in Section 4. Simu-
lation results are presented in Section 5. Conclusions

TABLE 1
List of Key Notations

N , N Set of all nodes in the network and its cardinality
L, L Set of all links in the network and its cardinality

Lin
n , Lout

n Set of incoming and outgoing links of node n

N in
n , N out

n Set of incoming and outgoing nodes of node n

C, C Set of available frequency channels and its cardinality
In, In Set of available NICs in node n and its cardinality

P
(i)(c)
n Persistent probability for node n on NIC i, channel c

Q
(i)(c)
n Listening probability for node n on NIC i, channel c

p
(i)(c)
nm Persistent probability for link (n,m) on NIC i, channel c

γ
(c)
nm Fixed peak data rate for link (n,m) on channel c

rnm Average data rate for link (n,m)
u(·) Utility function
Φ,Ψ Feasible sets in problems (NUM-S) and (NUM-M)

are given in Section 6. All proofs are given in the
Appendices. A list of key notations is given in Table 1.

2 SYSTEM MODEL

Consider a multi-interface multi-channel wireless ad-hoc
network with N = {1, . . . , N} as the set of wireless nodes
and L = {1, . . . , L} as the set of unidirectional wireless
links1. For each node n ∈ N , we denote the set of
incoming links by Lin

n ⊂ L, with size Lin
n = |Lin

n |, and the
set of outgoing links by Lout

n ⊂ L, with size Lout
n = |Lout

n |.
We also define N in

n = {m : (m,n) ∈ Lin
n } as the set of

in-neighbors and N out
n = {m : (n,m)∈Lout

n } as the set of
out-neighbors of node n, respectively. The set of available
frequency channels is denoted by C = {1, . . . , C}. The
set of NICs for each node n∈N is denoted by In, with
size In = |In|. Each node n ∈ N has Lout

n separate
queues, where each queue stores the packets for one
of the outgoing links of node n (see Fig. 1). Time is
divided into equal-length slots. Similar to slotted Aloha
systems (cf. [16, Section 4.2]), at each time slot, node
n may choose to transmit packets to each of its out-
neighbors m ∈ N out

n using its NIC i ∈ In over channel

c ∈ C with a link persistent probability p
(i)(c)
nm . For the

network in Fig. 1, node n has In = 2 NICs and Ln = 2
outgoing links, where In = {i, j} and N out

n = {m, s}. We
also have: C = {1, 2, 3}. In node n, those packets which
are destined to node m are enqueued in queue [n,m].
Similarly, the packets which are destined to node s are
enqueued in queue [n, s]. At each time slot, a packet from
queue [n,m] is sent to node m (i.e., through link (n,m))
using NIC i over channels 1, 2, or 3, with probabilities

p
(i)(1)
nm , p

(i)(2)
nm , and p

(i)(3)
nm , respectively. Each NIC may only

transmit one packet at a time. Furthermore, each NIC
makes independent decisions on selecting its transmission
and listening probabilities. Next, we obtain the average
data rate model for each link in various scenarios.

2.1 NICs with Single-Channel Reception

In this section, we consider the case where each NIC
can decode the received packets over only one channel

1. Clearly, bidirectional traffic can be modeled as two unidirectional
links, one in each direction. That is, if the link between two nodes
n,m ∈ N is bidirectional, then we have (n,m), (m,n) ∈ L.



Fig. 1. An ad-hoc network with N = {n,m, s} as the set
of nodes. Each node has two NICs and there are C = 3
channels available, denoted by 3 colors. Nodes m and s
are the out-neighbors of node n. We have: In={i, j}.

at a time. We assume that all available channels are
orthogonal. For each node n ∈ N , let Q

(i)(c)
n denote the

probability that node n listens to channel c ∈ C using
its NIC i ∈ In. To be able to listen to channel c, NIC i
on node n needs to be in the receive mode (i.e., does not
transmit any packet) and operates over channel c. The
key feature in single-channel reception model is that if
node n is in the receive mode, and operates over channel
d 6= c, then it cannot decode the signals transmitted over
channel c. In this case, for each node n∈N , we have2

∑

c∈C

(

P
(i)(c)
n +Q

(i)(c)
n

)

= 1, ∀ i ∈ In, (1)

where P
(i)(c)
n denotes the probability that node n trans-

mits some data from NIC i∈In over channel c∈C to one
of its out-neighbors. We call P

(i)(c)
n the node persistent

probability for NIC i of node n over channel c. We have

P
(i)(c)
n =

∑

m∈N out
n

p
(i)(c)
nm . (2)

For each link (n,m) ∈ L, we first consider the case
where there is no interference in the network (i.e., there

are only two nodes). Let Ã
(c)
m denote the action set for all

cases where at least one NIC j ∈ Im transmits packets
over channel c. The probability of this happening is

P

(

Ã
(c)
m

)

= 1−
∏

j∈Im

(

1− P
(j)(c)
m

)

. (3)

Let Â
(c)
m denote the action set for all cases where no NIC

on node m transmits packets over channel c, and no NIC
listens to channel c either. This happens with probability

P

(

Â
(c)
m

)

=
∏

j∈Im

(

1− P
(j)(c)
m −Q

(j)(c)
m

)

. (4)

Since the sets Ã
(c)
m and Â

(c)
m are two disjoint sets (i.e.,

Ã
(c)
m ∩ Â

(c)
m is an empty set), we have

P

(

Ã(c)
m ∪ Â(c)

m

)

=P

(

Ã(c)
m

)

+ P

(

Â(c)
m

)

. (5)

The transmission from NIC i ∈ In on sending node
n∈N over channel c∈C can be received correctly by the
receiving node m∈N out

n only if at least one NIC j ∈Im
is listening to channel c and none of the other NICs on

2. Here we assume that each NIC operates either in transmit or receive
mode. If an NIC also operates in idle mode, then the equality in (1)
is replaced with non-strict inequality “≤” and NIC i ∈ In would be

operating in idle mode with probability 1−
∑

c∈C
(P

(i)(c)
n +Q

(i)(c)
n ).

node m are transmitting packets over frequency channel
c. From (3)-(5), this happens with probability

1−P

(

Ã
(c)
m ∪ Â

(c)
m

)

=
∏

j∈Im

(

1− P
(j)(c)
m

)

−
∏

j∈Im

(

1−P
(j)(c)
m −Q

(j)(c)
m

)

.
(6)

Next, we model the effect of interference in a network
with N nodes. For each pair of nodes s,m∈N , we define
δsm=1 if node s is within the interference range3 of node
m, and δsm=0 otherwise. Since the interference range is
at least as large as the communication range, δsm=1 if s∈
N in

m . A transmission from NIC i on node n to node m via
link (n,m)∈L over channel c does not encounter collision
if there is no simultaneous transmission over channel c
from any NIC j ∈ In\{i} on node n, or any NIC k ∈Is
on node s with δsm=1. This happens with probability

(

∏

j∈In\{i}

(

1− P
(j)(c)
n

))

×
(

∏

s∈N\{n,m}

∏

k∈Is

(

1− δsmP
(k)(c)
s

))

.
(7)

For each wireless link (n,m) ∈ L, let rnm denote the
average data rate, which is a function of the following
persistent and listening probability vectors:

p =
(

p
(i)(c)
nm , ∀n ∈ N , m ∈ N out

n , i ∈ In, c ∈ C
)

, (8)

Q =
(

Q
(i)(c)
n , ∀n ∈ N , i ∈ In, c ∈ C

)

. (9)

From (2), (6) and (7), we have [16]4

rnm(p,Q) =
∑

i∈In

∑

c∈C γ
(c)
nm p

(i)(c)
nm

(

∏

j∈In\{i}

(

1−P
(j)(c)
n

))

(

∏

s∈N\{n,m}

∏

k∈Is

(

1−δsmP
(k)(c)
s

))

(

∏

j∈Im

(

1−P
(j)(c)
m

)

−
∏

j∈Im

(

1−P
(j)(c)
m −Q

(j)(c)
m

))

,

(10)

where γ
(c)
nm denotes the fixed peak data rate5 for link

(n,m) over frequency channel c (i.e., the data rate
achieved by link (n,m) over channel c if there is no other
transmission in the network at the same time). The data
rate model in (10) sums up all the average data rates that
can be achieved by transmitting packets from each NIC
i ∈ In and over each frequency channel c ∈ C.

2.2 NICs with Multi-Channel Reception

Next, consider the case where each NIC can decode
multiple simultaneously received packets as long as they
are transmitted over different orthogonal channels. That
is, each NIC listens to all frequency channels at its receive

3. In this paper, we assume that the transmission powers and con-
sequently the interference ranges are fixed for all nodes. Joint channel
assignment and power control is studied e.g., in [17], [18].

4. We notice that node persistent probability vector P =

(P
(i)(c)
n , ∀n∈N , i∈In, c∈C) can be constructed from link persistent

probability vector p using (2). Thus, for each wireless link (n,m)∈L,
we can denote the average data rate for the single-channel reception
scenario as rnm(p,Q), rather than rnm(p,P ,Q), to avoid redundancy.

5. In general, we may have γ
(c)
nm 6= γ

(d)
nm for any c 6= d as the channel

properties are usually different at different frequency bands.



(a) Single-Channel Reception

(b) Multi-Channel Reception

Fig. 2. Building blocks of the receiver unit in single-
channel reception and multi-channel reception models.
BPF stands for band-pass filter. For each channel c ∈ C,
the central frequency of the channel filter is shown by fc.

mode and applies the band-pass channel filters to all
the received signals. The output of each filter is then
processed separately (i.e., in parallel) in C distinct radio
frequency (RF) chains to distinguish transmissions over
different channels [19]. Figs. 2 (a) and (b) show the basic
building blocks of the receiver device when the single-
channel and multi-channel reception models are used,
respectively. Most of the existing commercial NICs do
not yet implement multi-channel reception. However, we
will show in Section 5 that it can significantly improve
the network performance. Thus, it is an attractive and
promising candidate for future deployments. Note that
for the setting in Fig. 2(b) to be implemented in practice,
various issues such as synchronization and coordination
among the RF chains need to be addressed carefully.

As in Section 2.1, we first consider the no interference
case. Let Ă

(−c)
m denote the action set where all NICs on

node m transmit packets on some channels other than
channel c, and no NIC is in the receive mode. We have

P

(

Ă
(−c)
m

)

=
∏

j∈Im

∑

d∈C\{c} P
(j)(d)
m . (11)

Since the sets Ã
(c)
m (defined in Section 2.1) and Ă

(−c)
m

are disjoint (i.e., Ã
(c)
m ∩ Ă

(−c)
m is an empty set), we have

P

(

Ã(c)
m ∪ Ă(−c)

m

)

= P

(

Ã(c)
m

)

+ P

(

Ă(−c)
m

)

. (12)

In the multi-channel reception model, for any link
(n,m) ∈ L, the transmission from NIC i ∈ In on node
n ∈ N over channel c ∈ C can be received correctly
by node m ∈ N out

n if at least one NIC j ∈ Im is in the
receive mode and none of the other NICs on node m are
transmitting packets over channel c. From (3), (11), and
(12), this happens with probability

1− P

(

Ã
(c)
m ∪ Ă

(−c)
m

)

=

∏

j∈Im

(

1− P
(j)(c)
m

)

−
∏

j∈Im

∑

d∈C\{c} P
(j)(d)
m .

(13)

When the interference is taken into account, from (2),
(7), and (13), for each link (n,m)∈L, we have

rnm(p) =
∑

i∈In

∑

c∈C γ
(c)
nmp

(i)(c)
nm

(

∏

j∈In\{i}

(

1−P
(j)(c)
n

))

(

∏

s∈N\{n,m}

∏

k∈Is

(

1−δsmP
(k)(c)
s

))

(

∏

j∈Im

(

1− P
(j)(c)
m

)

−
∏

j∈Im

∑

d∈C\{c} P
(j)(d)
m

)

.

(14)

Note that since a node can listen to all channels when it
is in the receive mode, the data rate model in (14) does
not depend on the listening probability vector Q.

2.3 Partially Overlapped Frequency Channels

In this section, we extend the data rate models in (10)
and (14) to the general cases, where both orthogonal (i.e.,
non-overlapped) and partially overlapped channels are
used. Unlike orthogonal channels that can only cause co-
channel interference, partially overlapping channels may
also lead to adjacent channel interference. Thus, we borrow
the concept of multiple interference ranges from our recent
work in [14, Section II-D]. For each pair of nodes s,m ∈

N , we define δ
(cd)
sm = 1 if node s is within the interference

range of node m, while node s is operating over channel
c and node m is operating over channel d; otherwise,

δ
(cd)
sm = 0. In general, the smaller the frequency spectrum

overlapping between two channels c and d, the shorter the cor-
responding interference range (cf. [14, Fig. 3]). In fact, as two
wireless links use lower overlapped channels, the less is
the interference power that they cause on each other’s
transmissions. Thus, the interfering transmissions need
to be in shorter distance to block each other’s packets.

We first assume that NICs use single-channel reception
model and there is no interference in the network. For
each link (n,m)∈L, let B̃

(c)
m denote the action set for all

cases where at least one NIC j ∈ Im transmits packets

on some channel d ∈ C such that δ
(cd)
mm = 1. Also, let

B̂
(c)
m denote the action set for all cases where no NIC on

node m transmits packets on any channel d∈C such that

δ
(cd)
mm=1, and no NIC listens to channel c either. We have

P

(

B̃
(c)
m

)

= 1−
∏

j∈Im

(

1−
∑

d∈C δ
(cd)
mmP

(j)(d)
m

)

, (15)

P

(

B̂
(c)
m

)

=
∏

j∈Im

(

1−
∑

d∈C δ
(cd)
mmP

(j)(d)
m −Q

(j)(c)
m

)

.(16)

Since the sets B̃
(c)
m and B̂

(c)
m are disjoint sets, we have

1−P

(

B̃
(c)
m ∪ B̂

(c)
m

)

=
∏

j∈Im

(

1−
∑

d∈C δ
(cd)
mmP

(j)(d)
m

)

−
∏

j∈Im

(

1−
∑

d∈C δ
(cd)
mmP

(j)(d)
m −Q

(j)(c)
m

)

.
(17)

To model the interference, we can modify the collision
avoidance probability model in (7) as
(

∏

j∈In\{i}

(

1−
∑

d∈C δ
(cd)
nm P

(j)(d)
n

))

×
(

∏

s∈N\{n,m}

∏

k∈Is

(

1−
∑

d∈C δ
(cd)
sm P

(k)(d)
s

))

.
(18)



From (17) and (18), when the NICs implement single-
channel reception and all partially overlapped channels
are available, the average data rate of link (n,m) ∈ L is

rnm(p,Q) =
∑

i∈In

∑

c∈Cγ
(c)
nmp

(i)(c)
nm

(

∏

j∈In\{i}

(

1−
∑

d∈Cδ
(cd)
nm P

(j)(d)
n

))

(

∏

s∈N\{n,m}

∏

k∈Is

(

1−
∑

d∈C δ
(cd)
sm P

(k)(d)
s

))

(

∏

j∈Im

(

1−
∑

d∈C δ
(cd)
mmP

(j)(d)
m

)

−
∏

j∈Im

(

1−
∑

d∈C δ
(cd)
mmP

(j)(d)
m −Q

(j)(c)
m

))

.

(19)

We now consider the multi-channel reception scenario.

For any link (n,m)∈L, let B̆
(−c)
m denote the set of actions

for all cases where no NIC on node m transmits packets
over channel c or any other channel d ∈ C\{c} such

that δ
(cd)
mm = 1, and no NIC is silent either. In other

words, all NICs on node m transmit packets on some
channels other than those channels that have (full or
partial) overlapping with channel c. We have

P

(

B̆
(−c)
m

)

=
∏

j∈Im

∑

d∈C

(

1− δ
(cd)
mm

)

P
(j)(d)
m . (20)

Notice that for any node m∈N , if frequency channels
c, d ∈ C are either fully or partially overlapped, then

1−δ
(cd)
mm = 0. From (15), (18), and (20), when the NICs use

multi-channel reception and all non-overlapped as well
as partially overlapped channels are being available, the
average data rate of link (n,m) ∈ L becomes

rnm(p) =
∑

i∈In

∑

c∈Cγ
(c)
nmp

(i)(c)
nm

×
(

∏

j∈In\{i}

(

1−
∑

d∈Cδ
(cd)
nm P

(j)(d)
n

))

(

∏

s∈N\{n,m}

∏

k∈Is

(

1−
∑

d∈C δ
(cd)
sm P

(k)(d)
s

))

(

∏

j∈Im

(

1−
∑

d∈C δ
(cd)
mmP

(j)(d)
m

)

−
∏

j∈Im

∑

d∈C

(

1− δ
(cd)
mm

)

P
(j)(d)
m

)

.

(21)

It can be verified that, if all the channels are orthogonal
(i.e., δcdsm = 0 for all s,m ∈ N and any c 6= d), then the
rates in (19) and (21) reduce to (10) and (14), respectively.

3 NETWORK UTILITY MAXIMIZATION

Expressions in (1)-(21) model the average link data rates
for different multi-interface multi-channel random access
scenarios. In this section, we formulate the random ac-
cess problems for each scenario in a unified framework.

3.1 Problem Formulation

Within the NUM framework, the resource allocation
problem can be formulated either at link layer [20], [21] or
at transport layer [22]. Here, for the ease of exposition, we
limit our study to the link-layer NUM6. In this regard,

6. We can extend the model to a transport-layer NUM similar to the
joint congestion control and medium access control design in [23].

each link (n,m) ∈ L is assumed to maintain a utility
u(rnm), which is an increasing and concave function of
its rate rnm and indicates the degree of satisfaction of
link (n,m) on its data rate. The utility of link (n,m)
is also a function of all the persistent and listening
probabilities p and Q. Assuming that the single-channel
reception model is used, we are interested in finding the
optimal solution of the following NUM problem:

maximize
〈p,Q〉∈Φ

∑

n∈N

∑

m∈N out
n

u(rnm(p,Q)), (NUM-S)

where the data rates are as in (10) if only the orthogonal
channels are used, and as in (19) if both orthogonal and
partially overlapped channels are used. We also have

Φ ={ 〈p,Q〉 : p
(i)(c)
nm , P

(i)(c)
n , Q

(i)(c)
n ∈ [0, 1],

P
(i)(c)
n =

∑

m∈N out
n

p
(i)(c)
nm ,

∑

d∈C

(

P
(i)(d)
n +Q

(i)(d)
n

)

=1,

∀n ∈ N , m ∈ N out
n , i ∈ In, c ∈ C }.

On the other hand, if multi-channel reception is used,
then the following NUM problem is being solved:

maximize
p ∈ Ψ

∑

n∈N

∑

m∈N out
n

u(rnm(p)), (NUM-M)

where the data rates are as in (14) if only the orthogonal
channels are used, and as in (21) if both orthogonal and
partially overlapped channels are used. We have

Ψ ={ p : p
(i)(c)
nm , P

(i)(c)
n ∈ [0, 1], P

(i)(c)
n =

∑

m∈N out
n

p
(i)(c)
nm ,

∑

d∈C P
(i)(d)
n ≤1, ∀n∈N , m∈N out

n , i∈In, c∈C }.

Sets Φ and Ψ include only linear constraints. Therefore,
they are convex sets [24]. Various concave utility func-
tions can also be considered to achieve different design
objectives. A popular class of utility functions are α-fair
utilities [25], where for each link (n,m) ∈ L, we have

u(rnm) =

{

(1− α)−1r1−α
nm , if α ∈ (0, 1) ∪ (1,∞),

log rnm, if α = 1.
(22)

Using (22), a wide range of efficient and fair resource al-
locations among the link-layer flows can be modeled. In
particular, optimization problems (NUM-S) and (NUM-
M) reduce to throughput maximization with α → 0, to
proportional fair allocation with α=1, to harmonic mean
fairness with α=2, and to max-min fairness with α→∞.

Unlike most of the previously proposed optimization-
based channel assignment models, where the formulated
optimization problems are combinatorial and discrete-
valued (cf. [1]–[3], [6], [7]), problems (NUM-S) and
(NUM-M) are continuous-valued. They make the analysis
of our models substantially easier. Notice that, within
the NUM framework at the link-layer, the combinatorial
channel assignment problem can be formulated as the



following mixed-integer optimization problem [1]:

maximize
〈p,Q〉 ∈ Φ

x ∈ Υ

∑

n∈N

∑

m∈N out
n

u(rnm(p,Q)),

subject to
∑

c∈C x
(i)(c)
n =1, ∀n∈N , i∈In,

P
(i)(c)
n ≤ x

(i)(c)
n , ∀n∈N , i∈In, c∈C,

Q
(i)(c)
n ≤ x

(i)(c)
n , ∀n∈N , i∈In, c∈C,

(NUM-C)

where for each node n ∈ N , any NIC i ∈ In, and each

channel c ∈ C, the integer variable x
(i)(c)
n is defined as

x(i)(c)
n =

{

1, if NIC i operates over channel c,
0, otherwise.

(23)

We also have x = (x
(i)(c)
n , ∀n∈N , i∈In c∈C) and

Υ =
{

x : x(i)(c)
n ∈ {0, 1}, ∀n∈N , i∈In c∈C

}

.

From the first constraint in (NUM-C), each NIC can be
assigned to exactly one channel. In the context of combi-
natorial channel assignment, the selection of the operating
channel for each NIC is called interface-to-channel binding
[7]. From the second and the third constraints, NIC i
cannot transmit over or listen to channel c ∈ C if it is
not operating on channel c. By solving the mixed-integer
problem (NUM-C), we can select not only the operating
channel, but also the persistent and listening probabili-
ties corresponding to the operating channel of each NIC
to achieve utility-optimal performance within the com-
binatorial channel and interface assignment framework.

Theorem 1: Let U⋆
SCR, U⋆

MCR, and U⋆
Comb denote the

optimal solution of problems (NUM-S), (NUM-M), and
(NUM-C), respectively. We can show the following:
(a) Random access with multi-channel reception outper-
forms random access with single-channel reception:

U⋆
SCR ≤ U⋆

MCR. (24)

(b) Random access with single-channel reception outper-
forms NUM-based combinatorial channel assignment:

U⋆
Comb ≤ U⋆

SCR. (25)

The proof of Theorem 1 is given in Appendix A.

3.2 Examples

First, consider a unidirectional ring topology with N = 3
nodes, L = 3 links, and C = 3 channels. The utilities
are logarithmic (i.e., α = 1). Each node has one NIC.
We have: N = {n,m, s}, L = {(n,m), (m, s), (s, n)}, and

C = {1, 2, 3}. For any c ∈ C, γ
(c)
nm = γ

(c)
ns = γ

(c)
sn = 11

Mbps. In this scenario, combinatorial channel assign-
ment strategies can only assign the same channel to all
NICs in the network. Otherwise, at least two nodes
cannot communicate with each other. Thus, we have:
U⋆
Comb = 3 log(11 × 1

3 × (1− 1
3 ) × (1− 1

3 )) = 1.465, where
each link is optimally active with probability 1

3 . On the
other hand, U⋆

SCR=3 log(11× 1
2 × (1−0)× (1−1

2))=3.035,

where P
(1)(1)
n =Q

(1)(3)
n = 0.5, P

(1)(2)
n =P

(1)(3)
n =Q

(1)(1)
n =

Q
(1)(2)
n = 0, P

(1)(2)
m = Q

(1)(1)
m = 0.5, P

(1)(1)
m = P

(1)(3)
m =

Q
(1)(2)
m =Q

(1)(3)
m = 0, P

(1)(3)
s =Q

(1)(2)
s = 0.5, and P

(1)(1)
s =

P
(1)(2)
s =Q

(1)(1)
s =Q

(1)(3)
s = 0. That is, on average, each

node transmits to its out-neighbor on one channel during
half of the time slots and listens to its in-neighbor on a
different channel during the other half of the time slots.
As a result, each of the 3 links in the network is active on
a distinct channel and the available frequency spectrum
is fully utilized. The performance gain is 3.035

1.465 = 2.1. In
this example, we have: U⋆

Comb < U⋆
SCR = U⋆

MCR.
Next, consider a bidirectional ring topology, where

N = {n, m, s} and L = {(n,m), (m,n), (m, s), (s,m),
(s, n), (n, s)}. The rest of the parameters are the same as
the previous example. Again, any combinatorial channel
assignment assigns the same channel to all NICs. We
have: U⋆

Comb = 6 log(11 × 1
6 ×(1 − 1

3 )×(1 − 1
3 )) =−1.229,

where each link is optimally active with probability
1
6 . Each node is also optimally active with probability
2×1

6 =
1
3 as it has two outgoing links. On the other hand,

U⋆
SCR=6 log(11× 0.2113× (1− 0.2113)× 0.5774) = 0.341,

where each node listens to one distinct channel with
probability 0.5774. Each node also transmits to its out-
neighbors using two different channels, other than the
channel that it listens to. Finally, U⋆

MCR = 6 log(11× 1
4 ×

(1− 0)× (1− 1
2 )) = 1.9107, where each node transmits to

both of its out-neighbors using one of the three channels
with probability 1

4 . Each NIC is silent with probability
1
2 . In this example, U⋆

Comb < U⋆
SCR < U⋆

MCR.
Theorem 1 and the above examples show that our

proposed random access models can outperform com-
binatorial channel and interface assignment. We will
investigate this issue further in Section 5.2.

4 DMMRA ALGORITHMS

Although the objective functions in problems (NUM-
S) and (NUM-M) are concave in link rates r =
(rnm, ∀(n,m) ∈ L), they are not concave in persistent and
listening probabilities p and Q due to the product forms
in (10), (14), (19), and (21). Thus, finding the optimal
solutions of these non-convex optimization problems are
not easy in general. In this section, we discuss some of
the features of problems (NUM-S) and (NUM-M) which
will help us to develop our distributed multi-interface
multi-channel random access (DMMRA) algorithms.

4.1 Local NUM Problems

For each node n∈N and any NIC i ∈ In, we define

p(i)
n =

(

p
(i)(c)
nm , ∀m ∈ N out

n , c ∈ C
)

, (26)

Q(i)
n =

(

Q
(i)(c)
n , ∀c ∈ C

)

, (27)

to be the persistent and listening probabilities of NIC
i, respectively. Consider the following local and myopic
optimization problem in NIC i ∈ In, when the single-
channel reception model is being used:

maximize
〈p

(i)
n ,Q

(i)
n 〉∈Φ

(i)
n

∑

m∈N

∑

s∈N out
m

u(rms(p,Q)).

(Local-NUM-S)



Here, the average data rates are as in (10) and we have

Φ(i)
n ={ 〈p

(i)
n ,Q(i)

n 〉 : p
(i)(c)
nm , P

(i)(c)
n , Q

(i)(c)
n ∈ [0, 1],

P
(i)(c)
n =

∑

m∈N out
n
p
(i)(c)
nm ,

∑

d∈C

(

P
(i)(d)
n +Q

(i)(d)
n

)

=1, ∀m∈N out
n , c∈C}.

(28)

Similarly, consider the following local and myopic prob-
lem when the multi-channel reception model is used:

maximize
p
(i)
n ∈Ψ

(i)
n

∑

m∈N

∑

s∈N out
m

u(rms(p)). (Local-NUM-M)

Here, the average data rates are as in (14) and we have:

Ψ(i)
n ={ p(i) : p

(i)(c)
nm , P

(i)(c)
n ∈ [0, 1],

∑

d∈C P
(i)(d)
n ≤ 1,

P
(i)(c)
n =

∑

m∈N out
n

p
(i)(c)
nm , ∀m∈N out

n , c∈C }.
(29)

The objective functions in (Local-NUM-S) and (Local-
NUM-M) are the same as those in (NUM-S) and (NUM-
M), respectively. However, the variables in (Local-NUM-
S) and (Local-NUM-M) are local to NIC i in node n.

For the case with single-channel reception, we define

p(−i)
n =

(

p
(j)
n , ∀j∈In\{i}, p

(k)
m , ∀k∈Im,m∈N\{n}

)

, (30)

Q(−i)
n =

(

Q(j)
n , ∀j∈In\{i}, Q

(k)
m , ∀k∈Im,m∈N\{n}

)

. (31)

The above are the persistent and listening probabilities
corresponding to all NICs in the network other than
NIC i in node n. By solving problem (Local-NUM-S),

we can select p
(i)
n and Q(i)

n such that the total utility is

maximized assuming that p
(−i)
n and Q(−i)

n are fixed.

Theorem 2: Problems (Local-NUM-S) and (Local-
NUM-M) are convex optimization problems.

The proof of Theorem 2 is given in Appendix B.
From Theorem 2, we can use various convex programming
techniques (cf. [24]) to solve problems (Local-NUM-S)
and (Local-NUM-M). The optimal solutions of prob-
lems (Local-NUM-S) and (Local-NUM-M) can also be
obtained in closed-form for some simple scenarios:

Theorem 3: For a two-node single-interface multi-
channel network (i.e., when N = 2, C > 1, and In = 1

for all n ∈ N ) with α-fair utilities, let M(p
(−i)
n ) denote

a C × C matrix that the entry in row c and column d is

M (cd)
(

p(−i)
n

)

= 1 +
γ
(d)
nm/γ

(c)
nm

α

√

(

1−
∑

e∈C
p
(j)(e)
mn

∑
e∈C

γ
(e)
mnp

(j)(e)
mn

γ
(c)
nm

)α−1
. (32)

Here j denotes the (only) NIC of node m. If M(p
(−i)
n )

is an invertible matrix, then the optimal solution of
problem (Local-NUM-M) can be obtained as

p(i)∗

n = M(p(−i)
n )−1

1, ∀n ∈ N , i ∈ In, (33)

where 1 is a C × 1 unit vector.

The proof of Theorem 3 is given in Appendix C. We
note that in certain cases, problem (Local-NUM-M) may
have non-unique solutions. For example, if α = 1 and

peak rates are the same for all channels, any vector p
(i)
n

Algorithm 1 - DMMRA-S: Executed by each node n ∈ N
when the NICs implement single-channel reception.

1: Allocate memory for p and Q.
2: Randomly choose p and Q such that 〈p,Q〉 ∈ Φ.
3: repeat
4: for each NIC i ∈ In do
5: Either transmit to node m∈N out

n on channel c∈C

or listen to channel c ∈ C with probabilities p
(i)(c)
nm

and Q
(i)(c)
n , respectively.

6: end for
7: if t ∈ T

(i)
n for some i ∈ In then

8: Solve problem (Local-NUM-S) using IPM [24].

9: Update p
(i)
n and Q(i)

n according to the solution.

10: Inform p
(i)
n and Q(i)

n to nodes in 2Rmax distance.
11: end if
12: if a message is received from another node then
13: Update p and Q accordingly.
14: end if
15: until node n leaves the network.

such that
∑

c∈C p
(i)(c)
nm = 1

2 is optimal. When the network
has a large number of nodes we can solve the convex
problems (Local-NUM-S) and (Local-NUM-M) using the
interior-point method (IPM) [24] via local iterations.

For each node n ∈ N and any NIC i ∈ In, we rewrite
the objective function of problem (Local-NUM-S) to be

∑

s∈N,δns=1

∑

m∈N in
s
u(rms(p,Q)) + Γ(p

(−i)
n ,Q(−i)

n ), (34)

where Γ depends only on p
(−i)
n and Q(−i)

n , but not p
(i)
n

and Q(i). Thus, the value of Γ needs not be known to
solve problem (Local-NUM-S). On the other hand, each
node n can determine

∑

s∈N ,δsn=1

∑

m∈N in
s
u(rms(p,Q))

if it is given the persistent and listening probabilities
of all nodes within its 2Rmax distance, where Rmax =
maxm∈N Rm and Rm is the interference range of node
m. To see this, note that any node s ∈ N can calculate
the data rate rms for any of its incoming links (m, s),
where m ∈ N in

n , if it knows the persistent and listening
probabilities of all nodes which are located within its
Rmax distance. Moreover, any node s ∈ N such that
δns = 1 is located within the Rmax distance of node n.
Therefore, problem (Local-NUM-S) can be solved locally
if all nodes within 2Rmax distance of node n can inform
their persistent and listening probabilities to node n. A
similar statement is true for problem (Local-NUM-M).

4.2 Algorithms

Our proposed DMMRA algorithms, when the single-
channel reception and multi-channel reception models
are being used, are shown in Algorithm 1 (DMMRA-
S) and Algorithm 2 (DMMRA-M), respectively. For each

node n ∈ N and any of its NICs i ∈ In, let T
(i)
n

be an unbounded set of time slots at which node n
updates NIC i’s persistent and listening probabilities.
We assume that the updates are asynchronous across the



Algorithm 2 - DMMRA-M: Executed by each node n ∈
N when the NICs implement multi-channel reception.

1: Allocate memory for p.
2: Randomly choose p such that p ∈ Ψ.
3: repeat
4: for each NIC i ∈ In do
5: Transmit to node m∈N out

n on channel c ∈C with

probability p
(i)(c)
nm .

6: end for
7: if t ∈ T

(i)
n for some i ∈ In then

8: Solve problem (Local-NUM-M) using IPM.

9: Update p
(i)
n according to the solution.

10: Inform p
(i)
n to nodes within 2Rmax distance.

11: end if
12: if a message is received from another node then
13: Update p accordingly.
14: end if
15: until node n leaves the network.

network. That is, T
(i)
n ∩ T

(j)
n = ∅ for all j ∈ In\{i} and

T
(i)
n ∩ T

(k)
m = ∅ for all m ∈ N\{n} and any k ∈ Im.

In line 2 of Algorithm 1, node n randomly initiates all
of its persistent and listening probabilities. Lines 4 to
14 are then executed repeatedly at every time slot until
node n leaves the network or switches off. In lines 4 to
6, node n either transmits or receives packets according
to its persistent and listening probabilities. On the other
hand, lines 8 to 10 are executed only if there exists an

NIC i ∈ In such that t ∈ T
(i)
n . That is, the current

time slot is a time slot at which the persistent and
listening probabilities of NIC i need to be updated by
solving problem (Local-NUM-S). Recall from Theorem
2 that problem (Local-NUM-S) is convex. Thus, it can
easily be solved using IPM. In line 10, node n announces
its updated persistent and listening probabilities to all
nodes within its 2Rmax distance, where Rmax is de-
fined in Section 4.1. This can be done using limited-
scope message flooding [26, pp. 408]. Upon reception of
the new probability values from other nodes, in line 13,
node n updates its local memory accordingly. Finally,
for distributed implementation of Algorithm 1, we need
to slightly modify the feasible sets in (28) such that for
each n ∈ N , any NIC i ∈ In, and each m ∈ N out

n , we

have: p
(i)(c)
nm , Q

(i)(c)
n ∈ [ǫ, 1− ǫ], where 0 < ǫ ≪ 1

2 is a small
design parameter (e.g., ǫ = 10−6). This requires all NICs
to listen to all channels and transmit over all channels
with small non-zero probabilities. Similar assumptions
are made to avoid node starvation in the single-channel
random access algorithms in [20] and [21].

Algorithm 2 works similarly. The persistent probabil-
ities are adjusted by solving the convex optimization
problem in (Local-NUM-M). Note that, in general, Al-
gorithm 2 is less complex compared to Algorithm 1 as
problem (Local-NUM-M) has fewer variables and con-
straints compared to (Local-NUM-S). Both Algorithms 1
and 2 are distributed and allow each node to adjust its

operation based on a few simple local tasks and some
limited-scope message exchange with other nodes.

4.3 Optimality, Convergence, and Complexity

In this section, we investigate the optimality, conver-
gence, and complexity of DMMRA algorithms. For each
node n∈N and any NIC i∈In, we define

f
(i)
n,SCR

(

p
(−i)
n ,Q(−i)

n

)

= arg max
〈p

(i)
n ,Q

(i)
n 〉∈Φ

(i)
n

∑

m∈N

∑

s∈N out
m

u(rms(p,Q)),

and

f
(i)
n,MCR

(

p
(−i)
n

)

= arg max
p
(i)
n ∈Ψ

(i)
n

∑

m∈N

∑

s∈N out
m

u(rms(p)).

We also define fSCR = (f
(i)
n,SCR, ∀ i∈In, n∈N ) and

fMCR = (f
(i)
n,MCR, ∀ n∈N , i∈In) as the mapping func-

tions corresponding to Algorithms 1 and 2, respectively.
Let FSCR and FMCR denote the set of fixed points (cf.
[27, pp. 181]) of mappings fSCR and fMCR, respectively.
That is, if 〈p∗,Q∗〉 ∈ FSCR, then fSCR(p,Q) = 〈p∗,Q∗〉.
Similarly, if p∗ ∈ FMCR, then fMCR(p) = p∗. Also let
SSCR and SMCR denote the set of all stationary points
(cf. [28, pp. 194]) of problems (NUM-S) and (NUM-
M), respectively. All local/global optimal solutions of
problems (NUM-S) and (NUM-M) belong to sets SSCR

and SMCR, respectively. We can show the following:

Theorem 4: FSCR = SSCR and FMCR = SMCR.

The proof of Theorem 4 is given in Appendix D. From
Theorem 4, any fixed point of Algorithm 1 is indeed a
stationary point of optimization problem (NUM-S) and
vice versa. The same statement is true for Algorithm 2
and optimization problem (NUM-M).

Theorem 5: (a) For any choice of system parameters
(i.e., the topology parameters, number of channels, num-
ber of NICs, links’ peak data rates, and choice of utility
functions), the fixed point of Algorithm 1 (Algorithm 2)
always exists. (b) If the number of channels C = 1 and
α ≥ 1, then Algorithm 1 (Algorithm 2) has a unique fixed
point. (c) If C > 1, then Algorithm 1 (Algorithm 2) may
have more than one (i.e., non-unique) fixed points.

The proof of Theorem 5 is given in Appendix E. From
Theorems 4 and 5(b), if the number of channels C = 1,
then the unique fixed point of Algorithm 1 (Algorithm
2) is the global optimal solution of problem (NUM-S)
(problem (NUM-M)). On the other hand, from Theorem
4 and Theorem 5(c), if C > 1, then any fixed point of
Algorithm 1 (Algorithm 2) is at least a local maximum
of problem (NUM-S) (problem (NUM-M)).

Next, we discuss convergence. Let USCR(t) and
UMCR(t) denote the aggregate network utilities at time
slot t, while running Algorithms 1 and 2, respectively.

Theorem 6: For any choice of system parameters, (a)
At each time slot t, the instantaneous aggregate network
utilities USCR(t) and UMCR(t) are upper bounded:

USCR(t), UMCR(t) ≤ L u(C Imax γmax), ∀(n,m)∈L, (35)



where Imax=maxn∈N In and γmax=max(n,m)∈L,c∈C γ
(c)
nm.

(b) The instantaneous network utilities USCR(t) and
UMCR(t) are non-decreasing. That is, for any T ≥ 2,

USCR(1) ≤ USCR(2) ≤ · · · ≤ USCR(T ), (36)

UMCR(1) ≤ UMCR(2) ≤ · · · ≤ UMCR(T ). (37)

(c) Starting from any initial point 〈p,Q〉 and p, Algo-
rithms 1 and 2 converge to one of their fixed points,
respectively, i.e., there exist U∗

SCR and U∗
MCR such that

U∗
SCR = lim

t→∞
USCR(t), U∗

MCR = lim
t→∞

UMCR(t). (38)

The proof of Theorem 6 is given in Appendix F. From
Theorem 4, U∗

SCR and U∗
MCR are the local maxima for

problems (NUM-S) and (NUM-M), respectively. In many
cases, the achieved fixed points are not only locally
optimal, but also globally optimal. For example, we can
verify that for the sample topologies in Section 3.2, we
have: U∗

SCR = U⋆
SCR and U∗

MCR = U⋆
MCR. We also note

that the assumption of turn-taking is not a requirement
for our algorithms and only helps us to construct some
sufficient conditions to prove the convergence.

For the complexity of Algorithm 1, we notice that at

each update interval (i.e., at each time slot t ∈ T
(i)
n for

any node n ∈ N and each NIC i ∈ In), we need to
solve problem (Local-NUM-S) using IPM. It is known
that IPM has polynomial (P) complexity [24]. Therefore,
the complexity it takes to execute line 8 in Algorithm 1
is upper-bounded by a polynomial function of the problem
size. Since problem (Local-NUM-S) is a local problem for
each NIC with only a few variables and constraints, the
problem size is small. Thus, Algorithm 1 is a tractable
algorithm and can be implemented easily in practical
random access systems. In particular, its complexity is
significantly less compared to combinatorial interface
and channel assignment algorithms (e.g., [1]–[3], [6], [7],
[11]). Recall from Section 1 that combinatorial schemes
have non-polynomial (NP) complexity. Similar statements
are true for the complexity of Algorithm 2.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
DMMRA algorithms. We study the convergence, ro-
bustness, and optimality properties, evaluate the perfor-
mance gain of assigning partially overlapped channels,
and measure the signalling overhead. We also compare
DMMRA with utility-optimal combinatorial interface assign-
ment and channel allocation (UO-CIACA) [1] and multi-
channel medium access control (MMAC) [8] algorithms.

In our simulation, we consider ten random topologies.
Unless otherwise is stated, each topology includes N=10
nodes, randomly located in a 500 m × 500 m square field.
Communication and interference ranges are 150 m and

250 m, respectively. The peak data rates (i.e., γ
(c)
nm for all

(n,m) ∈ L and c ∈ C) are selected randomly between 6
and 54 Mbps, as in the IEEE 802.11a standard. Except
in Section 5.3, the utility functions are logarithmic. Each
time slot is 1 sec. The simulation time is 1000 time slots.
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Fig. 3. Trend of network utility versus time for Algorithms
1 and 2 for the first simulated topology.

5.1 Convergence

In this experiment, we set the number of channels C = 6
and the number of NICs In = 2 for all n ∈ N . The trends
of the network utilities for the first simulated topology
(i.e., topology number 1) when the DMMRA algorithms
are being used are shown in Fig. 3. We can see that both
Algorithms 1 and 2 converge to their fixed-points very
fast, i.e., within 152 and 146 time slots, respectively. We
can also observe that the utility values are non-decreasing
and bounded, which confirm the results in Theorem 6(b).
At the steady state, Algorithm 1 results in 34% higher
utility, compared to UO-CIACA. Using Algorithm 2, the
utility is further increased by 40%. Thus, equations (36)
and (37) hold as strict inequalities in this case. Similar
results are observed for other topologies.

5.2 Comparison with a Combinatorial Scheme

Next, we compare DMMRA with UO-CIACA [1] in
terms of both utility and throughput. Simulation setting
is the same as in Section 5.1. We notice that the UO-
CIACA algorithm is designed to solve problem (NUM-
C). In other words, DMMRA and UO-CIACA algorithms
have the same design objective: maximizing the network
aggregate utility. However, the formulation for the UO-
CIACA scheme is a mixed-integer (i.e., combinatorial)
problem, while the one for the DMMRA scheme is con-
tinuous. Therefore, implementing the UO-CIACA algo-
rithm is NP-hard and is more complex than the DMMRA
algorithm. We also notice that unlike the DMMRA algo-
rithm which is distributed and requires information only
from two-hop neighbors in each node, the UO-CIACA
algorithm is centralized and is designed based on the
availability of all global information in the network.

Results are shown in Fig. 4, where each point is the av-
erage of the measurements for all ten simulated topolo-
gies. We can see that both utility and throughput increase
as there are more channels available. Algorithm 1 results
in 36% and 23% higher utility and throughput, compared
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Fig. 4. Comparison between Algorithms 1 and 2 with
(UO-CIACA) algorithm [1]. The number of available chan-
nels varies from 1 to 6. (a) Network utility, (b) Throughput.

to UO-CIACA, respectively (see Theorem 1(b)). Using
Algorithm 2 leads to further 57% and 71% increase in
utility and throughout, respectively (see Theorem 1(a)).

5.3 Impact of Utility Parameter α

Recall from Section 3.1 that by changing the utility
parameter α, various design objectives can be modeled.
In particular, α can act as a knob in Algorithms 1 and
2 to control the trade-off between efficiency and fair-
ness. In this section, we compare DMMRA-S algorithm
with MMAC [8], which is the multi-channel extension
of the IEEE 802.11 distributed coordination function.
For each NIC, MMAC assigns the channel which has
the least scheduled transmission within the neighborhood.
Since the MMAC algorithm is a heuristic, we cannot
match it to an exact optimization problem. However,
as pointed out in [8], MMAC aims to increase network
throughput. We also notice that the MMAC algorithm is
fully distributed and does not require message passing
(other than RTS/CTS/ACK); thus, it is less complex
than the DMMRA algorithm. MMAC is designed for
single-interface multi-channel networks. It also assumes
that each NIC can listen to only one channel at a time.
Thus, MMAC is suitable for comparison with Algorithm
1, where In = 1 for all n ∈ N . We set the number
of channels C = 6. Running both Algorithm 1 and
MMAC for all ten topologies, the network throughput
and fairness index, when α varies between 0.5 and 5,
are shown in Fig. 5 (a) and (b), respectively. The fairness
index is calculated among the data rates of all links
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Fig. 5. Comparison between Algorithm 1 and MMAC
[8]. Each node has one NIC and there are 6 channels
available. For Algorithm 1, the parameter α is varied from
0.5 to 5. (a) Throughput, (b) Fairness index.

as in [29]. We can see that, by increasing α, we can
make the system more fair, but less efficient (and vice
versa). If α=0.5, then Algorithm 1 results in 74% higher
throughput, compared to MMAC. If α=5, Algorithm 1
results in 97% higher fairness index. Thus, Algorithm 1
can be tuned for better efficiency or better fairness.

5.4 Signalling Overhead

Both Algorithms 1 and 2 require message exchange
among the neighboring nodes. In this section, we mea-
sure the signalling overhead for each algorithm and
compare it with the network throughput. We assume
that each probability value occupies two bytes. Thus,
for each node n ∈ N , the message size is 2C(Lout

n + 2)
bytes and 2C(Lout

n + 1) bytes for Algorithms 1 and 2,
respectively. For each NIC i ∈ In, we assume the use of
limited-scope message flooding [26, pp. 408] to distribute

〈p
(i)
n ,Q(i)

n 〉 (for single-channel reception scenario) and

p
(i)
n (for multi-channel reception scenario) to all nodes

within 2Rmax distance. In limited-scope flooding, each
control message has a hop-count field in its header. Every
time that a node forwards a message, it decrements the
hop-count by one. Thus, the control message is no longer
forwarded as soon as the hop-count reaches zero. In this
regard, if a node sets the hop-count to 2, then only the
nodes within two hops will receive the control message.

The signalling overhead (in Kbps) and throughput (in
Mbps), when the number of nodes N varies from 10 to
50, are shown in Fig. 6 (a) and (b), respectively. The



10 20 30 40 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of Nodes, N

S
ig

na
lli

ng
 O

ve
rh

ea
d 

(K
bp

s)
(a)

10 20 30 40 50
0

100

200

300

400

500

600

700

800

900

Number of Nodes, N

T
hr

ou
gh

pu
t (

M
bp

s)

(b)

Algorithm 1 (DMMRA−S)
Algorithm 2 (DMMRA−M)

Algorithm 2 (DMMRA−M)
Algorithm 1 (DMMRA−S)

37 %

91 %

Fig. 6. Signalling overhead and aggregate network
throughput for Algorithms 1 and 2 when the number of
nodes N varies from 10 to 50. Each node is equipped with
2 NICs and there are 6 orthogonal channels available.

signalling overhead increases as the number of nodes
increases. However, it is always negligible compared to
the throughput (i.e., less than 0.002%). We notice that
Algorithm 2 always incurs lower overhead as it has
smaller messages and converges faster. When N = 50,
Algorithm 2 results in 37% lower signalling overhead
and 91% higher throughput, compared to Algorithm 1.

5.5 Partially Overlapped Channel Assignment

Given the data rate models in (19) and (21), Algorithms 1
and 2 can be used to assign not only the non-overlapped
channels, but also the partially overlapped channels.
This is particularly important when the number of or-
thogonal channels is limited; e.g., as in IEEE 802.11b
standard, where only 3 out of 11 channels are non-
overlapped. The throughput, when Algorithm 2 is used,
is shown in Fig. 7. The results for Algorithm 1 are similar.
The channel filters are assumed to be raised cosine with
roll-off factors equal to 1 (cf. [19]). The dashed lines cor-
respond to the measured throughput when either single
channel (i.e., channel 1), two non-overlapped channels
(i.e., channels 1 and 6), or three non-overlapped channels
(i.e., channels 1, 6, and 11) are used. We see that, using
Algorithm 2, assigning the partially overlapped chan-
nels 1, . . ., 6, instead of assigning only non-overlapped
channels 1 and 6, results in 11% higher throughput. By
assigning all partially overlapped channels 1, . . ., 11,
instead of assigning only the non-overlapped channels
1, 6, and 11, the throughput is increased by 13%. Here,
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Fig. 7. Performance improvement when both orthogonal
and partially overlapped channels are being used. The
number of available channels is varied from 1 to 11.

the improvements are achieved with no extra resources.
Thus, the available spectrum is utilized more efficiently.

5.6 Impact of Delayed and Outdated Information

In some practical scenarios, the nodes may receive
outdated information about the persistent and listening
probabilities of other nodes. This can be due to commu-
nication delay (e.g., queueing or propagation delay) or
message loss. The latter can occur due to channel imperfec-
tions (e.g., fading) or packet collision. In this section, we
study the effect of outdated information exchange on
the performance of DMMRA algorithms. In particular,
we consider the case where the communication medium
imposes random delay on the exchanged messages. The
trend of the network utility for the first simulated topol-
ogy, when Algorithm 1 is being used and the messages
experience delay up to 10 time slots (i.e., 10 seconds),
is shown in Fig. 8. We can see that Algorithm 1 still
converges to its fixed-point, even though the information
used by the nodes is outdated. However, communication
delay may cause utility fluctuation (compare Fig. 8 and
Fig. 3). That is, at some time instances, since the node,
which executes DMMRA, may not have accurate infor-
mation about the persistent and listing probabilities of
its neighboring nodes, the value of the utility may be de-
creased. Nevertheless, Algorithm 1 still (asynchronously)
converges to its fixed point, but with lower convergence
speed. Similar results are obtained for Algorithm 2.

5.7 Optimality

From Theorem 4, every fixed point of DMMRA algo-
rithms is at least a local maximum for NUM problems.
However, the fixed-points may not always be globally
maximum. In this section, we investigate the optimality
of Algorithms 1 and 2. Results are shown in Fig. 9.
In this figure, the average utility is compared with the
optimal utility for each topology. To obtain the results,
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we calculate the utility at all fixed-points. This is done
by partitioning the search space and running DMMRA
with the initial points varying among the partitions.
Specifically, for each topology, we obtain both mean
utility value and maximum utility value among all fixed-
points. The former indicates the average performance
of our proposed DMMRA algorithms, while the latter
indicates the optimal performance. From the results in
Fig. 9, DMMRA achieves near-optimal solutions for all
ten simulated topologies. On average, Algorithms 1 and
2 result in 96.5% and 97.4% optimality, respectively. In
fact, although the fixed-points are not always globally
optimal, they lead to near-optimal performance.

6 CONCLUSION

In this paper, we formulated a novel multi-interface
multi-channel random access model under the frame-
work of network utility maximization (NUM). First, we
obtained the link data rate models as functions of the
persistent and listening probabilities of each wireless
node. We addressed both single-channel reception and

multi-channel reception as well as both non-overlapped
and partially overlapped channel assignment scenarios.
Given the data rate models, the NUM problems are for-
mulated accordingly. We then proposed two versions of
a fast, distributed, and easy to implement multi-interface
multi-channel random access algorithm, called DMMRA,
to solve the NUM problems for each scenario. DMMRA
requires each node to iteratively solve a local, myopic,
and convex optimization problem, while it exchanges
some control messages with its two-hop neighbors. We
proved the convergence and optimality properties of the
algorithms. Simulation results show that our algorithms
have better performance compared to UO-CIACA and
MMAC algorithms.

APPENDIX A
PROOF OF THEOREM 1
Part (a): For each wireless node m ∈ N , any of its NICs
j ∈ Im, and each frequency channel c ∈ C, we have:

1−P (j)(c)
m −Q(j)(c)

m

by (1)
=

∑

d∈C\{c} P
(j)(d)
m +

∑

d∈C\{c}Q
(j)(d)
m

≥
∑

d∈C\{c} P
(j)(d)
m .

Replacing the above inequality in (4) and (11), we have

P(Â
(c)
m ) ≥ P(Ă

(−c)
m ), which implies that (1−P(Ã

(c)
m ∪Â

(c)
m ))

≤ (1−P(Ã
(c)
m ∪Ă

(−c)
m )). Hence rnm in (14) is always greater

than or equal to the one in (10). Since the utility function
u(rnm) is an increasing function of rnm, the inequality
(24) is resulted when we sum up the utilities of all links.

Part (b): Let Λ denote the feasible set of problem
(NUM-C). It is clear that, Λ ⊆ Φ. Thus, any 〈p̄, Q̄〉 ∈ Λ
is also a feasible solution of problem (NUM-S). Hence,
no 〈p̄, Q̄〉 ∈ Λ can lead to an aggregate network utility
which is greater than the optimal utility U⋆

SCR over the
set Φ. Therefore, the inequality in (25) always holds. �

APPENDIX B
PROOF OF THEOREM 2
For each node n ∈ N and any NIC i ∈ In, the objective
function of problem (Local-NUM-S) can be written as:
∑

m∈N out
n

u
(
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n and any channel c ∈ C,
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Similarly, we can obtain θ
(i)(c)
n,m and ϑ

(i)(c)
n,m for any node

m∈N in
n and any channel c ∈ C; and also β

(i)(c)
n,ms for any

link (m,n) ∈ L\(Lin
n ∪ Lout

n ) and each c ∈ C. Notice that

ξ
(i)(c)
n,m , ζ

(i)(c)
n,m , θ

(i)(c)
n,m , ϑ

(i)(c)
n,m , and β

(i)(c)
n,ms only depend on

p
(−i)
n and Q(−i)

n . In fact, they can be treated as constants
as far as problem (Local-NUM-S) is concerned. Since

the utility functions are concave and Φ
(i)
n is a convex

set, problem (Local-NUM-S) is a convex optimization
problem. The proof for (Local-NUM-M) is similar. �

APPENDIX C
PROOF OF THEOREM 3
Let N = {n,m}, Ln = {i}, and Lm = {j}. For wireless
link (n,m) ∈ L, we have:

rnm(p) =
∑

c∈C γ
(c)
nmp

(i)(c)
nm

(

1−
∑

d∈C p
(j)(d)
mn

)

, (39)

The data rate rmn(p) can also be obtained similarly. We
can re-write optimization problem (Local-NUM-M) as:

maximize
p
(i)
n ∈Ψ

(i)
n

u
((

1−
∑

e∈C p
(j)(e)
mn

)(

∑

c∈C γ
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nmp

(i)(c)
nm
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+u
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e∈Cγ
(e)
mnp
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c∈Cp
(i)(c)
nm

))

.

(40)

From Theorem 2, problem (40) is a convex optimization
problem. By solving the Karush-Kuhn-Tucker (KKT) suf-
ficient and necessary optimality conditions (cf. [24, pp.
244]) and rearrangement the terms, we can show that
for any fairness index α and for any channel c ∈ C,





γ
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nm
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e∈C p
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mn
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e∈C γ
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mnp
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(c)
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1−
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d∈C p
(i)(d)∗
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)α
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(41)
From (32) and (41), the optimal solution of convex
optimization problem (40) can be obtained by solving
the following system of linear equations:

∑

d∈C M
(cd)

(

p
(−i)
n

)

p
(i)(d)∗

nm = 1, ∀c ∈ C. (42)

In vector representation, (42) is equivalent to:

M
(

p(−i)
n

)

p(i)∗

n = 1. (43)

The solution of the system of linear equations in (43)
is obtained as in (33). Note that, any optimal solution
of problem (40) should satisfy (43). Since problem (40) is
always feasible (cf. [28, pp. 9]), the solution in (33) always
exists, regardless of the choice of parameters. �

APPENDIX D
PROOF OF THEOREM 4
Consider the case where the NICs implement single-
channel reception. For any fixed point 〈p∗,Q∗〉 ∈ FSCR,

the tuple 〈p
(i)∗

n ,Q(i)∗

n 〉 is an optimal solution of the
convex optimization problem in (Local-NUM-S) for any
i ∈ In for all n ∈ N . Since problem (Local-NUM-S) is
convex, 〈p∗,Q∗〉 ∈ FSCR should satisfy the KKT condi-
tions for (Local-NUM-S). By definition, each stationary

point [28, pp. 194] of non-convex problem (NUM-S) also
satisfies all the KKT conditions for problem (NUM-S).
Since the objective functions in (NUM-S) and (Local-
NUM-S) are the same and the set of constraints in (NUM-
S) is the union of the set of constraints in (Local-NUM-S)
for all n ∈ N and i ∈ In, the KKT conditions for (NUM-
S) are equal to the union of the KKT conditions for all
n ∈ N and i ∈ In. Thus, since 〈p∗,Q∗〉 ∈ FSCR satisfies
the KKT conditions of (Local-NUM-S) for all nodes and
all NICs, it also satisfies the KKT conditions for (NUM-
S) and is indeed a local optimal solution for problem
(NUM-S). This implies that, FSCR ⊆ SSCR. Following
a similar argument, we can show that, SSCR ⊆ FSCR.
Since FSCR ⊆ SSCR and SSCR ⊆ FSCR, we have:
FSCR = SSCR. The proof when the NUMs implement
multi-channel reception model is similar. �

APPENDIX E
PROOF OF THEOREM 5

Part (a): It is easy to verify that for any node n ∈ N

and any NIC i ∈ In, we can select p
(i)(c)
nm = 1

2CLn
and

P
(i)(c)
n = Q

(i)(c)
n = 1

2C for all c ∈ C and any m ∈ Lout
n as

a feasible (not necessarily optimal) solution for problem

(NUM-S). Similarly, we can select p
(i)(c)
nm = 1

2CLn
and

P
(i)(c)
n

1
2C for all c ∈ C and m ∈ Lout

n as a feasible solution
for problem (NUM-M). Thus, |Φ| ≥ 1 and |Ψ| ≥ 1.
Since both problems (NUM-S) and (NUM-M) are feasible
problems, they have at least one stationary point [28,
pp. 194]. From this, together with Theorem 4, we have:
|FSCR| = |SSCR| ≥ 1 and |FMCR| = |SMCR| ≥ 1.

Part (b): From [20, Lemma 2], in a single-channel
network, problems (NUM-S) and (NUM-M) can be trans-
formed to equivalent convex optimization problems by

introducing p̄
(i)(c)
nm , log p

(i)(c)
nm , P̄

(i)(c)
n , log P

(i)(c)
n , and

r̄nm , log rnm and showing that the new problem has
positive definite Hessian with respect to the new vari-
ables when α ≥ 1. Since a convex problem has a unique
stationary point, we have: |SSCR| = |SMCR| = 1. From
this, together with Theorem 4, |FSCR| = |FMCR| = 1.

Part (c): Assume that 〈p,Q〉 is a fixed point for Algo-
rithm 1. From Theorem 4, it is also a stationary point of
problem (NUM-S). Now consider another point 〈p̄, Q̄〉,
where for all nodes n ∈ N , any node m ∈ Lout

n , we have

p̄(i)(c)nm = p
(i)(C−c+1)
nm , ∀ i ∈ In, ∀c ∈ C, (44)

Q̄(i)(c)
n = Q

(i)(C−c+1)
n , ∀ i ∈ In, ∀c ∈ C. (45)

Clearly, if p
(i)(c)
nm = p

(i)(C−c+1)
nm and Q

(i)(c)
n = Q

(i)(C−c+1)
n

for all n ∈ N , m ∈ Lout
n , i ∈ In, and c ∈ C, then 〈p̄, Q̄〉 =

〈p,Q〉. Otherwise, 〈p̄, Q̄〉 and 〈p,Q〉 are different. From
(10) and (19), it is easy to verify that: r(p,Q)=r(p̄, Q̄).
Thus, 〈p̄, Q̄〉 is a stationary point of problem (NUM-
S). From Theorem 4, it is also another fixed point of
Algorithm 1. The proof for Algorithm 2 is similar. �



APPENDIX F
PROOF OF THEOREM 6

Part (a): From (10), (14), (19), and (21), for each (n,m)∈L,

rnm ≤
∑

i∈In

∑

c∈C γ
c
nm ≤

∑

c∈C I
maxγmax = CImaxγmax.

Thus, the utility of each wireless link (n,m) ∈ L is upper
bounded by u(C Imax γmax) and the aggregate network
utility is upper bounded by L u(C Imax γmax).

Part (b): We prove by contradiction. Consider the case
where the NICs implement multiple-channel reception
and assume that at some time slot t ∈ [2, T ], USCR(t−1) >
USCR(t). In that case, there exist a node n and an NIC

i ∈ In such that t ∈ T
(i)
n and solving problem (Local-

NUM-S) at NIC i reduces the network utility (i.e., the ob-
jective in problem (NUM-S)). However, this is impossible
as the objective functions in problems (Local-NUM-S)
and (NUM-S) are the same. Thus, USCR(t−1) ≤ USCR(t)
and (36) holds. The proof for (37) is similar.

Part (c): The existence of the limits in (38) result from
parts (a) and (b). Note that any bounded non-decreasing
real sequence always converges to a fixed point. �
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