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Abstract— In this paper, we consider deployment of energy
consumption scheduling (ECS) devices in smart meters for
autonomous demand side management within a neighborhood,
where several buildings share an energy source. The ECS devices
are assumed to be built inside smart meters and to be connected to
not only the power grid, but also to a local area network which
is essential for handling two-way communications in a smart
grid infrastructure. They interact automatically by running a
distributed algorithm to find the optimal energy consumption
schedule for each subscriber, with an aim at reducing the total
energy cost as well as the peak-to-average-ratio (PAR) in load
demand in the system. Incentives are also provided for the
subscribers to actually use the ECS devices via a novel pricing
model, derived from a game-theoretic analysis. Simulation results
confirm that our proposed distributed algorithm significantly
reduces the PAR and the total cost in the system.

I. INTRODUCTION

According to a report by the U.S. Department of Energy in
2008 [1], 74% of the nation’s electricity consumption occurs in
buildings. This represents 39% of the total energy consumption
among all sectors. Currently, the electricity consumption is not
efficient in most buildings, leading to the waste of billions of
dollars and a major amount of extra greenhouse gas emissions.

There are two general approaches for energy consumption
management in buildings: reducing consumption and shifting
consumption [2]. The former can be done through raising
awareness among subscribers for more careful consumption
patterns as well as constructing more energy efficient build-
ings, e.g., with better heat isolations, less energy consuming
lighting, etc. However, there is also an important need for
practical solutions to shift high-load household appliances to
off-peak hours in order to reduce the peak-to-average ratio
(PAR) in load demand. Appropriate load-shifting is foreseen
to become even more crucial as plug-in hybrid electric vehicles
(PHEVs) become more popular. Most PHEVs need 0.2 - 0.3
kWh of charging power for one mile of driving [3]. This will
represent a significant new load on the existing distribution
system. In particular, during the charging time, the PHEVs
double the average household load. Unbalanced conditions
resulting from an increasing number of PHEVs will drastically
exacerbate the already high PAR of the load demand, leading
to a degradation of the power quality, voltage problems, and
even potential damage to utility and consumer equipment [3].

Load management, also known as demand side manage-
ment [4]–[6], has been practiced since the early 1980s in
different forms such as direct load control and small-scale
voluntary load management programs, with varying degrees

of success. However, thanks to the advancements in smart
metering technologies [7] and the increasing interest in smart
grid infrastructure (cf. [3], [8]–[10]) with two-way digital
communication capability through computer networking, we
can push a modernized load management system forward and
introduce energy consumption scheduling (ECS) devices (e.g.,
as part of a smart meter) that can optimally coordinate the tim-
ing of household energy consumption in each neighborhood,
a high-rise building, or a large PHEV parking lot, through
communication among ECS devices and also between the ECS
devices and the control and dispatch centers.

Despite the importance of an efficient energy consumption
scheduling system, such large-scale scheduling plans cannot
be implemented unless intelligent pricing schemes are used
to provide incentives for the subscribers to follow them. The
incentives can be in form of lower utility charges.

In this paper, we consider a scenario where a source of
energy (e.g., a generator or a step-down substation transformer
which is connected to the grid) is shared by several sub-
scribers, each one equipped with an ECS device. The ECS
devices are deployed inside the smart meters and are connected
to not only the power line, but also to a communication
network which is essentially needed to handle two-way data
communications. The ECS devices interact automatically by
running a distributed algorithm to find the optimal energy
consumption schedule for each subscriber, with an aim at
reducing the PAR in the system. Interestingly, we can show
with a game-theoretic analysis (cf. [11]) that a simple pricing
mechanism can provide the subscribers with the incentives to
cooperate in order to not only improve the system overall
performance, but also to pay less individually. In other words,
through an appropriate pricing scheme, the Nash equilibrium
of an energy consumption game among the subscribers who
are sharing a common energy source will be the exact global
optimal solution of a system-wide optimization problem, mak-
ing our design optimal and practical.

The rest of this paper is organized as follows. We introduce
the system model and notations in Section II. This includes an
elaborate mathematical formulation of the energy consumption
scheduling problem as a convex optimization problem. We
discuss the requirements of a valid billing scheme and also
introduce the concept of an energy consumption game in
Section III. Our distributed algorithm to be executed by the
ECS devices is presented in Section IV. Simulation results are
given in Section V. The paper is concluded in Section VI. All
analytical proofs are provided in the Appendices.
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Fig. 1. A sample smart grid system with N load subscribers.

II. SYSTEM MODEL

A. Power System

Consider a smart power system with several load subscribers
and one source of energy, e.g., a generator or a step-down
substation transformer connected to the electric grid. An
example of such a system is illustrated in Fig. 1. We assume
that each subscriber is equipped with an ECS device in its
smart meter for scheduling the household energy consumption.
The subscribers are all connected to the power line (solid line)
coming from the energy source. The ECS devices are also
connected to each other and also to the energy source through
a local area network (LAN) (dashed line).

Let N denote the set of subscribers, where N , |N |. For
each subscriber n ∈ N , let An denote the set of appliances:
washer/dryer, refrigerator, PHEVs, etc. For each appliance a ∈
An, we define energy consumption scheduling vector

xn,a , [x1
n,a, . . . , xH

n,a], (1)

where H = 24 hours. For each hour of the day h ∈ H ,
{1, . . . ,H}, real-valued scalar xh

n,a denotes the corresponding
one-hour energy consumption that is scheduled for appliance a
from subscriber n. In this case, we can define the total hourly
energy consumption for each subscriber n ∈ N as

lhn ,
∑

a∈An

xh
n,a, h ∈ H. (2)

We also define

En,a ,
H∑

h=1

xh
n,a (3)

as the total daily energy consumption for appliance a from
subscriber n. Here, we assume that En,a is pre-determined and
set by the load subscriber according to her needs. For example,
En,a = 16 kWh for a plug-in hybrid electric sedan for a 40-
mile daily driving range [3]. In fact, our designed scheduler
aims not to change the amount of energy consumption, but
instead to systematically manage and shift it, e.g., in order to
reduce the PAR. In this regard, the subscriber also needs to
select the beginning αn,a ∈ H and the end βn,a ∈ H of a
time interval that the energy consumption for appliance a is
valid to be scheduled1. Clearly, αn,a < βn,a. For example, a
subscriber may select αn,a = 1 and βn,a = 8 for her PHEV
such that the battery charging finishes before 8:00 AM when

1The model here can be easily extended to the case when a particular
appliance is needed to be scheduled multiple times during the day. However,
here we focus on single-time scheduling for the ease of exposition.

TABLE I
SYSTEM PARAMETERS TO BE SET FOR EACH APPLIANCE

a ∈ An BY EACH SUBSCRIBER n ∈ N .

En,a Total energy to be scheduled.
αn,a Beginning of the time interval that consumption can be scheduled.
βn,a End of the time interval that consumption can be scheduled.
γmin

n,a Minimum scheduled power level.
γmax

n,a Maximum scheduled power level.

she needs to use the vehicle. This imposes certain constraints
on vector xn,a. In fact, it is required that

βn,a∑

h=αn,a

xh
n,a = En,a, (4)

and

xh
n,a = 0, ∀ h ∈ {1, . . . , αn,a−1}∪{βn,a+1, . . . ,H}. (5)

The time range set by the subscriber needs to be larger than
or equal to the time interval needed to finish the charging. For
example, for a single-phase PHEV the normal charging time is
3 hours [3]; therefore, it is required that βn,a−αn,a ≥ 3. We
note that certain appliances may have very strict scheduling
requirements, for example, a refrigerator, may require opera-
tion all the time. In that case, αn,a = 1 and βn,a = 24.

Many home appliances may have some maximum power
levels γmax

n,a , for each a ∈ An. For example, a PHEV may be
charged only up to γmax

n,a = 3.3 kWh per hour [3]. This imposes
the following upper-bound constraints on the choice of energy
consumption scheduling vector xn,a for each appliance a:

xh
n,a ≤ γmax

n,a , ∀ h ∈ {αn,a, . . . , βn,a}. (6)

Some appliances also have minimum stand-by power levels
γmin

n,a , for each a ∈ N . In that case, it is further required that

xh
n,a ≥ γmin

n,a , ∀ h ∈ {αn,a, . . . , βn,a}. (7)

In certain cases, we may require scheduling discrete power
levels. This can be fulfilled by either rounding the continuous
value of xh

n,a to the required discrete power levels, or redefin-
ing xh

n,a as a discrete variable with desired discrete levels.
Discrete-level energy consumption scheduling is beyond the
scope of this paper. The information needed to be set by
subscriber n for appliance a is summarized in Table I.

B. Energy Cost

Consider the total load at each hour of the day h ∈ H:

Lh ,
∑

n∈N
lhn. (8)

We define a cost function Ch(Lh) indicating the cost of
generating or providing energy by the energy source at each
hour h ∈ H. We first notice that in general

Ch1(L) 6= Ch2(L), ∀ h1, h2 ∈ H, h1 6= h2. (9)

In other words, the cost of the same load can be different at
different times of the day. In particular, the cost can be less
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Fig. 2. Two sample convex and increasing cost functions: (a) Two-step
conservation rate model used by BC Hydro [13]; (b) A quadratic cost function.

during the night compared to the day time. Furthermore, we
make the following assumptions:

Assumption 1: The cost functions are increasing in total
per-hour load. That is, for each h ∈ H, we have

Ch(L̂h) ≤ Ch(L̃h), ∀ L̂h ≤ L̃h. (10)

The inequality in (10) simply implies that the energy cost will
always increase when the total load increases.

Assumption 2: The cost functions are strictly convex. That
is, for each h ∈ H, and any L̂h, L̃h ≥ 0, we have [12]

Ch(θL̂h + (1− θ)L̃h) ≤ θCh(L̂h) + (1− θ)Ch(L̃h), (11)

where 0 ≤ θ ≤ 1. Examples of convex cost functions are
shown in Fig. 2. A convex function can be a piece-wise linear
function as in the two-step conservation rate used by British
Columbia (BC) Hydro [13], as in Fig. 2(a); or a smooth
differentiable quadratic function as in Fig. 2(b).

The cost function we assume is general and can represent
either the actual energy cost or simply a cost model used by
a utility company in order to impose a proper load-shifting.

C. Optimization Problem

Given complete knowledge about subscribers’ needs and a
centralized control of the system in Fig. 1, an efficient energy
consumption scheduling to be implemented by ECS devices
can be characterized as the solution of the following problem:

min
x1,...,xN

H∑

h=1

Ch

( ∑

n∈N

∑

a∈An

xh
n,a

)

s.t.
βn,a∑

h=αn,a

xh
n,a =En,a, ∀ a ∈ An, n ∈ N ,

γmin
n,a ≤ xh

n,a ≤ γmax
n,a ,

∀ h ∈ Hn,a,
∀a ∈ An, n ∈ N ,

xh
n,a = 0,

∀ h ∈ H\Hn,a,
∀a ∈ An, n ∈ N .

(12)

Here, for each n ∈ N and any a ∈ An, we have

Hn,a , {αn,a, . . . , βn,a}. (13)

For each subscriber n ∈ N , tensor xn is formed by
stacking up energy consumption scheduling vectors xn,a. The
optimization problem in (12) is convex and can be solved
using convex programming techniques such as the interior
point method (IPM) [12] in a centralized fashion. However,
we are interested in solving problem (12) distributively at the
ECS devices with minimum amount of information exchanges
among the ECS devices and the energy source. In particular,
we would like each ECS device be able to schedule the energy
consumption at the household according to the individual
needs of the subscribers. It is also important to make sure
that the subscribers have the incentive to actually use the ECS
devices and follow the schedules they determine.

III. ENERGY CONSUMPTION GAME

A. Pricing and Billing

For each registered subscriber n ∈ N , let bn denote the
daily amount in dollars to be charged to subscriber n by the
utility company which owns the energy source. In other words,
bn is the amount appears on the load subscriber n’s bill at the
end of the day. In general, we expect that the following two
key properties hold for any billing model:

1) Property I: Clearly, we need to have

∑

n∈N
bn ≥

H∑

h=1

Ch

( ∑

n∈N
lhn

)
, (14)

where the left hand side denotes the total daily charge to the
subscribers and the right hand side denotes the total daily cost.
In this regard, we can define

κ ,
∑

n∈N bn∑H
h=1 Ch

(∑
n∈N lhn

) ≥ 1. (15)

If κ = 1, then the billing system is budget balanced and the
utility company charges the subscribers only with the same
amount that generating/providing energy costs for the utility.

2) Property II: It is expected that the charges for each
subscriber to be proportional to the her total daily load. That
is, we have

bn ∝
H∑

h=1

lhn, ∀n ∈ N . (16)

In other words, a fair billing leads to the following equality:

bn

bm
=

∑H
h=1 lhn∑H
h=1 lhm

, ∀n,m ∈ N . (17)

After summing up (17) across all subscribers m ∈ N , for each
n ∈ N , we have

∑

m∈N
bm =

∑

m∈N

(
bn

∑H
h=1 lhm∑H
h=1 lhn

)
= bn

∑
m∈N

∑H
h=1 lhm∑H

h=1 lhn
.

(18)



Finally, from (2), (4), (15), and (18), we have

bn =
∑H

h=1 lhn∑
m∈N

∑H
h=1 lhm

( ∑

m∈N
bm

)

=
κ

∑H
h=1 lhn∑

m∈N
∑H

h=1 lhm

(
H∑

h=1

Ch

( ∑

m∈N
lhm

))

=
κ

∑
a∈An

En,a∑
m∈N

∑
a∈Am

Em,a

(
H∑

h=1

Ch

( ∑

m∈N

∑

a∈Am

xh
m,a

))
.

(19)

In other words, the only billing model that satisfies the
axiomatic requirements in (14) and (17) is the model in (19).

B. Energy Consumption Game

From (19), the charge on each subscriber would depend on
how she and other subscribers schedule their consumptions.
This leads to the following game among subscribers:

Game 1 (Energy Consumption Game Among Subscribers):

• Players: Registered subscribers in set N .
• Strategies: Energy consumption scheduling vectors xn for

all subscribers and appliances.
• Payoffs: Pn(xn;x−n) for each subscriber n∈N , where

Pn(xn;x−n) = −bn

= − κ
∑

a∈An
En,a∑

m∈N
∑

a∈Am
Em,a

×
(

H∑

h=1

Ch

( ∑

m∈N

∑

a∈Am

xh
m,a

))
.

Here, x−n denotes the energy consumption scheduling
vectors for all subscribers other than subscriber n.

In Game 1, the subscribers try to select their energy con-
sumption schedule to minimize their payments to the utility.

Theorem 1: Suppose the cost functions Ch(·) are increas-
ing and strictly convex for each h ∈ H. The Nash equilibrium
of Game 1 always exists and is unique.

The proof of Theorem 1 is given in Appendix A. Note that
Nash equilibrium is a solution concept in game theory that
characterizes how the players play a game [11]. The energy
consumption scheduling variables (x∗n, ∀n ∈ N ) form a Nash
equilibrium for Game 1 if and only if for each n ∈ N ,

Pn(x∗n;x∗−n) ≥ Pn(xn;x∗−n), ∀ xn ≥ 0. (20)

If the energy consumption game is at its unique Nash equilib-
rium, then none of the subscribers would try to deviate from
schedule (x∗n, ∀n ∈ N ). Next we show the following key
result on the performance at Nash equilibrium of Game 1.

Theorem 2: The unique Nash equilibrium of Game 1 is the
optimal solution of problem (12).

The proof of Theorem 2 is given in Appendix B. From
Theorem 2, as long as the cost functions Ch(·) are increasing
and strictly convex for each h ∈ H and also the price
model satisfies the axiomatic requirements (14) and (17), the

subscribers have all the incentives to cooperate with each other
in order to solve the energy consumption management problem
in (12) leading to the best possible energy consumption
scheduling with load-shifting and low PAR properties.

IV. DISTRIBUTED ALGORITHM

From the results in Section III, the subscribers would be
willing to cooperate and allow their ECS devices schedule
their household energy consumption to pay less. In particular,
we showed that the unique Nash equilibrium of the energy con-
sumption game among the subscribers is indeed the same as
the global optimal solution of energy consumption scheduling
problem (12). In this section, we provide a simple algorithm
to be implemented in each ECS device to reach the Nash
equilibrium of Game 1 and achieve the optimal performance.

Consider an arbitrary subscriber n ∈ N . Given x−n and
assuming that all other subscribers fix their energy consump-
tion schedule according to x−n, subscriber n can maximize
its own payoff by solving the following local problem:

max
xn

Pn(xn;x−n)

s.t.
βn,a∑

h=αn,a

xh
n,a = En,a, ∀ a ∈ An,

γmin
n,a ≤ xh

n,a ≤ γmax
n,a , ∀ h ∈ Hn,a, a ∈ An,

xh
n,a = 0, ∀ h ∈ H\Hn,a, a ∈ An.

(21)

Notice that here xn is the only vector variable. Since
κ

∑
a∈An

En,a∑
m∈N

∑
a∈Am

Em,a
is fixed and does not depend on the choice

of xn, the maximization in (21) can be replaced by a min-
imization over

∑H
h=1 Ch

(∑
m∈N

∑
a∈Am

xh
m,a

)
. Therefore,

we can replace the maximization in problem (21) equivalently
with the following minimization

min
xn

H∑

h=1

Ch

( ∑

m∈N

∑

a∈Am

xh
m,a

)
. (22)

We notice that
• Problems (22) and (12) have the same objective functions.
• Problem (22) has only local variables to subscriber n.
• Problem (22) is convex and can be solved by IPM [12].
The above observations motivate us to propose Algorithm

1 to solve problem (12). Algorithm 1 works based on the
coordinate ascent method [14], where we fix scheduling
variables across all subscribers except for the subscriber n,
and minimize the total cost

∑H
h=1 Ch

(∑
m∈N

∑
a∈Am

xh
m,a

)
only with respect to xn as in (22). This procedure is repeated,
leading to an iterative algorithm across the subscribers.

Next, we explain how Algorithm 1 works. In Line 1, each
subscriber starts with random initial conditions. Then, the loop
in Lines 2 to 11 continues until the algorithm converges.
Within this loop, each ECS device solves the local problem
(22) using IPM in Lines 4 and 5 and then announces its
updated schedule to other ECS devices in Line 6. It also
updates its local memory whenever it receives a control
message from other subscribers in Line 9. Let Tn denote the
set of time instances at which subscriber n ∈ N solves local
problem (22). We assume that:



Algorithm 1 : Executed by each subscriber n ∈ N .
1: Initialization.
2: repeat
3: if time t ∈ Tn then
4: Solve local problem (22) using IPM [12].
5: Update xn according to the solution.
6: Broadcast a control message to announce xn to the

other ECS devices across the LAN.
7: end if
8: if a control message is received then
9: Update x−n accordingly.

10: end if
11: until no ECS device announces change of schedule.

(a) For any subscriber n 6= m, we have Tn ∩ Tm = {}.
That is, the iterative local maximizations are carried out
successively as in the Gauss-Seidel mapping [14, p. 21].

(b) There is a constant Tmax such that for each subscriber
n ∈ N , there exist time instances t1, t2 ∈ Tn such that
|t1 − t2| ≤ Tmax. In other words, all subscribers update their
transmission probabilities at least once every Tmax seconds.

These assumptions guarantee the asynchronous convergence
of Algorithm 1 to some fixed point [14, Proposition 2.5, p.
208]. The convergence property is directly resulted from the
coordinate ascent structure of the algorithm and the Gauss-
Seidel updates. Now the questions are: (1) Starting from
different randomly selected initial schedules, does Algorithm
1 always converge to the same point? (2) What is the perfor-
mance of a fixed point that Algorithm 1 may converge to?

Since each subscriber updates its energy consumption
scheduling variables in Algorithm 1 to maximize its own
payoff Pn(xn;x−n), the fixed point of Algorithm 1 is the Nash
equilibrium of Game 1. From Theorem 1, the Nash equilibrium
of Game 1 is unique. This directly answers our first question:
Algorithm 1 always converges to the unique Nash equilibrium
of Game 1. Moreover, from Theorem 2, the unique Nash
equilibrium of Game 1 is the optimal solution of problem (12).
This also answers the second question: Algorithm 1 reaches
the optimal performance with respect to solving the energy
consumption scheduling problem in (12).

V. SIMULATION RESULTS

In this section, we present the simulation results and assess
the performance of our proposed algorithm. In our model,
the example power system at Fig. 1 is assumed to home
10 load subscribers, N = 10. For the purpose of study,
each subscriber is selected randomly to have between 10
to 20 appliances with hard energy consumption scheduling
constraints. Such appliances include refrigerator-freezer (daily
usage: 1.32 kWh), electric stove (daily usage: 1.89 kWh
for self-cleaning and 2.01 kWh for regular), lighting (daily
usage for 10 standard bulbs: 1.00 kWh), heating (daily usage:
7.1 kWh), etc. [15]. Moreover, each subscriber is selected
randomly to also have between 10 to 20 appliances with
soft energy consumption scheduling constraints. Recall that
the ECS devices may schedule only the appliances with soft
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Fig. 3. Scheduled energy consumption and corresponding cost when ECS
devices are not used. In this case, PAR is 2.1 and total daily cost is $86.47.

energy consumption scheduling constraints. Such appliances
include dishwasher (daily usage: 1.44 kWh), clothes washer
(daily usage: 1.49 kWh for energy-star 1.94 kWh for regular),
clothes dryer (daily usage: 2.50 kWh), and PHEV (daily
usage: 9.9 kWh), etc. [3], [15]. The scheduling durations (i.e.,
valid stop and ending scheduling times) are selected randomly
within a 24 hour period. The simulation time is also 24 hours,
starting from 7:00 AM in the morning at one day until 7:00
AM in the next morning.

As discussed in Section II-B, we assume that the cost
functions are increasing and strictly convex as depicted in Fig.
2. We select the cost functions to be quadratic: Ch(Lh) =
φDay × (Lh)2 during the day and Ch(Lh) = φNight × (Lh)2

at night, where 0 < φNight ≤ φDay are constant. Without
loss of generality, we select φNight = 1

2φDay and φDay =
0.1875 cents/kWh. In that case, the cost function during the
day becomes as in Fig. 2(b). Assuming a budget-balanced
system, we set parameter κ = 1. Last but not least, we assume
that day-time cost applies to the first 16 hours of the simulation
period (i.e., from 7:00 AM to 11:00 PM) and the night-time
cost applies to the last 8 hours of the simulation period (i.e.,
from 11:00 PM to 7:00 AM on the next day).

The simulation results on total scheduled energy consump-
tions and total cost in the system without and with the
deployment of ECS devices are shown in Figs. 3 and 4,
respectively. As shown here, when the ECS devices are not
used, the PAR is 2.1 and the total energy cost is $86.47. At the
same time, when the ECS devices are used, the PAR reduces
to 1.3 (i.e., 38.1% less) and the total energy cost reduces to
$53.81 (i.e., 37.8% less). In fact, we have more even load in
the latter case. Note that each subscriber consumes the same
amount of energy in the two cases, but it simply schedules
its consumption more efficiently in the case that the ECS
devices are used. In this case, all subscribers will even pay
less to the utility company as shown in Fig. 5. Therefore, the
subscribers would be willing to participate in the proposed
automatic demand side management system.
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VI. CONCLUSIONS

In this paper, we proposed an optimal, autonomous, and
incentive-based energy consumption scheduling algorithm to
balance the load among residential subscribers that share a
common energy source. The proposed algorithm is designed
to be implemented in energy consumption scheduling (ECS)
devices inside smart meters in a smart grid infrastructure.
We also proposed a simple pricing and billing model which
provides the incentives for the subscribers encouraging them to
actually use the ECS devices and run the proposed distributed
algorithm in order to be charged less. Simulation results
confirm that our proposed algorithm significantly reduces the
PAR as well as the total energy cost in the system.

APPENDIX

A. Proof of Theorem 1

We first notice that since Ch(·) is strictly convex for each
h ∈ H, the payoff function Pn(xn;x−n) is strictly concave

with respect to xn. Therefore, Game 1 is a strictly concave N -
person game. In this case, the existence of a Nash equilibrium
directly results from [16, Theorem 1]. Moreover, the Nash
equilibrium is unique due to [16, Theorem 3]. ¥

B. Proof of Theorem 2

We first show that the global optimal solution of problem
(12) forms a Nash equilibrium for Game 1. For notational
simplicity, let x?

1, . . . ,x
?
N denote the optimal solutions for

problem (12). We also define

C? ,
H∑

h=1

Ch

( ∑

m∈N

∑

a∈Am

xh?
m,a

)
. (23)

By definition of optimality, for each subscriber n ∈ N and
for any arbitrary xn ≥ 0, we have

C? ≤
H∑

h=1

Ch


 ∑

m∈N\{n}

∑

a∈Am

xh?
m,a +

∑

a∈An

xh
n,a


 . (24)

After multiplying both sides in (24) by negative constant
−κ

∑
a∈An

En,a∑
m∈N

∑
a∈Am

Em,a
, it becomes

Pn(x?
n;x?

−n) ≥ Pn(xn;x?
−n), ∀xn ≥ 0. (25)

Comparing (25) and (20), we can conclude that the optimal
solution x?

1, . . . ,x
?
N forms a Nash equilibrium for Game

1. However, from Theorem 1, Game 1 has a unique Nash
equilibrium. Thus, the optimal solution of problem (12) is
equivalent to the Nash equilibrium of Game 1. ¥
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