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Abstract— In a wireless mesh network (WMN) with a number
of stationary wireless routers, the aggregate capacity can be
increased when each router is equipped with multiple network
interface cards (NICs) and each NIC within a router is assigned to
a distinct orthogonal frequency channel. In this paper, given the
logical topology of the network, we formulate the joint channel
allocation, interface assignment, and media access control (MAC)
problem as a cross-layer non-linear mixed-integer network utility
maximization problem. An optimal joint design, based on exact
binary linearization techniques, is proposed which leads to a
global maximum. A near-optimal joint design, based on approx-
imate dual decomposition techniques, is also proposed which is
of more interest in terms of practical deployment. Performance
evaluation is given through a number of numerical examples in
terms of network utility maximization and aggregate network
throughput.

I. INTRODUCTION

Wireless Mesh Networks (WMNs) are becoming a popular
alternative in extending the coverage of the Wireless Local
Area Networks (WLANs) [1]. Mesh networks consist of
mobile wireless clients and stationary wireless mesh routers.
Mesh routers are connected to one another in a multi-hop
manner to form a large scale wireless backbone. Some of the
routers also act as gateways to the Internet via high-speed
wired links. The performance of the IEEE 802.11 a/b/g-based
WMNs can be increased via the use of multiple channels
[2]. In this scenario, each router is equipped with multiple
network interface cards (NICs). Each NIC is assigned to a
distinct frequency channel. Two neighboring routers are able
to communicate (and establish a logical link) with each other
as long as one of their NICs uses the same channel. A
sample multi-channel wireless mesh network (MC-WMN) is
illustrated in Fig. 1.

Within the IEEE 802.11 a/b/g frequency bands, the number
of available channels is limited. The 802.11b/g bands and the
802.11a band provide 3 and 12 non-overlapping frequency
channels, respectively. This implies that some logical links
may operate over the same channel. The number of NICs
is also limited. In the experimental MC-WMN test-beds in
[2] and [3], each router is equipped with two NICs. A small
number of NICs implies that some logical links in a router
may need to share an NIC to transmit and receive data packets.
Two nearby links that operate over the same channel or share

Fig. 1. A multi-channel wireless mesh network with seven routers, eight
links, two network interface cards per router, and three frequency channels.

the same NIC cannot be active (i.e., transmit or receive data)
simultaneously. It reduces the links’ effective capacities. Given
the logical topology of an MC-WMN, two important issues
should be addressed: channel allocation and interface assign-
ment. The former determines over which frequency channel
each logical link should operate and the latter determines
which logical links should share an NIC on each router.

The channel allocation and interface assignment schemes
can be classified as static or dynamic algorithms [4]. The static
algorithms assign channels and interfaces permanently [5]–[7].
In dynamic algorithms, the assigned channels and interfaces
are updated either in a short-term basis (e.g., packet by packet
[8]–[11]) or a long-term basis (e.g., every several minutes or
hours [3], [12]). The dynamic algorithms allow the MC-WMN
to adapt to the changing traffic patterns. Unlike the long-
term basis algorithms, the short-term basis schemes require
a fast coordination mechanism to ensure that the sending and
receiving routers use the same channel, which can significantly
increase the signalling overhead [3].

Various joint design schemes for MC-WMNs have been
proposed recently. Some of the recent work include joint
channel allocation and routing [13]–[15], joint routing and
interface assignment [4], joint topology control and interface
assignment [16], joint routing and media access control [17],
joint topology control and routing [18], joint power control
and channel allocation [19], and joint channel allocation and
congestion control [20].

In this paper, we formulate a joint channel allocation, in-
terface assignment, and media access control (MAC) problem
as a cross-layer network utility maximization with constraints



that arise from the interference among the neighboring trans-
missions. The contributions of our work are as follows:

• We model the channel allocation and interface assignment
problems by introducing channel allocation and interface
assignment binary vectors.

• We model the feasible region for the link-layer flow
rates as a function of the allocated channels and assigned
interfaces.

• We present a formulation for joint channel allocation,
interface assignment, and MAC problem as a non-linear
mixed-integer network utility maximization. It takes into
account the number of NICs at each wireless mesh router,
the number of orthogonal frequency channels, and the
interference constraints.

• We solve the network utility maximization problem via
both exact and approximate design schemes. The exact
design results in an optimal static algorithm while the
approximate design results in a near-optimal long-term
basis dynamic algorithm.

The rest of this paper is organized as follows. The problem
formulation is described in Section II. The first design scheme
(using exact binary linearization) is presented in Section III.
The second design scheme (using approximate dual decompo-
sition) is described in Section IV. Performance evaluation and
numerical examples are given in Section V. Conclusions and
future work are given in Section VI.

II. PROBLEM FORMULATION

Consider an MC-WMN and let N denote the set of station-
ary wireless mesh routers1. Each router is equipped with I
NICs. There are C orthogonal frequency channels available.
We assume that the network’s logical topology has been pre-
determined. Let L denote the set of all unidirectional logical
links. The logical link from node m to node n is denoted by
(m,n) ∈ L. We assume the connectivity to be symmetric.
That is, link (m,n) ∈ L if and only if (n,m) ∈ L.

In this section, we describe the mathematical model to
formulate a joint channel allocation, interface assignment, and
MAC problem.

A. Channel Allocation Model

For any two nodes m,n ∈ N such that there exists a logical
link (m,n) ∈ L, we define a C × 1 channel allocation vector
x̄mn. If node m communicates with node n over the ith

frequency channel, then the ith element in x̄mn is equal to
1; otherwise, it is equal to zero. As an example, if C = 5
and node m is assigned to communicate with node n over the
second channel, then we have, x̄mn =

[
0 1 0 0 0

]T
.

In this paper, we assume that there will never be more than
one connection between any two nodes.

To establish the logical link (m,n) ∈ L, routers m and n
should allocate a common frequency channel to communicate

1For the rest of this paper, the terms wireless mesh routers and nodes will
be used interchangeably.

with each other. This requires that,

x̄mn = x̄nm, ∀ m,n ∈ N, (m,n) ∈ L (1)

and
1T x̄mn = 1, ∀ m,n ∈ N, (m,n) ∈ L (2)

where 1 denotes a C × 1 vector with all entries equal to 1.
The term 1T x̄mn is equal to 1 if node m allocates one of the
available frequency channels to communicate with node n.

Consider two logical links (m,n), (p, q) ∈ L. We have,

x̄T
mn x̄pq =




1, if links (m,n) and (p, q) use
the same channel,

0, otherwise.
(3)

B. Interface Assignment Model

For any two nodes m,n ∈ N such that (m,n) ∈ L, we
define an I × 1 interface assignment vector ȳmn. If the ith

network interface in node m is used to communicate with node
n, then the ith element in ȳmn is equal to 1; otherwise, it is
equal to zero. As an example, assume that I = 3 and node m
assigns its first network interface to communicate with node
n. We have, ȳmn =

[
1 0 0

]T
.

To establish the logical link (m,n) ∈ L, routers m and n
should allocate one of their NICs to communicate with each
other. Note that in general ȳmn �= ȳnm. However, it is still
required that,

1T ȳmn = 1, ∀ m,n ∈ N, (m,n) ∈ L (4)

where 1 denotes an I × 1 vector with all entries equal to 1.
The term 1T ȳmn is equal to 1 if node m assigns one of its
NICs to communicate with node n.

Consider two logical links (m,n), (m, p) ∈ L such that they
share node m ∈ N . We have,

ȳT
mn ȳmp =




1, if links (m,n) and (m, p) share
an NIC on node m,

0, otherwise.
(5)

C. Joint Channel Allocation and Interface Assignment

If two neighboring logical links (m,n), (m, p) ∈ L share
an NIC on node m (i.e., ȳT

mn ȳmp = 1), then they will be
assigned the same frequency channel (i.e., x̄T

mn x̄mp = 1).
On the other hand, if they are not sharing an NIC (i.e.,
ȳT

mn ȳmp = 0), they will be assigned to two different
frequency channels (i.e., x̄T

mn x̄mp = 0). In this paper, we
assume that C ≥ I . We can model the relationship between
the channel allocation and the interface assignment vectors to
be as follows:

x̄T
mn x̄mp = ȳT

mn ȳmp, ∀ m,n, p ∈ N, (m,n), (m, p) ∈ L
(6)

A joint channel allocation and interface assignment strat-
egy, denoted by 〈x̄, ȳ〉, is defined as determining the channel
allocation vector x̄mn and the interface assignment vector ȳmn

for all logical links (m,n) ∈ L.



Given an MC-WMN logical topology, a joint channel allo-
cation and interface assignment strategy 〈x̄, ȳ〉 is feasible, if
for all m,n, p ∈ N and (m,n), (m, p) ∈ L, we have:

x̄mn, x̄mp ∈ {0, 1}C
,

ȳmn, ȳmp ∈ {0, 1}I
,

x̄mn = x̄nm,
1T x̄mn = 1,
1T ȳmn = 1,

x̄T
mn x̄mp = ȳT

mn ȳmp

(7)

where {0, 1}C and {0, 1}I denote the set of all C × 1 and
I × 1 binary vectors, respectively. The set of all feasible
joint channel allocation and interface assignment strategies is
denoted by Ψ.

D. Interference Model

In an MC-WMN, two logical links (m,n), (p, q) ∈ L are
defined to be mutually interfered with each other whenever
both of the following conditions hold:

1) The logical links operate over the same frequency chan-
nel (i.e., x̄T

mn x̄pq = 1), and
2) The sender/receiver of one link is within the interference

range of the sender/receiver of the other link.

To model the interference between the logical links in MC-
WMN, we construct a link-layer flow contention graph (or
simply contention graph [21], [22]). In a contention graph,
vertices correspond to the logical links. There is an edge be-
tween two vertices if the corresponding logical links mutually
interfere with each other and cannot be active simultaneously.
The contention graph depends on the allocated channels and
assigned interfaces. Given 〈x̄, ȳ〉, the corresponding con-
tention graph is denoted by CG〈x̄,ȳ〉.

Consider a specific joint channel allocation and interface as-
signment strategy that assigns frequency channels and network
interface cards as follows:

x̄mn = [1, 0, · · · , 0]T , ∀ m,n ∈ N, (m,n) ∈ L

ȳmn = [1, 0, · · · , 0]T , ∀ m,n ∈ N, (m,n) ∈ L
(8)

We can show that (8) is a feasible channel allocation
and interface assignment strategy. It simply assigns all links
to the first channel and all links in each node to the first
NIC. The corresponding contention graph is called single-
channel contention graph and is denoted by CGS. A sample
wireless mesh network and its corresponding single-channel
contention graph are depicted in Fig. 2. The communication
and interference ranges are 100 m and 150 m, respectively.

Although the vertices in CG〈x̄,ȳ〉 and CGS are the same,
CG〈x̄,ȳ〉 may have less edges than CGS. Thus,

CG〈x̄,ȳ〉 ⊆ CGS, ∀ 〈x̄, ȳ〉 ∈ Ψ (9)

Given a CG〈x̄,ȳ〉, we can identify all of its maximal
cliques2. The links corresponded to the vertices of a maximal
clique cannot be active simultaneously [22]–[24]. Let Q〈x̄,ȳ〉

2A maximal clique in a graph is a maximal complete subgraph of the graph.

(a) Physical and logical topologies.

(b) Corresponding single-channel contention graph CGS.

Fig. 2. A sample wireless mesh network with 6 nodes and 8 links.

denote the set of all maximal cliques in CG〈x̄,ȳ〉. The number
of maximal cliques is denoted by |Q〈x̄,ȳ〉|. For notation sim-
plicity, we enumerate the maximal cliques. The ith maximal
clique of CG〈x̄,ȳ〉 is denoted by Qi

〈x̄,ȳ〉. The set of vertices
that form Qi

〈x̄,ȳ〉 is denoted by V i
〈x̄,ȳ〉. Note that V i

〈x̄,ȳ〉 ⊆ L.
Let fmn > 0 denote the normalized link-layer flow rate on

logical link (m,n) ∈ L (i.e., the proportion of time that link
(m,n) is active). Since flows within the same maximal clique
cannot transmit simultaneously, we have the following clique
capacity constraint [22]–[24]:∑

p,q: (p,q)∈V i
〈x̄,ȳ〉

fpq ≤ ε, ∀ i : Qi
〈x̄,ȳ〉 ∈ Q〈x̄,ȳ〉 (10)

where 0 < ε ≤ 1 is the clique capacity. The constraint in
(10) guarantees that the normalized link-layer flow rates are
feasible. The proper value of ε depends on some specific
characteristics of the graph CG〈x̄,ȳ〉. Selecting ε = 1 is a
sufficient condition for the feasibility of the allocated link-
layer flow rates if and only if CG〈x̄,ȳ〉 is a perfect graph3.
According to the strong perfect graph theorem [26], a graph
is perfect if and only if it has no induced subgraph that
is isomorphic to an odd hole4. If there exists odd holes in
contention graph CG〈x̄,ȳ〉, the clique capacity parameter ε
should be adequately reduced for any maximal clique that
induces edges of an odd hole. For a general graph, it has been
shown in [27] (also cited in [22], [28]) that if we set ε = 2

3 ,
then the feasibility of the allocated link-layer flow rates is
guaranteed without having to check the characteristics of the
contention graph. The proper selection of ε can be studied
further in [22]–[24], [28]. In this paper, we assume that ε is
a given design parameter.

3A graph is perfect if for every induced subgraph its chromatic number is
equal to the clique number of the graph [25].

4A hole is a graph induced by a chordless cycle of length at least 4. A hole
is odd if it contains an odd number of vertices [26].



To use clique capacity constraint (10) in a joint design
problem, we need to find and express the maximal cliques
of CG〈x̄,ȳ〉 in terms of channel allocation and interface
assignment vectors. This task is not easy in practice5. The
following theorem provides an alternative approach.

Theorem 1. Given 〈x̄, ȳ〉 ∈ Ψ, the feasible region formed
by constraint (10) is equivalent to the feasible region formed
by the following constraint,∑

p,q: (p,q)∈V i
S

x̄T
mn x̄pq fpq ≤ ε,

∀ i : Qi
S ∈ QS,

∀ m,n : (m,n) ∈ V i
S

(11)

where QS, Qi
S, and V i

S denote the set of maximal cliques,
the ith maximal clique, and the set of vertices in the ith

maximal clique of the single-channel contention graph CGS,
respectively.

The proof of the above theorem is given in Appendix A.
Note that the number of constraints in (10) and (11) are not
equal. Depending on 〈x̄, ȳ〉, the number of inequalities in (10)
can vary from |QS| to |L|

2 . On the other hand, the number
of inequalities in (11) is fixed and is equal to

∑|QS|
i=1 |V i

S |.
In addition, all the inequalities in (10) are maximal clique
constraints; while there may be some inequalities in (11) that
are just clique6 (but not maximal clique) constraints.

As an example, consider CGS in Fig. 2(b). Two maximal
cliques are recognized: V 1

S = {(a, b), (b, a), (c, d), (d, c)} and
V 2

S = {(c, d), (d, c), (d, e), (e, d), (e, f), (f, e)}. They form
|V 1

S | + |V 2
S | = 10 inequalities in (11). The corresponding

inequalities from V 1
S are:

x̄T
abx̄abfab + x̄T

abx̄bafba + x̄T
abx̄cdfcd + x̄T

abx̄dcfdc ≤ ε (12a)

x̄T
bax̄abfab + x̄T

bax̄bafba + x̄T
bax̄cdfcd + x̄T

bax̄dcfdc ≤ ε (12b)

x̄T
cdx̄abfab + x̄T

cdx̄bafba + x̄T
cdx̄cdfcd + x̄T

cdx̄dcfdc ≤ ε (12c)

x̄T
dcx̄abfab + x̄T

dcx̄bafba + x̄T
dcx̄cdfcd + x̄T

dcx̄dcfdc ≤ ε. (12d)

If the first channel is assigned to links (a, b), (b, a), (c, d),
and (d, c), then inequalities in (12) all become: fab + fba +
fcd+fdc ≤ ε. If the first channel is assigned to links (a, b) and
(b, a) and the second channel is assigned to links (c, d) and
(d, c), then inequalities (12a) and (12b) become: fab+fba ≤ ε,
and inequalities (12c) and (12d) become: fcd + fdc ≤ ε.

E. Joint Channel Allocation, Interface Assignment, and MAC
Problem

The mathematical formulation introduced in (1)-(11) mod-
els the relationship between the channel allocation, interface
assignment, and MAC problems. The model can be used to
develop different cross-layer algorithms in MC-WMNs. In this
paper, we are interested in extending the fair MAC framework
in [22] to obtain a joint channel allocation, interface assign-
ment, and MAC algorithm.

5Finding the maximal cliques of an arbitrary graph is NP-hard [29].
6A clique of a graph is a complete subgraph of the graph. Each clique is

either a maximal clique or a subgraph of a maximal clique.

The objective of a fair MAC algorithm is to find the feasible
link-layer flow rates that satisfy some fairness properties [22].
Given an MC-WMN logical topology, I network interface
cards per router, C orthogonal frequency channels, CGS and
the set of its maximal cliques QS, our objective is to choose the
normalized link-layer flow rates, allocate channels, and assign
interfaces, so as to solve the following constrained network
utility maximization problem:

max
f > 0,

〈x̄, ȳ〉 ∈ Ψ

∑
m,n: (m,n)∈L

Umn(fmn)

s.t.
∑

p,q: (p,q)∈V i
S

x̄T
mn x̄pq fpq ≤ ε,

∀ i : Qi
S ∈ QS,

∀ m,n : (m,n) ∈ V i
S

(13)
where Umn is a continuously differentiable, increasing, and
strictly concave utility function of the link-layer flow rate
fmn. The concavity of the objective function can guarantee
fairness [30]. Some of the popular concave utility functions
for proportional, max-min, and harmonic mean fairness are
listed in [22] and [30].

III. JOINT DESIGN I: EXACT BINARY LINEARIZATION

The network utility maximization problem (13) is a non-
linear mixed-integer problem and is not easy to solve. Note
that:

1) It has real variables f and binary variables x̄ and ȳ.
2) It has some mixed binary-real cubic and some pure

binary quadratic constraints. The binary quadratic con-
straints appear in 〈x̄, ȳ〉 ∈ Ψ.

After relaxing the binary constraints, there is no guarantee
that the cubic and quadratic constraints are convex. Thus, even
the relaxed problem cannot be easily solved. In this section,
we present some binary linearization techniques to obtain the
global optimal solution of the network utility maximization
problem (13) in a static and centralized manner.

Consider any logical links (m,n), (p, q) ∈ L. We denote
emn
pq ∈ CGS if there is an edge between vertices (m,n) and

(p, q) in graph CGS. The polynomial constraints in (13) can
be linearized by the following three steps:

Step 1: For each pair of logical links (m,n), (p, q) ∈ L
such that emn

pq ∈ CGS, we define a C × 1 auxiliary channel
allocation vector ūmn

pq as follows:

ūmn
pq = x̄mn ◦ x̄pq (14)

where ◦ denotes the Hadamard product7. From (14) we have,
x̄T

mn x̄pq = 1T ūmn
pq . Since x̄mn, x̄pq, and ūmn

pq are C × 1
binary vectors, eq. (14) is equivalent to the following linear
constraint (see Appendix B):

x̄mn + x̄pq − ūmn
pq ≤ 1,

−x̄mn − x̄pq + 2ūmn
pq ≤ 0

(15)

7Hadamard product of two C×1 vectors a and b is a C×1 vector whose
ith entry is equal to the product of the ith entry of a and the ith entry of b [31].



Step 2: For each pair of logical links (m,n), (m, p) ∈ L
(they share node m), we define an I × 1 auxiliary interface
assignment vector v̄mn

mp to be as follows:

v̄mn
mp = ȳmn ◦ ȳmp (16)

From (16) we have, ȳT
mn ȳmp = 1T v̄mn

mp . Eq. (16) is
equivalent to the following constraint (see Appendix B):

ȳmn + ȳmp − v̄mn
mp ≤ 1,

−ȳmn − ȳmp + 2v̄mn
mp ≤ 0

(17)

A linearized joint channel allocation and interface assign-
ment strategy, denoted by 〈x̄, ȳ, ū, v̄〉, is defined as determin-
ing x̄mn and ȳmn for all links (m,n) ∈ L, ūmn

pq for all links
(m,n), (p, q) ∈ L such that emn

pq ∈ CGS, and v̄mn
mp for all links

(m,n), (m, p) ∈ L. A linearized joint strategy 〈x̄, ȳ, ū, v̄〉 is
feasible if for all m,n, p, q ∈ N and (m,n), (m, p), (p, q) ∈ L
such that emn

pq ∈ CGS, we have:

x̄mn, x̄pq, ūmn
pq ∈ {0, 1}C

,

ȳmn, ȳmp, v̄mn
mp ∈ {0, 1}I

,
x̄mn = x̄nm,
1T x̄mn = 1,
1T ȳmn = 1,

1T ūmn
mp = 1T v̄mn

mp ,
x̄mn + x̄pq − ūmn

pq ≤ 1,
−x̄mn − x̄pq + 2ūmn

pq ≤ 0,
ȳmn + ȳmp − v̄mn

mp ≤ 1,
−ȳmn − ȳmp + 2v̄mn

mp ≤ 0

(18)

where the linear equality 1T ūmn
mp = 1T v̄mn

mp in constraint (18)
is equivalent to the nonlinear equality x̄T

mnx̄mp = ȳT
mnȳmp in

constraint (7). The set of all feasible linearized joint channel
allocation and interface assignment strategies is denoted by Φ.

Step 3: For each pair of logical links (m,n), (p, q) ∈ L such
that emn

pq ∈ CGS, we define an auxiliary real scalar zmn
pq to

be as follows:

zmn
pq = x̄T

mn x̄pq fpq = (1T ūmn
pq )fpq (19)

Since 1T ūmn
pq is a binary scalar and the upper bound for

the normalized link-layer flow fpq is equal to one, eq. (19) is
equivalent to the following constraint (see Appendix B):

0 ≤ zmn
pq ≤ fpq

fpq − 1 + 1T ūmn
pq ≤ zmn

pq ≤ 1T ūmn
pq

(20)

Combining steps 1-3, the global utility maximization prob-
lem (13) is equivalent to the following problem:

max
f > 0,
z ≥ 0,

〈x̄, ȳ, ū, v̄〉 ∈Φ

∑
m,n: (m,n)∈L Umn(fmn)

s.t.
∑

p,q: (p,q)∈V i
S

zmn
pq ≤ ε,

∀ i : Qi
S ∈ QS,

∀ m,n : (m,n) ∈ V i
S

zmn
pq ≤ fpq, ∀ m,n, p, q : emn

pq ∈CGS

fpq−1+1T ūmn
pq ≤zmn

pq , ∀ m,n, p, q : emn
pq ∈CGS

zmn
pq ≤ 1T ūmn

pq , ∀ m,n, p, q : emn
pq ∈CGS

(21)

By relaxing the binary constraints on x̄, ȳ, ū, and v̄, (21)
becomes a strictly concave problem with a unique global
maximum. There exist several efficient algorithms to solve
concave maximization problems [32]. Solution of the relaxed
problem can be used to obtain the required bounds for the
branch and bound algorithm [33] to achieve one of the global
optimums of the original mixed-integer problem (21). In
general, problem (21) may have multiple global maxima.

IV. JOINT DESIGN II: APPROXIMATE DUAL

DECOMPOSITION

The proposed exact binary linearization scheme in Section
III can lead to obtaining the global optimal solution of the joint
channel allocation, interface assignment, and MAC problem
(13) in a static and centralized manner. In this section, by
making some assumptions, we propose an alternative but
approximate design which is of more interest in terms of
practical deployment.

Consider the following dual problem of the original primal
problem (13):

min
ρ≥0

D(ρ) (22)

with partial dual function

D(ρ) =
max
f > 0,

〈x̄, ȳ〉 ∈ Ψ

∑
m,n: (m,n)∈L Umn(fmn) −

∑|QS|
i=1

∑
m,n: (m,n)∈V i

S
ρi

mn(
∑

p,q: (p,q)∈V i
S
x̄T

mnx̄pqfpq−ε)
(23)

where we relaxed the clique capacity constraint in (13).
The Lagrangian multiplier for the clique capacity constraint
corresponding to clique Qi

S ∈ QS and vertex (m,n) ∈ V i
S is

denoted by ρi
mn. We make the following assumptions:

1) The normalized link-layer flow rates are updated every
TMAC time units.

2) The allocated channels and assigned interfaces are up-
dated every TCI time units.

3) The time interval TMAC 
 TCI .

We now decompose D(ρ) approximately into the following
two subproblems:

D1(ρ, 〈x̄, ȳ〉) =
max
f>0

∑
m,n: (m,n)∈L Umn(fmn) −

∑|QS|
i=1

∑
m,n: (m,n)∈V i

S
ρi

mn

∑
p,q: (p,q)∈V i

S

(
x̄T

mnx̄pq

)
fpq

(24)
and

D2(ρ, f) = −
max

〈x̄,ȳ〉∈Ψ

∑|QS|
i=1

∑
m,n: (m,n)∈V i

S
ρi

mn

∑
p,q: (p,q)∈V i

S

(
x̄T

mnx̄pq

)
fpq

(25)
The first subproblem is just a fair MAC [22], [34] over

fixed channels and fixed interfaces. It is solved every TMAC

time units. The term 〈x̄, ȳ〉 in D1(ρ, 〈x̄, ȳ〉) denotes the most
recent obtained solution of (25) at the time that (24) is being



solved. The second subproblem is a joint channel allocation
and interface assignment algorithm. It is solved every TCI

time units. The term f in D2(ρ, f) denotes the most recent
obtained solution of (24) at the time that (25) is being solved.
Since TCI is assumed to be large enough, the link-layer flow
rates converge to their corresponding optimal values before the
next time that the channels and interfaces are being updated
[22]. When we update the allocated channels and assigned
interfaces in subproblem (25), the converged link-layer flow
rates are assumed to be constant.

Using the approximate subgradient method [32], [35], the
Lagrangian multiplier ρi

mn is adjusted every TMAC time units
as follows:

ρi
mn(t + 1) = [ρi

mn(t) +
ξρ(t)(

∑
p,q: (p,q)∈V i

S
x̄T

mnx̄pq fpq(ρ(t),〈x̄, ȳ〉) − ε) ]+

(26)
where ξρ(t) is a positive scalar stepsize and f(ρ(t), 〈x̄, ȳ〉)
denotes the maximizer of (24) at time t ≥ 0. We also
denote: [X]+ = max (X, 0). The Lagrangian multipliers can
be interpreted as clique contention prices to regulate between
the supply and demand. Eq. (26) says that, if the demand∑

(p,q)∈V i
S
x̄T

mn x̄pq fpq(ρ(t), 〈x̄, ȳ〉) exceeds the supply ε,
the price ρi

mn will increase.

Lemma 1. Let Qi
S and Qj

S be two arbitrary maximal cliques
in CGS. For the logical links (m,n), (p, q) ∈ L, we have:
(m,n) ∈ V i

S and (p, q) ∈ V j
S . Given the allocated channels

and assigned interfaces 〈x̄, ȳ〉, if

V i
S \

{
(l, k) : x̄T

mnx̄lk = 0
} ⊂ V j

S \
{
(l, k) : x̄T

pqx̄lk = 0
}
(27)

then∑
l,k:(l,k)∈V i

S
x̄T

mnx̄lk flk <
∑

l,k:(l,k)∈V j
S
x̄T

pqx̄lk flk (28)

and
lim

t→∞ ρi
mn(t) = 0 (29)

which means that the clique contention prices converge to zero
for those cliques that are not maximal cliques for CG〈x̄,ȳ〉.

Lemma 2. For arbitrary logical links (m,n), (p, q) ∈ L, if
x̄T

mn x̄pq = 1 and ρi
mn(0) = ρi

pq(0), then

ρi
mn(t) = ρi

pq(t), ∀ i : (m,n), (p, q) ∈ V i
S , ∀ t ≥ 0 (30)

The proofs of Lemma 1 and 2 are given in Appendix C.
Note that by definition we have, x̄T

mnx̄pq = x̄T
pqx̄mn. Thus,

the maximization in (25) is equivalent to:

min
〈x̄,ȳ〉∈Ψ

∑|QS|
i=1

∑
m,n,p,q:(m,n),(p,q)∈V i

S
(ρi

mnfpq+ρi
pqfmn

2 )x̄T
mnx̄pq

(31)
For logical links (m,n), (p, q) ∈ L, we define αmn

pq to be:

αmn
pq =

∑
i:(m,n),(p,q)∈V i

S
(ρi

mnfpq + ρi
pqfmn)

= (fmn + fpq)(
∑

i:(m,n),(p,q)∈V i
S

ρi
mn)

= (fpq + fmn)(
∑

i:(m,n),(p,q)∈V i
S

ρi
pq) = αpq

mn (32)

where the second and the third equalities result from Lemma 2.
From (31) and (32), the joint channel allocation and interface
assignment subproblem D2 becomes:

min
〈x̄,ȳ〉∈Ψ

1
2

∑
m,n,p,q:(m,n),(p,q)∈L αmn

pq

(
x̄T

mn x̄pq

)
(33)

where αmn
pq is interpreted as the interference cost of having

the logical links (m,n) and (p, q) be operated over the
same frequency channel. From (32), the interference cost is
high if the links are highly loaded and belong to highly
contended maximal cliques. The quadratic binary program (33)
minimizes the aggregated interference cost across the whole
network. Using steps 1 and 2 in Section III, program (33) is
transformed to the following equivalent linear binary program:

min
〈x̄,ȳ,ū,v̄〉∈Φ

1
2

∑
m,n,p,q:(m,n),(p,q)∈L αmn

pq

(
1T ūmn

pq

)
(34)

There are effective commercial computer codes (such as
CPLEX [36]) to solve the linear binary problems. Here,
we assume that all the required information to solve (34)
is gathered every TCI time units in a pre-authorized node
(e.g., one of the gateways). The pre-authorized node solves
the linearized problem and announces the optimal channels
and interfaces to the whole network. If TCI is large enough,
the signalling overhead to implement (34) is not significant.
In practice, the channel allocation and interface assignment
interval TCI can be in the order of several minutes [3], [12].

Because of the approximate dual decomposition, the op-
timality of the joint algorithms in (24), (26), and (34) is
not guaranteed. We will investigate the sub-optimality of the
solutions in Section V.

V. NUMERICAL EXAMPLES

In this section, we evaluate the characteristics of our pro-
posed joint channel allocation, interface assignment, and MAC
designs. In the studied model, the size of the network field
is 300 m × 200 m. Ten different random scenarios are
considered. In each scenario, the WMN consists of ten wireless
mesh routers that are arbitrarily located in the field. The routers
are equipped with two NICs (i.e., I = 2) and three orthog-
onal frequency channels are being used (i.e., C = 3). The
communication and interference ranges are 100 m and 150 m,
respectively. For each scenario, there is a logical link between
each pair of nodes if they are within the communication range
of each other. One of the network scenarios we used in our
numerical analysis is shown in Fig. 3.

The utility function is selected to be Umn(fmn) =
log (fmn) for each logical link (m,n) ∈ L. Note that the log-
arithmic utility function leads to proportional fairness among
the link-layer flow rates [22]. The stepsize ξρ is set to 0.1.
Clique capacity parameter ε is equal to 1, unless otherwise
is specified. For the second joint design scheme, we have:
TMAC = 1 and TCI = 1000. Note that, depending on the
selected value for the stepsize ξρ, the channel/interface update
interval TCI should be large enough to let the fair MAC
reaches its steady state. All NICs initially (at time t = 0)
are assigned to a single channel.



TABLE I

NUMERICAL RESULTS FOR TEN DIFFERENT RANDOM SCENARIOS.

Scenario Network Utility Network Throughput
Number D1† D2‡ SC§ D1 D2 SC

1 -40.54 -40.54 -66.71 52.3 52.3 17.4
2 -31.88 -31.88 -55.79 63.2 63.2 21.0
3 -46.09 -46.09 -72.45 41.3 41.3 13.8
4 -25.29 -25.66 -44.39 51.4 51.3 18.4
5 -35.36 -35.36 -61.73 66.0 66.0 22.0
6 -24.95 -24.95 -46.05 63.4 63.4 21.8
7 -35.02 -35.02 -57.04 55.0 55.0 23.9
8 -27.39 -27.39 -45.30 44.0 44.0 17.2
9 -35.70 -35.70 -59.69 52.3 52.3 18.1
10 -29.11 -29.11 -52.90 66.0 66.0 22.0

Average -33.14 -33.17 -56.21 55.49 55.48 19.56
† Design I: Exact Binary Linearization (from Section III)
‡ Design II: Approximate Dual Decomposition (from Section IV)
§ Single Channel

To evaluate the performance, two metrics are considered: 1)
network utility, 2) network throughput. The former is the value
of the objective function in the primal joint problem (13). The
latter is the aggregate link-layer flow rate across all logical
links. That is,

∑
m,n:(m,n)∈L κfmn. Parameter κ denotes the

nominal link-layer data rate in bits per second. Therefore, the
term κfmn denotes the actual link-layer flow rate on logical
link (m,n). Here we assume that κ = 11 Mbps.

The numerical results for ten different random scenarios
are listed in Table I. It is observed that both design schemes
achieve significantly higher network throughput comparing to
the single channel case. In addition, the second design scheme
can lead to finding the optimal solutions in nine out of ten
scenarios. Only in one scenario (i.e., scenario number four),
a near-optimal solution (with 98.5% optimality) is attained.
Note that, since the normalized link-layer flow rates are always
less than or equal to one, the logarithmic network utility is
negative-valued and culminates at zero.

Fig. 4 shows the trends of the network utility as well as the
normalized link-layer flow rates fab, fdi, and fgh for scenario
number 1. We can see that, after only two channel/interface
update intervals, the network utility approaches its optimal
value. Later on, after the eighth channel/interface update
interval, the exact global optimal solution is reached and the
allocated channels and assigned interfaces remain unchanged.

Fig. 3. Scenario number 1: a wireless mesh network with 10 nodes and 24
logical links.
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Fig. 4. Trends for scenario number 1.

As stated in Section II, the proper value for the clique
capacity parameter ε should be selected depending on some
specific characteristics of the network contention graph. In
this experiment, we show that our proposed schemes are
efficient, regardless of the selected value for parameter ε. Fig.
5 shows the average network utility as the clique capacity
parameter ε changes. In this figure, each point is the average
of the measurements for all ten scenarios. It is observed
that the multi-channel multi-interface deployment significantly
increases the network average utility for all different values of
ε. In addition, our second proposed joint design efficiently
finds the optimal or near-optimal solutions.

VI. CONCLUSIONS AND FUTURE WORK

We present a formulation for joint channel allocation, in-
terface assignment, and MAC problem. We first model the
channel allocation and interface assignment problems as well
as their relationship by introducing binary channel allocation
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Fig. 5. Effects of varying the clique capacity parameter ε.

and binary interface assignment vectors. We then obtain the
feasible region of the link-layer flow rates as a function of
the binary channel allocation and interface assignment vectors.
The joint problem is then formulated as a cross-layer non-
linear mixed-integer utility maximization. An optimal joint
design, based on exact binary linearization techniques, is pro-
posed which leads to a global maximum. A near-optimal joint
design, based on approximate dual decomposition techniques,
is also proposed which is more practical for implementation.

This paper is a preliminary step towards a systematic
approach to solve the channel allocation and interface as-
signment problems jointly with other network management
algorithms using a network utility maximization framework.
For future work, we plan to extend the model to a joint
channel allocation, interface assignment, MAC, and congestion
control design by replacing the link-layer utility maximization
problem in (13) by a transport-layer utility maximization
problem (e.g., [21], [37]). We shall also extend the model
to assign not only the orthogonal channels but also the non-
orthogonal (i.e., partially overlapped) channels [38] in order
to utilize the available frequency spectrum more efficiently.

APPENDIX

A. Proof of Theorem 1

Since (10) includes all maximal clique capacity constraints
for CG〈x̄,ȳ〉 and each inequality in (11) is a clique (not
necessarily a maximal clique) capacity constraint for CG〈x̄,ȳ〉,
then the feasible region formed by (10) is a subset of or equal
to the feasible set formed by (11). We only need to prove that
the reverse is also true. That is, the feasible region formed by
(11) is a subset of or equal to the feasible region formed by
(10). From (9) we have:

∀ Qi
〈x̄,ȳ〉 ∈ Q〈x̄,ȳ〉 ⇒ ∃ Qj

S ∈ QS : Qi
〈x̄,ȳ〉 ⊆ Qj

S (35)

We refer to Qj
S as the parent of Qi

〈x̄,ȳ〉. In general, there
may be more than one parent for Qi

〈x̄,ȳ〉.

Consider an arbitrary maximal clique Qi
〈x̄,ȳ〉 and one of its

parents Qj
S. Let (m,n) be a logical link in Qi

〈x̄,ȳ〉, that is:
(m,n) ∈ V i

〈x̄,ȳ〉. We can show (by contradiction) that,

x̄T
mn x̄pq =1, ∀ p, q : (p, q) ∈ V i

〈x̄,ȳ〉
x̄T

mn x̄pq =0, ∀ p, q : (p, q) ∈ V j
S \V i

〈x̄,ȳ〉
(36)

Thus, we have:∑
p,q: (p,q)∈V i

〈x̄,ȳ〉
fpq =

∑
p,q: (p,q)∈V i

〈x̄,ȳ〉
1 × fpq +∑

p,q: (p,q)∈V j
S \V i

〈x̄,ȳ〉
0 × fpq

=
∑

p,q: (p,q)∈V i
〈x̄,ȳ〉

x̄T
mn x̄pq fpq+∑

p,q: (p,q)∈V j
S \V i

〈x̄,ȳ〉
x̄T

mn x̄pq fpq

=
∑

p,q: (p,q)∈V j
S
x̄T

mn x̄pq fpq (37)

where the second equality follows from (36). Eq. (37) implies
that for every inequality in (10), there is an equivalent inequal-
ity in (11). Therefore, the feasible region formed by (11) is a
subset of or equal to the one formed by (10).

B. Linearization Techniques

Consider two binary variables θ1 and θ2. Their product (i.e.,
the quadratic term θ1θ2) can be replaced by a new binary
auxiliary variable π, such that its values correspond to the
values of θ1 and θ2 as follows:

π =




0 if θ1 = 0, θ2 = 0
0 if θ1 = 0, θ2 = 1
0 if θ1 = 1, θ2 = 0
1 if θ1 = 1, θ2 = 1

(38)

The desired correspondence is obtained by simply requiring
that π ∈ {0, 1} and we have [39]:

θ1 + θ2 − π ≤ 1
−θ1 − θ2 + 2π ≤ 0

(39)

Now consider a binary variable θ and a non-negative real
variable r. Assume that rmax is an upper bound for the real
variable r. The quadratic term rθ can be replaced by a new
non-negative real auxiliary variable υ, such that its values
correspond to the values of r and θ as follows:

υ =

{
0 if θ = 0
r if θ = 1

(40)

The desired correspondence is obtained by simply requiring
that [40]:

0 ≤ υ ≤ r

r − rmax (1 − θ) ≤ υ ≤ rmax θ
(41)



C. Proof of Lemma 1 and Lemma 2

Proof of Lemma 1: Inequality (28) is obtained from (27) as
follows.∑

l,k:(l,k)∈V i
S
x̄T

mnx̄lkflk =
∑

l,k:(l,k)∈V i
S \{(l,k):x̄T

mnx̄lk=0}flk

<
∑

l,k:(l,k)∈V j
S \{(l,k):x̄T

pq x̄lk=0}flk

=
∑

l,k:(l,k)∈V j
S
x̄T

pq x̄lk flk (42)

From (11) and (42), we have:∑
l,k:(l,k)∈V i

S
x̄T

mnx̄lkflk < ε (43)

Eq. (29) results from replacing (43) in (26).

Proof of Lemma 2: Consider a maximal clique Qi
S ∈ QS so

that (m,n), (p, q) ∈ V i
S . Since x̄T

mn x̄pq = 1, we have:

x̄T
mn x̄lk = x̄T

pq x̄lk, ∀ l, k : (l, k) ∈ V i
S (44)

Thus,∑
l,k:(l,k)∈V i

S
x̄T

mn x̄lk =
∑

l,k:(l,k)∈V i
S
x̄T

pq x̄lk (45)

Knowing that ρi
mn(0) = ρi

pq(0), equality (30) directly
follows from (26) and (45).
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