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Abstract— In a multi-hop wireless access network, where each
node is an independent self-interested commercial entity, pricing
is helpful not only to encourage collaboration but also to utilize
the network resources efficiently. In this paper, we propose a
market-based model with two-fold pricing (TFP) for wireless
access networks. In our model, the relay-pricing is used to
encourage nodes to forward packets for other nodes. Each node
receives a payment for the relay service that it provides. We
also consider interference-pricing to leverage optimal resource
allocation. Together, the relay and interference prices incorpo-
rate both cooperative and competitive interactions among the
nodes. We prove that TFP guarantees positive profit for each
individual wireless node for a wide range of pricing functions.
The profit increases as the node forwards more packets. Thus,
the cooperative nodes are well rewarded. We then determine the
relay and interference pricing functions such that the network
social welfare and the aggregate network utility are maximized.
Simulation results show that, compared to two recently proposed
single-fold pricing models, where only the relay or only the
interference prices are considered, our proposed TFP scheme
significantly increases the total network profit as well as the
aggregate network throughput. TFP also leads to more fair
revenue sharing among the wireless relay nodes.

Index Terms— Multi-hop wireless access networks, two-fold
pricing, network optimization, social welfare, interference.

I. INTRODUCTION

Various pricing schemes have recently been proposed either
to encourage collaboration among the network elements or to
utilize the network resources efficiently. Pricing as a tool for
resource allocation was first proposed in [1], [2] for conges-
tion control among elastic traffic sources. In this regard, the
network is designed to solve a network utility maximization
(NUM) problem across all traffic sources, subject to the link
capacity constraints. The corresponding Lagrange multipliers
are interpreted as the congestion prices. Each source which
uses a link resource is charged with the link’s congestion
price. The transmission rates and the congestion prices are
iteratively updated using the gradient projection method until
the global optimal network utility is achieved. The work in [1]
has been extended to other resource allocation problems such
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as medium access control, power control, frequency channel
assignment, and spectrum sharing [3]–[9]. Recently, it has also
been shown that the gradient updates can be replaced by the
best-response updates to achieve faster convergence and more
robust performance [10]–[12].

Another thread of research focuses on using pricing to
encourage collaboration among the nodes [13]–[21]. In a
multi-hop network, where the nodes need to forward packets
for other nodes, the optimal network performance might be
at the cost of performance degradation for some intermediate
relay nodes. When the intermediate nodes have no incentive
to collaborate, the well-known forwarder’s dilemma (cf. [22])
can occur, where no node forwards the packets for other
nodes. To resolve this problem, incentives can be offered to
the relay nodes in the form of payments or rewards in turn
for their help in forwarding other nodes’s traffic. In general,
achieving the optimal network performance may not be always
guaranteed in the incentive-based strategies as they mainly take
the individual profit objectives into consideration. The problem
of designing pricing models for Internet service providers
(ISPs) in a fixed wired network has been studied in [14]–[17].
In [16], Davoli et al. considered the pricing problem where the
ISPs do not have any knowledge about users’ utility functions.

The pricing models for wired networks cannot be easily
extended to wireless networks. There are two main challenging
issues that need to be addressed in wireless access networks:
channel imperfection (e.g., wireless fading), and interference.
In [18], Neely proposed an economic model for wireless
ad-hoc networks, with stochastic channel states, within the
general framework of backpressure algorithms [23], [24]. The
relay prices are used to encourage packet forwarding. How-
ever, it is essentially assumed that the network is interference-
free. Interference-free pricing is also studied in [25], [26].

In general, most of the previously proposed pricing models
in the literature have one or more of the following performance
bottlenecks: (1) network resources are not efficiently (i.e.,
optimally) allocated, (2) individual profits are not taken into
consideration, and (3) interference among the wireless trans-
missions is not taken into account. In this paper, we address
these performance bottlenecks in all three aspects. In particu-
lar, we extend the work by Neely [18] and propose a market-
based network model with two-fold pricing (TFP) which fully
incorporates the effect of interference. Our model uses relay-
pricing to encourage nodes to collaborate and forward each
other’s packets. We also use interference-pricing to encourage
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the wireless relay nodes to properly share the common network
resources. Together, the relay and interference prices incorpo-
rate both cooperative and competitive interactions among the
nodes. We analytically prove that for a wide range of pricing
functions, our proposed TFP scheme leads to a guaranteed
positive profit for each individual node. The profit increases
as the node forwards more packets. This better pays off the
collaborative nodes. Finally, assuming the presence of slow-
fading channels, we obtain the relay and interference pricing
functions for a multi-hop wireless network such that not only
the positive individual profits are guaranteed, but also the
network social welfare and the network utility are maximized.
Compared with the single-fold relay pricing model in [18]
as well as the single-fold interference pricing model in [10],
simulation results show that our TFP scheme increases the
social welfare and the network throughput significantly. It also
leads to more fair revenue sharing among the nodes.

The rest of this paper is organized as follows. Our proposed
pricing model is described in Section II. The key properties of
our model are analytically proved in Section III. Simulation
results are presented in Section IV. The paper is concluded in
Section V. All the proofs are given in the Appendices.

II. SYSTEM MODEL

Consider a stationary wireless access network. Let N , with
size |N | = N , denote the set of wireless relay nodes and
L, with size |L| = L, denote the set of all unidirectional
wireless links. For each node n∈N , the set of all incoming
and outgoing links are denoted by Lin

n ⊂ L and Lout
n ⊂ L,

respectively. We also define N in
n = {m : (m, n) ∈ Lin

n} and
N out

n = {m : (n,m)∈Lout
n } as the set of in-neighbors and the

set of out-neighbors of node n, respectively. Wireless relay
nodes are assumed to be independent commercial entities.
Together, they form a wireless backbone to provide connec-
tivity among wireless users in a multi-hop manner. The set
of users is denoted by D, with size |D| = D. Each relay
node n ∈ N offers connectivity only to a subset of users,
denoted by Dn ⊂ D. Each user is offered connectivity from
exactly one wireless relay node. All users i, j∈Dn are able to
communicate directly with each other. However, if any user
i ∈ Dn wants to send data to another user k ∈ Dc, where
c∈N\{n}, it should first transfer the data to node n, and the
data are then transferred to node c via the intermediate wireless
relay nodes before delivering to user k. In turn, node n charges
user i for its offered connectivity service. We assume that all
wireless relay nodes communicate over the same frequency
band which is different from those frequency bands used by
the users to communicate with each other and their associated
wireless relay nodes. This avoids interference between access
and relay transmissions. However, the transmissions among
the wireless relay nodes can still interfere with each other. A
sample wireless access network is shown in Fig. 1. In this
figure, there are N = 6 wireless relay nodes, labeled as n, m,
s, a, b, and c. There are also D = 15 wireless users.

Each wireless relay node n ∈ N is assumed to have N − 1
separate queues to store the incoming data according to their
final destination. All data that are destined to any of the users

Fig. 1. A sample multi-hop wireless access network with six wireless relay
nodes, labeled as n, m, s, a, b, c, and fifteen wireless users. HereDn = {i, j}
and k ∈ Dc. Users i and j can directly communicate with each other.
However, if user i (or user j) wants to send data to user k, it should first
transfer data to its associated wireless relay node (i.e., node n), and the data
are then transferred to wireless relay node c via the intermediate nodes (e.g.,
nodes s and a) in a multi-hop manner before being delivered to user k. In
turn for the provided connectivity service, wireless relay node n and all the
intermediate relay nodes are paid according to their offered relay prices.

of relay node c ∈ N\{n} are stored in the cth queue. The
contents of the cth queue are called commodity c data. For
each commodity c data, node n maintains a set H(c)

n ⊆N out
n ,

which includes its neighboring relay nodes with minimum hop-
counts to node c and can potentially relay commodity c data
towards node c. For example, H(c)

n = {m, s}, H(c)
m = {a},

H(c)
s ={a}, and H(c)

a ={c} in Fig. 1.
Time is divided into equal-length slots T ={0, 1, 2, . . .}. For

each link (n,m) ∈ L, let Ωnm denote the set of all possible
channel states. Channel states can vary (e.g., due to wireless
fading). At each time slot t∈ T , the current channel state is
denoted by ωnm(t) ∈ Ωnm. We stack up the channel states
of all links at time t and denote the obtained L × 1 vector
by ω(t). That is, ω(t) = (wnm(t), ∀ n, m∈N , (n,m)∈L).
Let Tω⊆T denote the set of time slots at which the channel
state vector ω changes. We assume that ω has an independent
and identical distribution (i.i.d.) over time slots Tω. We also
assume the slow-fading scenario such that

|t2 − t1| ≥ Λ, ∀ t1, t2 ∈ Tω, (1)

where Λ À 1. That is, two consecutive changes in channel
states occur at least Λ time slots away. We will consider the
fast fading case (i.e., when Λ → 1) in Section IV.

For each wireless relay node n ∈ N and any of its
neighboring nodes m ∈ N out

n , let µ
(c)
nm(p(t), w(t)) ≥ 0 denote

the transmission rate offered to commodity c data over link
(n,m) during time slot t. Here, p(t) = (p(c)

nm(t), ∀ n, m ∈
N , ∀c∈N\{n}, (n,m)∈L) denotes the L(N −1)×1 vector
of transmission powers for all links and all commodities. The
scalar p

(c)
nm(t)≥0 denotes the transmission power correspond-

ing to the transmission of commodity c data over link (n,m).
At each time slot t ∈ T and for each wireless relay node
n ∈ N , the commodity c ∈ N\{n} data transmission rate
over wireless link (n, m) ∈ Lout

n can be modeled as [27]

µ(c)
nm(p(t),w(t))=As log

(
1+

K hnm ωnm(t) p
(c)
nm(t)

Inm(p−n(t)) + ηm

)
, (2)
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where As denotes the channel symbol rate, K is the pro-
cessing gain, ηm denotes the noise power at the receiver
node m, hnm is the channel power gain from relay node
n to relay node m, p−n(t) = (p(d)

ms(t), ∀ m ∈ N\{n}, s ∈
N out

m , d ∈ N\{m}) denotes the transmission power of all
nodes other than node n, and Inm(p−n(t)) is the aggregate
interference power on link (n,m). Notice that the term
K hnm ωnm(t) p

(c)
nm(t)/(Inm(p−n(t)) + ηm) is the signal to

interference plus noise ratio (SINR) for commodity c data
transmissions over link (n,m). We have

Inm(p−n(t))=
∑

a∈N\{n}
ham


 ∑

d∈N\{n}

∑

b∈N out
a

p
(d)
ab (t)


 . (3)

Each node n∈N limits its total transmission power such that∑
c∈N\{n}

∑
m∈N out

n
p
(c)
nm ≤ Pmax

n , where Pmax
n > 0. Thus,

the transmission rates are always bounded. We define

µmax, in
n = max

p,ω

∑

c∈N\{n}

∑

m∈N in
n

µ(c)
mn(p,w), (4)

and
µmax, out

n = max
p,ω

∑

c∈N\{n}

∑

m∈N out
n

µ(c)
nm(p,w), (5)

as the maximum data rate on any incoming and any outgoing
link of node n∈N , respectively.

A. Two-Fold Relay and Interference Pricing

1) Pricing among the wireless relay nodes: In our market-
based model, at any time slot t ∈ T , if wireless relay node
n ∈ N transmits commodity c data with rate µ

(c)
nm(p(t), w(t))

to its neighboring wireless relay node m ∈ N out
n , then it

pays µ
(c)
nm(p(t),w(t)) φ

(c)
m (t) units of currency to node m as

relay service charge. Here φ
(c)
m (t)≥0 denotes the relay price

corresponding to commodity c data, advertised by wireless
relay node m. In total, at time slot t, node n pays

∑

c∈N\{n}
µ(c)

nm(p(t), w(t)) φ(c)
m (t) (6)

units of currency to any neighboring node m ∈ N out
n as relay

service charge. Similarly, in total, node n receives

 ∑

c∈N\{n}
µ(c)

mn(p(t),w(t))


φ(c)

n (t) (7)

currency units from any node m∈N in
n for offered relay service.

Besides the mutual relay services that the neighboring nodes
offer to each other, they also affect each other’s operation
through interference power as shown in (2) and (3). From (3),
for each node n ∈ N , the higher the total transmission power∑

c∈N\{n}
∑

m∈N out
n

p
(c)
nm(t), the greater is the interference

power that relay node n causes on other nodes. In our pricing
model, at each time slot t, wireless relay node n pays


 ∑

c∈N\{n}

∑

m∈N out
n

p(c)
nm(t)


 ψ(n)

a (t) (8)

units of currency to each node a∈N\{n} as interference com-
pensation charge. Here ψ

(n)
a (t) ≥ 0 denotes the interference

price informed by node a to node n. Unlike the relay prices
which vary depending on the commodity data, the interference
prices are the same for all commodities as the contents of the
transmissions do not affect their interference level. Instead, the
interference prices may vary depending on the node locations.
The closer two relay nodes are located, the higher is the
corresponding channel gain. This results in higher interference
power and consequently higher interference price. Similar to
(8), at each time slot t ∈ T , node n receives


 ∑

d∈N\{a}

∑

b∈N out
a

p
(d)
ab (t)


 ψ(a)

n (t) (9)

units of currency from node a as the compensation for the
interference node a causes on the transmissions of node n.

For each wireless relay node n ∈ N and at any time slot
t ∈ T , let U

(c)
n (t) denote the current commodity c ∈N\{n}

queue backlog. We define

U(t) =
(
U (c)

n (t), ∀n∈N , ∀c∈N\{n}
)

(10)

as the vector of queue backlogs in all wireless relay nodes
at time slot t. For each c ∈ N\{n}, the corresponding relay
price is assumed to be set as

φ(c)
n (t) = Φ(c)

n (U(t−Υ), . . . , U(t),p(t−Υ), . . . , p(t)) .
(11)

Furthermore, for each a ∈ N\{n}, the corresponding relay
price is assumed to be set as

ψ(a)
n (t) = Ψ(a)

n (U(t−Υ), . . . , U(t), p(t−Υ), . . . , p(t)) .
(12)

Here, Φ(c)
n (·) and Ψ(a)

n (·) are two non-negative real scalar
pricing functions of all queue backlogs and all transmission
powers at time slots {t−Υ, t−Υ + 1, . . . , t}. These pricing
functions are general. We only make a few assumptions.

Assumption 1: If U
(c)
n (t) > 0, then Φ(c)

n (·) > 0. That
is, if wireless relay node n already has some backlogged
commodity c data, then it will not offer free relay service.

Assumption 2: If
∑

c∈N\{n}
U (c)

n (t) > 0 (13)

and ∑

c∈N\{n}

∑

m∈N out
n

p(c)
nm(t) > 0, (14)

then
Ψ(m)

n (·) > 0. (15)

That is, if relay node n has any backlogged data and it is
currently transmitting some data on at least one of its outgoing
links, it will not set its advertised interference prices to zero.

Assumption 3: Price Φ(c)
n is increasing in U

(c)
n (t).

Assumption 4: There exists a large enough but bounded
constant V max

n such that for any commodity c ∈ N\{n} and
any time slot t ∈ T , φ

(c)
n (t) ≤ V max

n U
(c)
n (t). In general, the
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unbounded sets of time slots at which the vector of relay prices

φ(t) =
(
φ(c)

n (t), ∀n ∈ N , c ∈ N\{n}
)

(16)

and the vector of interference prices

ψ(t) =
(
ψ(a)

n (t), ∀n ∈ N , a ∈ N\{n}
)

(17)

are being updated are denoted by Tφ ⊂ T and Tψ ⊂ T ,
respectively. Here, Tφ denotes the set of time slots at which
the relay prices are updated and Tφ denotes the set of time
slots at which the interference prices are updated.

2) Pricing between each wireless relay node and its users:
In our model, each relay node n ∈ N provides relay service
for its associated wireless users according to its relay prices.
At each time slot t ∈ T , if user i ∈ Dn wants to send data
to another user k ∈ Dc (for c 6= n) at rate r

(k)
i (t), it needs to

pay r
(k)
i (t) φ

(c)
n (t) units of currency to wireless relay node n

as relay service charge. At time slot t, in total, user i pays
∑

c∈N\{n}

∑

k∈Dc

r
(k)
i (t) φ(c)

n (t). (18)

We assume that wireless relay node n assigns all its users
with a maximum allowed sending rate Rmax

n according to
its processing capacity. Each user i ∈ Dn also maintains a
non-negative, increasing, and strictly concave utility function
g
(k)
i (r(k)

i (t)) for any k ∈ D\Dn which indicates a monetary
measure of user i’s level of satisfaction from sending rate
r
(k)
i (t). Thus, user i adjusts its rates ri = (r(k)

i (t), ∀ k ∈
D\Dn) by solving the following local optimization problem

max
ri(t)º0

∑

c∈N\{n}

∑

k∈Dc

(
g
(k)
i (r(k)

i (t))− r
(k)
i (t)φ(c)

n (t)
)

s.t.
∑

c∈N\{n}

∑

k∈Dc

r
(k)
i (t) ≤ Rmax

n .
(19)

Notice that the objective function in (19) is always non-
negative as at least for ri =0, it is equal to zero. We define
user i’s profit at each time slot t ∈ T as

ϑi(t) =


 ∑

n∈N\{n}

∑

k∈Dc

g
(k)
i (r(k)

i (t))




−

 ∑

n∈N\{n}
(
∑

k∈Dc

r
(k)
i (t))φ(c)

n (t)


 .

(20)

From (19), user i adjusts ri(t) to maximize its profit subject
to the total rate constraint. Unlike the network model in [18],
where each relay node can only support at most one user, here
we allow each relay node to support several users.

B. Resource Allocation

At each time slot t ∈ T , given the advertised relay prices
from all its out-neighbors, node n∈N can compute differential
relay price for any m∈N out

n and each c∈N\{n} as [18]

δ(c)
nm(t) = φ(c)

n (t)− φ(c)
m (t)− φmax, (21)

where φmax = V max Umax denotes the largest possible change

in any relay price during one time slot. Here,

V max = max
n

V max
n (22)

and
Umax = max

n

{
µmax, out

n , µmax, in
n + Rmax

n

}
(23)

represent the largest possible change in any queue backlog,
where µmax, in

n and µmax, out
n are defined in (4) and (5), re-

spectively. At the beginning of each time slot t ∈ T , relay
node n measures ωnm(t) for all of its outgoing wireless links
(n,m) ∈ Lout

n and adjusts its transmission powers

pn(t) =
(
p(c)

nm(t), ∀c ∈ N\{n}, m ∈ N out
n

)
(24)

by solving the following local optimization problem

max
pn(t)º0

∑

c∈N\{n}

∑

m∈N out
n

µ(c)
nm(p(t), ω(t)) δ(c)

nm(t)

−

 ∑

c∈N\{n}

∑

m∈N out
n

p(c)
nm(t)





 ∑

a∈N\{n}
ψ(n)

a (t)




s.t.
∑

c∈N\{n}

∑

m∈N out
n

p(c)
nm(t) ≤ Pmax

n ,

p(c)
nm(t) = 0,

∀ c ∈ N\{n},
m /∈ H(c)

n or c 6= c?
nm(t)

or δ
(c)
nm(t) ≤ 0,

(25)
where µ

(c)
nm is as in (2), H(c)

n is defined in Section II, and

c?
nm(t) = arg max

c:m∈H(c)
n

δ(c)
nm(t), ∀n ∈ N , m ∈ N out

n . (26)

The optimal objective function in (25) is always non-negative
since at least when pn(t)=0, the objective function is equal
to zero. Comparing to the resource allocation problem in [18],
the objective function in (25) has an extra negative term

−

 ∑

c∈N\{n}

∑

m∈N out
n

p(c)
nm(t)





 ∑

a∈N\{n}
ψ(n)

a (t)


 , (27)

which denotes the total interference compensation charge that
wireless relay node n should pay to other relay nodes. By
solving (25), node n finds the trade-off between maximizing∑

c∈N\{n}
∑

m∈N out µ
(c)
nm(p(t), ω(t))δnm(t) (i.e., the original

objective function in [18]) and minimizing its interference
compensation cost. Each node then implements the same rout-
ing strategy as in [18]. That is, node n transmits commodity
c?
nm(t) data on link (n, m) as long as δ

(c?
nm(t))

nm > 0. No
commodity c 6=c?

nm(t) data is sent on link (n,m) at time t.
Theorem 1: Let p?

n(t) denote the optimal solution of prob-
lem (25). Assuming that K À 1 and all links operate in the
high SINR regime (cf. [4], [27]), for each neighboring relay
node m∈N out

n and any commodity c ∈ N\{n}, if c = c?
nm(t),

δ
(c)
nm(t) > 0, and m ∈ H(c)

n , then

p?(c)
nm (t) = min





δ
(c?

nm(t))
nm (t)

∑
a∈N\{n} ψ

(n)
a (t)

,
δ
(c?

nm(t))
nm (t) Pmax

n∑
a∈N out

n
δ
(c?

na(t))
na



;

(28)
otherwise, p

?(c)
nm (t) = 0.
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Theorem 1 provides a closed-form solution for the con-
strained optimization problem in (25). The proof of Theorem 1
is given in Appendix A. The key is to show that (28) satisfies
all the necessary and sufficient Karush-Kuhn-Tucker (KKT)
optimality conditions (cf. [28]).

III. KEY PROPERTIES OF TWO-FOLD PRICING

Recall from Section II that each relay node n ∈ N is an
independent commercial entity who wants to make money out
of its offered relay and connectivity services. In this regard,
at each time slot t∈T we define node n’s profit as

χn(t) =
∑

c∈N\{n}

∑

i∈Dn

∑

k∈Dc

r
(k)
i (t) φ(c)

n (t)

+
∑

m∈N in
n

∑

c∈N\{n}
µ(c)

mn(p(t), w(t))φ(c)
n (t)

−
∑

m∈N out
n

∑

c∈N\{n}
µ(c)

nm(p(t), w(t))φ(c)
m (t)

+
∑

a∈N\{n}
ψ(a)

n (t)
∑

d∈N\{a}

∑

b∈N out
a

p
(d)
ab (t)

−
∑

a∈N\{n}
ψ(n)

a (t)
∑

c∈N\{n}

∑

m∈N out
n

p(c)
nm(t).

(29)

The first term in (29) is the total relay charges from all users
i ∈ Dn. The second and the third terms denote the total
relay charges from and to all the neighboring relay nodes,
respectively. The fourth and the fifth terms denote the total
interference charges from and to all other nodes a∈N\{n},
respectively. We are now ready to present our first key result.

Theorem 2: For each T À 1 and any relay node n ∈ N ,

T∑
t=0

χn(t) ≥
T∑

t=0

∑

a∈N\{n}
ψ(a)

n (t)


 ∑

d∈N\{a}

∑

b∈N out
a

p
(d)
ab (t)


 .

(30)

The proof of Theorem 2 is given in Appendix B. From
Theorem 2, each relay node is guaranteed to obtain a profit
which is at least as high as the right-hand side (RHS) of
(30). All the terms in the RHS of (30) are non-negative. From
Assumptions 1 to 4, the RHS of (30) is zero only if for the
duration from time t = 0 to t = T , no relay node in set
N\{n} transmits any data and there is no data in any of the
N − 1 queues in node n. This happens only if either N = 1
and there is no other relay node in the network or node n
has set its relay prices too high so that none of its users and
neighboring relay nodes are interested in transferring their data
to node n. The former is the case when there is no need to
relay node n as all users in set Dn = D can communicate
with each other directly. The latter is the case when node n is
reluctant to contribute as a part of the wireless access network.

Corollary 1: Each wireless relay node that contributes in
relaying data is guaranteed to receive a positive-valued profit.
The profit increases as the node forwards more packets.

Theorem 2 and Corollary 1 are general and apply to any
choice of user utilities and pricing functions. Next, we deter-
mine the pricing functions Φ(c)

n and Ψ(m)
n for all relay nodes

n ∈ N , any commodity c ∈ N\{n}, and any neighboring
relay node m ∈ N out

n to maximize the network social welfare;
i.e., the aggregate profit across all relay nodes and users

T∑
t=1

∑

n∈N
χn(t) +

T∑
t=1

∑

i∈D
ϑi(t). (31)

Lemma 1: The social welfare model in (31) is equal to
T∑

t=1

∑

n∈N

∑

i∈Dn

∑

c∈N\{n}

∑

k∈Dc

g
(k)
i (r(k)

i (t)). (32)

The proof of Lemma 1 is given in Appendix C. From
Lemma 1, the monetary exchanges among the relay nodes
and the users cancel out each other. Eq. (32) is the aggregate
network utility across all users. Thus, maximizing the network
social welfare in our TFP model is equivalent to maximizing
the network utility. Therefore, we can use the recent results
from the literature on backpressure algorithms (cf. [18], [23],
[24], [29], [30]) and obtain the interference and relay prices
such that we can maximize the aggregate network utility.
From [24] and [30], the network utility is maximized if we
periodically solve the following global optimization problem

max
p(t)º0

∑

n∈N

∑

c∈N\{n}

∑

m∈N out
n

µ(c)
nm(p(t),ω(t)) δ(c)

nm(t′)

s.t.
∑

c∈N\{n}

∑

m∈N out
n

p(c)
nm(t) ≤ Pmax

n , ∀n ∈ N

p(c)
nm(t) = 0,

∀n∈N , c∈N\{n},
m /∈ H(c)

n or c 6= c?
nm(t′)

or δ
(c)
nm(t′) ≤ 0.

(33)
Problem (33) is a maximum weight matching problem. The
objective function in (33) is a weighted summation of the link
data rates for all links in the network. For each link (n,m), the
weight is proportional (see the differential relay price model
in (21)) to the difference between the queue length at the
transmitter node n and the queue length at the receiver node
m. By maximizing the objective function in (33), we aim to
balance the queue lengths at the network nodes. This leads
to stabilizing the network queues [30, Theorem 4]) and also
reaching the maximum aggregate network utility [24]. From
Lemma 1, it also leads to maximum network social welfare.
Therefore, our job is to determine the interference and relay
prices to solve the maximum weight matching problem (33).

Theorem 3: Given T (i.e., the set of time slots), Tω (i.e.,
the set of time slots at which the vector of channel states ω
changes), and ΛÀ1 (i.e., the fading parameter), let

Tφ = Tω, Tψ = T , and Υ = Λ, (34)

where Tω , Tψ , and Υ are defined in Section II-A. The
aggregate network utility and the network social welfare are
maximized if each node n∈N at each time slot t′∈Tφ sets

Φ(c)
n = V U (c)

n (t′), ∀c∈N\{n}, (35)

and at each time t ∈ {t′, . . . , t′ + Υ} each node n ∈ N sets

Ψ(a)
n =

∑

m∈N out
n

ham
max{δ(c?

nm(t′))
nm (t′), 0}

Inm(p−n(t−1)) + ηm
, ∀a∈N\{n}, (36)
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Algorithm 1 Executed by each wireless relay node n ∈ N
1: Randomly choose the prices and transmission powers.
2: repeat
3: Transmit commodity c ∈ N\{n} data to node m ∈ H(c)

n

with power p
(c)
nm.

4: if t ∈ Tφ then
5: for all commodity c ∈ N\{n} do
6: Set φ

(c)
n = V U

(c)
n .

7: end
8: Inform φn =(φ(c)

n , ∀c 6= n) to neighbors and users.
9: for all out-neighbors m ∈ N out

n do
10: for all commodity c ∈ N\{n} do
11: Set δ

(c)
nm = φ

(c)
n − φ

(c)
m − φmax.

12: end
13: Set c?

nm = arg max
c:m∈H(c)

n
δnm(c).

14: end
15: end
16: if t ∈ Tψ then
17: for all relay nodes a ∈ N\{n} do
18: Set ψ

(a)
n =

∑
m∈N out

n
( ham

Inm+ηm
) max{δ(c?

nm)
nm , 0}.

19: end
20: Inform ψn = (ψ(a)

n , ∀a 6= n) to all other nodes.
21: Set pn = 0.
22: for all out-neighbors m ∈ N out

n do
23: if

∑
m∈N out

n
δ
(c?

nm)
nm ≤ P max

n (
∑

a∈N\{n} ψ
(n)
a ) then

24: Set p
(c)
nm = δ

(c?
nm)

nm /(
∑

a∈N\{n} ψ
(n)
a ).

25: else
26: Set p

(c)
nm = (δ(c?

nm)
nm P max

n )/(
∑

a∈N out
n

δ
(c?

na)
na ).

27: end
28: end
29: end
30: Charge any node m ∈ N in

n and any i ∈ Dn for relaying
commodity c 6= n data at price φ

(c)
n .

31: Pay any node m ∈ N out
n for relaying commodity c 6= n

data at price φ
(c)
m .

32: Charge any other node a 6= n for the interference it
causes on node n at price ψ

(a)
n .

33: Pay any other node a 6= n for the interference node
n causes on it at price ψ

(n)
a .

34: until the wireless relay node n switches off.

where V > 0 is an arbitrary design parameter. Notice that here
Inm(p−n(t− 1)) denotes the most recent measurement of the
interference power at the receiver node of link (n,m).

The proof of Theorem 3 is given in Appendix D. The
key is to show that our proposed two-fold pricing functions
result in solving the maximum weight matching problem
periodically (i.e., every Υ = Λ time slots). Together, Theorems
2 and 3 show that if the transmission powers, relay prices,
and interference prices are set according to (28), (35), and
(36), respectively, then not only each relay node receives a
guaranteed positive profit, but also the social welfare and the
network utility are maximized. The pseudocode of the pricing
algorithms that each node and each user need to execute are
given in Algorithms 1 and 2, respectively. In lines 5 to 7

Algorithm 2 Executed by each wireless user i ∈ Dn

1: repeat
2: Set the rates ri by solving problem (19).
3: Pay node n for commodity c 6= n data at price φ

(c)
n .

4: until the wireless user i switches off or leaves the network.

and lines 17 to 19 of Algorithm 1, the relay and interference
prices are adjusted according to Theorem 3, respectively. On
the other hand, in lines 21 to 28, the transmission powers are
set according to Theorem 1. Notice that Algorithm 2 simply
adjusts the transmission rates of the users based on the optimal
solutions of the profit maximization problem in (19).

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
TFP scheme and compare it with two recently proposed single-
fold pricing strategies. In particular, we compared TFP with
the single-fold relay pricing (SFRP) scheme in [18] and the
single-fold interference pricing (SFIP) scheme in [10]. For the
pricing model in [18], only the relay prices are taken into
account and the network is assumed to be interference-free.
On the other hand, for the pricing model in [10], only the
interference prices are considered and it is assumed that all
relay nodes are willing to relay data for other relay nodes free
of charge. We consider three performance metrics: 1) network
social welfare, 2) fairness index, and 3) aggregate network
throughput. The fairness index is calculated among the profits
that the wireless relay nodes achieve [31]

(∑
n∈N

∑T
t=1 χn(t)

)2

N
∑

n∈N
(∑T

t=1 χn(t)
)2 , (37)

where T = 5000 is the simulation time. Clearly, for the case
of SFRP, the profit for each node includes the balance of the
received and paid prices only for relay prices. Similarly, for
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Fig. 2. Network social welfare when the number of wireless relay nodes N
varies from 10 to 50. Each relay node provides network connectivity for 5
users. Each point is the average of the measurements for all ten topologies.
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Fig. 3. Network throughput when the number of relay nodes N varies from
10 to 50. Each point is the average of the measurements for all ten topologies.

the case of SFIP, the profit for each node includes the balance
of the received and paid prices only for interference prices. In
the simulation model, each wireless relay node n provides the
connectivity for |Dn| = 5 wireless users. Each wireless user
is interested in sending data to two other (randomly selected)
users inside the network. We consider ten different random
topologies. In each topology, the wireless relay nodes are
randomly located in a 1 km × 1 km square field and the
communication range is 200 m. There is a link between any
two neighboring wireless relay nodes if they are within the
communication range of each other. For each wireless relay
node n ∈ N , we have: Pmax

n = 20 W and Rmax
n = 100 kbps.

The transmission power, relay prices, and the interference
prices are set according to (28), (35), and (36), respectively.
The unit of currency is selected such that for a unit queue
backlog, relaying 1 Mbps data costs 1 cent, i.e., 0.01 dollar.
Unless stated otherwise, we assume the presence of slow-
fading channels with the fading parameter Λ = 10. The impact
of fast-fading is also studied in Section IV-C.

A. Performance Comparison with Single-Fold Pricing

The network social welfare, where the number of relay
nodes N varies from 10 to 50, is shown in Fig. 2. In this figure,
each point is the average of the measurements for all 10 sim-
ulated topologies. We can see that the proposed TFP scheme
always outperforms the SFRP and SFIP strategies and results
in higher network social welfare1. Notice that, from Theorem
3, TFP indeed leads to achieving the maximum network social
welfare. Considering the case where the number of relay nodes
N =50, TFP results in 24.6% and 36.7% higher network social
welfare compared to SFRP and SFIP, respectively. We can also
see that SFRP outperforms the SFIP scheme. This is due to

1Notice that from Lemma 1, the network social welfare when TFP is
used is equal to aggregate network utility. We can easily show that a similar
statement is true when SFRP is used. Therefore, to have a fair comparison,
we also considered the aggregate network utility as the network social welfare
when SFIP is used. Otherwise, the network social welfare for SFIP would be
significantly less than the values shown in Fig. 2.
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Fig. 4. Simulation results for each of the 10 random simulated topologies
when N =50 and the communication channels experience slow-fading (i.e.,
Λ = 10): (a) Network social welfare, (b) Fairness index among the profits
achieved by wireless relay nodes, and (c) Aggregate network throughput.

the fact that SFIP does not take into account the information
about the traffic load (e.g., queue backlog) and the link state
information. In fact, SFIP simply assumes infinite backlog in
all queues in the network. In contrary, our proposed TFP model
takes into account the wireless interference, load information,
and channel states leading to significantly better performance.

Next, we compare the throughout in TFP, SFRP, and SFIP.
Results are shown in Fig. 3. We can see that TFP can increase
the throughput significantly compared to both SFRP and SFIP
schemes. Considering the case where N = 50, the proposed
TFP results in 14.7% and 21.2% higher aggregate throughput
compared to SFRP and SFIP, respectively.

The exact value of the social welfare, fairness index, and
throughput for each of the 10 simulated topologies, where N =
50, are shown in Fig. 4 (a), (b), and (c), respectively. From Fig.
4 (a) and (c), TFP always results in higher social welfare and
higher throughput compared to both SFRP and SFIP. From Fig.
4 (b), TFP also always acts more fair. Recall from Theorem 2
that TFP guarantees high positive profits for all relay nodes. In
fact, compared to SFRP, having the interference prices in the
TFP scheme helps those relay nodes that do not experience
high traffic demand. Instead, they make some money out of
the interference charges. This results in a more fair revenue
distribution among the nodes. On average, TFP leads to 18.3%
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Fig. 5. Trend of the maximum weight matching objective Θ(t) versus time
slots: (a) During the whole simulation time, i.e., 5000 time slots, (b) During
the first 200 time slots. Notice that every Υ = Λ = 10 time slots, the
channel states change randomly and the maximum weight matching objective
converges to its new optimal value accordingly.

higher fairness index compared to SFRP. We further notice that
SFIP shows poor performance in terms of fairness. In fact,
since SFIP is based on the assumption of free relay service,
in this case the only monetary exchange among the relay nodes
is the interference prices. The interference prices only depend
on the network topology, not the traffic load relayed by each
node. Therefore, when it comes to the profit made by each
node, SFIP does not show an acceptable performance.

B. Maximum Weight Matching
Recall from Section III that both TFP and SFIP aim to solve

the maximum weight matching problem in (33). Therefore, it
is interesting to compare TFP and SFIP in terms of maximizing
the objective value in (33). At each time slot t∈T , we define

Θ(t) =
∑

n∈N

∑

c∈N\{n}

∑

m∈N out
n

µ(c)
nm(p(t), ω(t)) δ(c)

nm(t′), (38)

where t′ is the smallest time slot in set Tω such that: t ≥ t′. In
other words, t′ is the most recent time slot at which the vector

of channel states ω has changed. We notice that, Θ(t) is indeed
the same as the objective function in the maximum weight
matching problem in (33). From Theorem 3, TFP results
in maximum network social welfare and maximum network
utility by periodically solving the optimization problem (33),
i.e., maximizing the values of Θ(t). This is illustrated in
Fig. 5. In this figure, the trend of Θ(t) for topology number
1 is shown versus the time slots. Notice that, the fading
parameter Λ = 10. Thus, the vector of channel states ω
changes randomly every 10 time slots. This implies that the
optimal solution of the maximum weight matching problem
also changes every 10 time slots2. For proper operation, TFP
needs to converge to the new optimal solution accordingly.
This is shown in the zoomed area in Fig. 5 (b). Clearly,
the convergence is fast. From the results in Fig. 5 (a) and
(b), we can also see that TFP always results in substantially
higher maximum weight matching objective Θ(t), compared
to SFRP. The higher the maximum weight matching objective,
the higher is the aggregate network utility [24]. From Lemma
1, this also implies higher network social welfare.

C. Impact of Fast-Fading

In the previous experiments, we assumed that the channels
experience slow-fading. In this section, we study the impact of
fast-fading. Results for all the ten simulated topologies, where
the number of relay nodes N = 50 and the fading parameter
Λ = 2, are shown in Fig. 6. In this scenario, the channel states
change randomly every 2 time slots. This implies that the
optimal solution of the maximum weight matching problem
also changes every 2 time slots. As a result, our proposed
distributed transmission power adjustment mechanism (see
lines 22 to 29 in Algorithm 1) does not have enough time
to converge to the new optimal solution of the maximum
weight matching problem after each change in the channel
states. Thus, the optimal performance may not be achieved.
Nevertheless, from the results in Fig. 6(a) and 6(c), TFP still
results in 46.3% higher network social welfare and 32.4%
higher aggregate throughput, compared to SFRP. On the other
hand, from Fig. 6 (b), TFP is 35.2% more fair compared to
SFRP in this scenario. Similar results are obtained compared to
SFIP scheme. Notice that SFIP has slightly better performance
than SFRP in presence of fast fading channels. That is due to
the fact that SFIP assigns prices only based on the network
topology, not the channel states. Thus, unlike SFRP, SFIP is
not noticeably affected by fast fading.

In summary, assuming the presence of slow-fading channels,
our proposed TFP scheme leads to not only higher aggregate
profit across the nodes and users, but also more fair revenue
distribution among the relay nodes. The former results from
Theorem 3 while the latter results from Theorem 2. Both fea-
tures are also confirmed through extensive simulation studies.
Furthermore, TFP can also significantly increase the network
aggregate throughput. When the underlying communication
channels experience fast-fading, although TFP still results
in substantially better performance compared to SFRP and

2That is why the interval for solving problem (33) must be at least 10.



9

SFIP as the simulation results indicate, achieving the optimal
performance may not always be guaranteed.

V. CONCLUSION

In this paper, we proposed a market-based wireless access
network model with two-fold pricing (TFP), where several
self-interested wireless relay nodes provide connectivity for
a number of wireless users. The relay-prices are used as
incentives to encourage nodes to collaborate and forward
each other’s packets. The interference-prices are also used
to leverage optimal resource allocation. Together, the relay
and interference prices incorporate both cooperative and com-
petitive interactions among the nodes. The positive profit for
each individual wireless relay node is guaranteed for a wide
range of pricing functions. The relay and interference pricing
functions are then determined to maximize the network social
welfare and aggregate network utility. Compared with the
single-fold relay pricing (SFRP) scheme in [18], where only
the relay prices are taken into account, as well as the single-
fold interference pricing (SFIP) scheme in [10], where only
the interference prices are considered, simulation results show
that TFP significantly increases the network social welfare and
aggregate throughput. TFP also leads to more fair revenue
sharing and better profit distribution among the wireless relay
nodes. Therefore, TFP leads to a wireless access network
with multiple independent service providers which not only
operates at optimal performance, but also is beneficial for each
individual wireless service provider.

APPENDIX

A. Proof of Theorem 1
Knowing that all the constraints are linear and the objective

function is concave, problem (25) is a convex optimization
problem. Therefore, it has a unique local (thus global) optimal
solution. In a high SINR regime, the optimal solution should
satisfy the following necessary and sufficient Karush-Kuhn-
Tucker (KKT) optimality conditions [32, Proposition 3.3.1]
for each out-neighbor node m ∈ N out

n :

δ
(c?

nm(t))
nm (t)

p
?(c?

nm(t))
nm (t)

−
∑

a∈N\{n}
ψ(n)

a (t) = λ?
n−σ?

nm, (39)

λ?
n


 ∑

m∈N out
n

p
?(c?

nm(t))
nm (t)− Pmax

n


 = 0, (40)

σ?
nmp

?(c?
nm(t))

nm (t) = 0, (41)
λ?

n ≥ 0, (42)
σ?

nm ≥ 0, (43)

where λ?
n denotes the Lagrange multiplier corresponding

to constraint
∑

m∈N out
n

p
?(c?

nm(t))
nm (t) ≤ Pmax

n and σ?
nm de-

notes the Lagrange multiplier corresponding to constraint
p

?(c?
nm(t))

nm (t) ≥ 0 for each wireless link (n,m) ∈ Lout
n . We

can show that if

∑

m∈N out
n

δ
(c?

nm(t))
nm (t) < Pmax

n


 ∑

a∈N\{n}
ψ(n)

a (t)


 , (44)
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Fig. 6. Simulation results for each of the 10 random simulated topologies
when N = 50 and the communication channels experience fast-fading (i.e.,
Λ = 2): (a) Network social welfare, (b) Fairness index among the profits
achieved by wireless relay nodes, and (c) Aggregate network throughput.

then the KKT conditions (39)-(43) are satisfied by setting
λ?

n = 0 and σ?
nm = 0 for all links (n,m) ∈ Lout

n . In
this case, for each link (n, m) ∈ Lout

n and any commodity
c = c?

nm(t) such that δ
(c)
nm(t) > 0, we have p

?(c)
nm (t) =

δ
(c?

nm(t))
nm /(

∑
a∈N\{n} ψ

(n)
a (t)). On the other hand, if

∑

m∈N out
n

δ
(c?

nm(t))
nm (t) ≥ Pmax

n


 ∑

a∈N\{n}
ψ(n)

a (t)


 , (45)

then the KKT conditions are satisfied by setting σ?
nm = 0 for

all links (n,m) ∈ Lout
n and

λ?
n =

1
Pmax

n

∑

m∈N out
n

δ
(c?

nm(t))
nm (t)−

∑

a∈N\{n}
ψ(n)

a (t)
by (45)
≥ 0.

(46)

Notice that, in this case, for each link (n,m) ∈ Lout
n and

any commodity c = c?
nm(t) such that δ

(c)
nm(t) > 0, we have

p
?(c)
nm (t) = δ

(c?
nm(t))

nm (t) Pmax
n /

(∑
a∈N out

n
δ
(c?

na(t))
na (t)

)
. Thus,

since pn(t) is the only point that satisfies the KKT conditions
in (39)-(43), it is indeed the unique global optimal solution
for the local transmission power control problem in (25). ¥
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B. Proof of Theorem 2
From (21) and (29), for any node n∈N and at any time t∈T ,

χn(t)

= χn(t) +
∑

c∈N\{n}

∑

m∈N out
n

µ(c)
nm(p(t), ω(t))δ(c)

nm(t)

−
∑

c∈N\{n}

∑

m∈N out
n

µ(c)
nm(p(t),ω(t))

(
φ(c)

n (t)−φ(c)
m (t)−φmax

)

=


 ∑

c∈N\{n}

∑

m∈N out
n

µ(c)
nm(p(t), ω(t)) δ(c)

nm(t)

−
∑

a∈N\{n}
ψ(n)

a (t)
∑

c∈N\{n}

∑

m∈N out
n

p(c)
nm(t)




+


 ∑

c∈N\{n}

( ∑

i∈Dn

∑

k∈Dc

r
(k)
i (t)+

∑

m∈N in
n

µ(c)
mn(p(t), ω(t))


 φ(c)

n (t)

−
∑

c∈N\{n}

∑

m∈N out
n

µ(c)
nm (p(t), ω(t))

(
φ(c)

n (t)− φmax
)




+
∑

a∈N\{n}
ψ(m)

n (t)
∑

d∈N\{a}

∑

b∈N out
a

p
(d)
ab (t).

(47)

Since the optimal objective function in (25) is non-negative,

∑

c∈N\{n}

∑

m∈N out
n

µ(c)
nm(p(t),ω(t)) δ(c)

nm(t)

−
∑

a∈N\{n}
ψ(n)

a (t)
∑

c∈N\{n}

∑

m∈N out
n

p(c)
nm(t) ≥ 0.

(48)

Following the proof of [18, Theorem 2b], we can also show
that

∑

c∈N\{n}


 ∑

i∈Dn

∑

k∈Dc

r
(k)
i (t)+

∑

m∈N in
n

µ(c)
mn(p(t), ω(t))


 φ(c)

n (t)

−
∑

c∈N\{n}

∑

m∈N out
n

µ(c)
nm(p(t), ω(t))

(
φ(c)

n (t)− φmax
)
≥ 0.

(49)

By replacing (48) and (49) in (21) we have

χn(t) ≥
∑

a∈N\{n}
ψ(m)

n (t)
∑

d∈N\{a}

∑

b∈N out
a

p
(d)
ab (t). (50)

Adding up both sides for any time slot t = 1, . . . , T , the
inequality in (30) is resulted. ¥

C. Proof of Lemma 1

Replacing ϑi(t) and χn(t) in (31) by (20) and (29),

T∑
t=1

∑

n∈N
χn(t) +

T∑
t=1

∑

i∈D
ϑi(t)

=
T∑

t=1

∑

n∈N


 ∑

c∈N\{n}

∑

i∈Dn

∑

k∈Dc

r
(k)
i (t)φ(c)

n (t)

+
∑

m∈N in
n

∑

c∈N\{n}
µ(c)

mn(p(t),w(t))φ(c)
n (t)

−
∑

m∈N out
n

∑

c∈N\{n}
µ(c)

nm(p(t), w(t))φ(c)
m (t)

+
∑

a∈N\{n}
ψ(a)

n (t)
∑

d∈N\{a}

∑

b∈N out
a

p
(d)
ab (t)

−
∑

a∈N\{n}
ψ(n)

a (t)
∑

c∈N\{n}

∑

m∈N out
n

p(c)
nm(t)




+
T∑

t=1

∑

n∈N

∑

i∈Dn


 ∑

c∈N\{n}

∑

k∈Dc

g
(k)
i (r(k)

i (t))

−
∑

n∈N\{n}

∑

k∈Dc

r
(k)
i (t)φ(c)

n (t)




=
T∑

t=1

∑

n∈N


 ∑

c∈N\{n}

∑

i∈Dn

∑

k∈Dc

r
(k)
i (t)φ(c)

n (t)−

r
(k)
i (t)φ(c)

n (t)
)

+
T∑

t=1





 ∑

n∈N

∑

c∈N\{n}

∑

m∈N in
n

µ(c)
mn(p(t),w(t))φ(c)

n (t)




−

 ∑

n∈N

∑

c∈N\{n}

∑

m∈N out
n

µ(c)
nm(p(t), w(t))φ(c)

m (t)







+
T∑

t=1





 ∑

n∈N

∑

a∈N\{n}
ψ(a)

n (t)
∑

d∈N\{a}

∑

b∈N out
a

p
(d)
ab (t)




−

 ∑

n∈N

∑

a∈N\{n}
ψ(n)

a (t)
∑

c∈N\{n}

∑

m∈N out
n

p(c)
nm(t)







+
T∑

t=1

∑

n∈N

∑

i∈Dn

∑

c∈N\{n}

∑

k∈Dc

g
(k)
i (r(k)

i (t))

=
T∑

t=1

∑

n∈N

∑

i∈Dn

∑

c∈N\{n}

∑

k∈Dc

g
(k)
i (r(k)

i (t)).

(51)

The last line in (51) is indeed the same as (32). Notice that
∑

n∈N

∑

c∈N\{n}

∑

m∈N in
n

µ(c)
mn(p(t), w(t))φ(c)

n (t)

=
∑

n∈N

∑

c∈N\{n}

∑

m∈N out
n

µ(c)
nm(p(t), w(t))φ(c)

m (t),
(52)
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and
∑

n∈N

∑

a∈N\{n}

∑

d∈N\{a}

∑

b∈N out
a

ψ(a)
n (t) p

(d)
ab (t)

=
∑

n∈N

∑

a∈N\{n}

∑

c∈N\{n}

∑

m∈N out
n

ψ(n)
a (t) p(c)

nm(t).
(53)

In (52), the left hand side denotes the aggregate relay price
that all wireless relay nodes receive while the right hand side
denotes the aggregate relay price all wireless relay nodes
pay. Similarly, in (53), the left hand side is the aggregate
interference price that all wireless relay nodes receive while
the right hand side is the aggregate interference price all
wireless relay nodes pay. ¥

D. Proof of Theorem 3

Given t′ ∈ Tφ, for each time slot t ∈ {t′, . . . , t′+Υ}, consider
two arbitrary non-negative valued transmission power vectors
p̃(t) and p̂(t) such that

p̃(t) ¹ p̂(t), (54)

where the inequality is interpreted coordinate-wise. That is,
for any wireless link (n,m) ∈ L and each commodity c ∈
N\{n}, we have p̃

(c)
nm(t) ≤ p̂

(c)
nm(t). From (3), we can show

that for each n ∈ N and any m ∈ N out
n we have

Inm(p̃−n(t)) ≤ Inm(p̂−n(t)), (55)
1

(Inm(p̃−n(t)) + ηm)
≥ 1

(Inm(p̂−n(t)) + ηm)
, (56)

ψ(a)
n (p̃(t)) ≥ ψ

(a)
n (p̂(t)), (57)

Thus, for each n ∈ N , we have

1
∑

a∈N\{n} ψ
(n)
a (p̃(t))

≤ 1
∑

a∈N\{n} ψ
(n)
a (p̂(t))

. (58)

Replacing (58) in (28), we have

p̃(t + 1) ¹ p̂(t + 1). (59)

From (54) and (59), the update formulation in (28) forms
a monotone mapping [33]. Monotone mappings satisfy both
synchronous convergence and box conditions [33, pp. 431].
Thus, from the asynchronous convergence theorem [33], the
transmission powers will converge to a fixed point, assuming
that Υ = Λ is large enough. By definition, p? should denote
the optimal solution of the local optimization problem in (25)
for all relay nodes. Next, we show that p? also denotes the
unique optimal solution of the maximum weight matching
problem in (33). Notice that the objective function in (33)
is different from the objective function in (25) as it is the
weighted summation of the data rates over all links. Problem
(33) is indeed the key resource allocation problem to be
solved by the backpressure algorithms [23], [24]. Using the
logarithmic change of variables (cf. [4, Theorem 1]), we can
transform problem (33) to an equivalent convex problem. Thus,
problem (33) has a unique global optimal solution (cf. [32]).

Let p∗ denote the unique optimal solution of problem (33).
From KKT conditions, for each n∈N and m∈N out

n we have

δ
(c?

nm(t′))
nm (t′)

p
∗(c?

nm(t′))
nm (t)

−
∑

a ∈ N\{n},

b ∈ N out
a (t)

hnb
δ
(d?

ab(t
′))

ab (t′)
In(p∗−n(t)) + ηb

= ρ∗n−%∗nm, (60)

ρ∗n


 ∑

m∈N out
n

p
∗(c?

nm(t′))
nm (t)− Pmax

n


 = 0, (61)

%∗nmp
∗(c?

nm(t′))
nm (t) = 0, (62)

ρ?
n ≥ 0, %∗nm ≥ 0, (63)

where for each node n ∈ N , ρ∗n denotes the Lagrange mul-
tiplier corresponding to constraint

∑
m∈N out

n
p
∗(c?

nm(t′))
nm (t) ≤

Pmax
n and %∗nm denotes the Lagrange multiplier corresponding

to constraint p
∗(c?

nm(t′))
nm (t) ≥ 0. Comparing with (40)-(43),

the KKT conditions (61)-(63) hold if we set p∗ = p?,
ρ∗n = λ?

n, and %∗nm = σ?
nm, for all nodes n ∈ N and all

links (n,m)∈Lout
n . In this case, since

∑

a∈N\{n}

∑

b∈N out
a

hnb
δ
(d?

ab(t
′))

ab (t′)
In(p∗−n) + ηb

by (36)
=

∑

a∈N\{n}
ψ(n)

a (t),

the KKT condition in (60) is also resulted from (39). Thus,
p∗ = p? is indeed the unique optimal solution of the maximum
weight matching problem in (33). In other words, given the
interference pricing model in (36), problem (33) is solved
every Υ = Λ time slots. This, together with (35), results in
achieving maximum network utility (cf. [24] and [30, Theorem
4]). From Lemma 1, obtaining the maximum network utility
also implies achieving maximum social welfare. ¥
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