
Distributed Channel Selection and Randomized

Interrogation Algorithms for Large-scale RFID Systems
Amir-Hamed Mohsenian-Rad, Member, IEEE, Vahid Shah-Mansouri, Student Member, IEEE,

Vincent W.S. Wong, Senior Member, IEEE, and Robert Schober, Fellow, IEEE

Abstract— Radio frequency identification (RFID) is an emerg-
ing wireless communication technology which allows objects to
be identified automatically. An RFID system consists of a set of
readers and several objects, equipped with small and inexpensive
computer chips, called tags. In a dense RFID system, where
several readers are placed together to improve the read rate
and correctness, readers and tags can frequently experience
packet collision. High probability of collision impairs the benefit
of multiple reader deployment and results in misreading. A
common approach to avoid collision is to use a distinct frequency
channel for interrogation for each reader. Various multi-channel
anti-collision protocols have been proposed for RFID readers.
However, due to their heuristic nature, most algorithms may
not achieve optimal system performance. In this paper, we
systematically design two optimization-based distributed channel
selection and randomized interrogation algorithms for dense
RFID systems. For this purpose, we develop elaborate models
for the reader-to-tag and reader-to-reader collision problems. The
first algorithm is fully distributed and is guaranteed to find a local
optimum of a max-min fair resource allocation problem for RFID
systems. The second algorithm is semi-distributed and achieves
the global optimal system performance. Max-min fair optimality
balances the performance and the processing load among readers.
Simulation results show that our algorithms have significantly
better performance than the previous heuristic algorithms.

Index Terms—Radio frequency identification, randomized
multi-channel interrogation, max-min fairness, optimization.

I. INTRODUCTION

Radio frequency identification (RFID) is an emerging wire-

less technology which allows objects to be identified automat-

ically. An RFID tag is a small inexpensive electronic device

designed for wireless data transmission. Each tag has a unique

ID. It transmits data in response to interrogation signals by

an RFID reader. Multiple readers can connect to a back-end

system to transfer data for processing or storage. Some of the

current RFID applications include supply chain management,

inventory checking, access control, and transport payment [1].

RFID tags can be categorized into passive and active. A

passive tag uses backscatter modulation and its transmission

power is derived from the signal of the interrogating reader.

Passive tags can operate in different frequency bands. Low-

frequency tags operate in the 124-135 kHz band and have an

operating range of up to 0.5 m. Ultra high frequency tags,

Manuscript received on January 17, 2009; revised on July 13, 2009
and December 11, 2009; and accepted on December 31, 2009. This work
was supported by the Natural Sciences and Engineering Research Council
(NSERC) of Canada under grant number STPGP 364962-08. The review of
this paper was coordinated by Prof. John Shea. Part of this work was presented
at the IEEE Globecom, Honolulu, HI, December 2009.

The authors are with the Department of Electrical and Computer Engi-
neering, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4,
e-mail: {hamed, vahids, vincentw, schober}@ece.ubc.ca.

which operate at either 860-960 MHz or 2.45 GHz, have

a range in the order of 10 m. Active tags require a power

source (e.g., a battery) for data transmission and have a larger

range (> 100 m). Standardization bodies for RFID include the

International Standards Organization and EPCglobal Inc.

In an RFID system with one reader and several tags, since

the reader and the tags share the same wireless channel, tag-

to-tag collision can occur when multiple tags transmit signals

simultaneously to the same reader. This prevents the reader

from recognizing any tag. Various tag anti-collision protocols

are proposed in [2]. An efficient Aloha-based tag anti-collision

scheme has also been standardized recently by EPCglobal

in [3] where the reader begins each interrogation round by

informing all the tags about the frame size. Each tag then

chooses a random time slot and transmits its identifier to the

reader. If the frame size is large enough, the probability of tag-

to-tag collision can be reduced significantly. A measurement

study on a single reader RFID system has also been reported in

[4]. Algorithms have been proposed to estimate the cardinality

of the tag set [5], [6] and to identify the types of tags [7].

In several RFID applications (e.g., for inventory checking

in a large-scale warehouse), it is necessary to deploy several

readers to achieve complete interrogation coverage and also to

improve read rate and correctness. In this case, apart from tag

collision, reader-to-tag and reader-to-reader collisions may

also occur. Reader-to-tag collision occurs when a tag receives

signals of comparable strengths from more than one reader

simultaneously. This can cause the tag to respond arbitrarily

to the readers, leading to incorrect interrogation. Reader-to-

reader collision occurs when a reader, which is in the midst

of listening to a tag’s reply, receives stronger signals from one

or more neighboring readers operating at the same frequency

simultaneously. This interference can prevent the reader’s

receiver from decoding the tag’s reply successfully.

In a stationary RFID system with fixed and synchronized

readers and a centralized network controller, reader-to-tag

and reader-to-reader collisions can be prevented by using a

combination of frequency and time division multiple access

[8]. However, in many practical large-scale RFID systems with

mobile readers, centralized control is difficult. Therefore, it is

of interest to consider distributed randomized interrogation

schemes such that each reader randomly (with probabilities

which are independently tuned by each reader based on its

local information) selects the start time of its interrogation

rounds and its operating channel to reduce the probabilities

of reader-to-tag and reader-to-reader collisions. Related al-

gorithms include naive, random, and carrier sensing proto-

cols [9], distributed interference avoidance (DIA) algorithm



with detect and abort [10], slotted listen-before-talk (S-LBT)

[11], frequency hopping listen-before-talk (FH-LBT) [12], and

query hit rate algorithm [13]. However, given the heuristic

nature of all of these algorithms, some may not be able to fully

utilize the potential capacity of RFID systems. This motivates

us to study the random access and channel selection problems

in RFID systems within an optimization-based theoretical

framework. Our contributions are as follows:

• We formulate the multi-channel randomized interrogation

problem as an optimization problem. Our objective is to

achieve max-min fair resource allocation among readers

by taking into account reader-to-reader and reader-to-tag

interference. Max-min fairness balances the performance

and the processing load among the readers.

• Two algorithms are proposed to solve the optimization

problem. The fully distributed frequency allocation algo-

rithm allows each reader to switch its operating channel in

each interrogation interval. It works based on the iterative

coordinate ascent mechanism and is guaranteed to reach

a local optimal solution of the optimization problem. On

the other hand, the semi-distributed frequency allocation

algorithm allows each reader to use only one channel for

a long time. The algorithm is constructed using general-

ized Benders decomposition and guarantees reaching the

global optimum of the max-min fairness problem.

• Simulation results show that our algorithms have bet-

ter performance than the previous heuristic reader anti-

collision algorithms in terms of the number of correct in-

terrogations and fairness among readers. They also better

utilize the available frequency spectrum. They converge

fast and are robust to infrequent reader movements.

The rest of this paper is organized as follows. The system

model is described in Section II. The proposed algorithms

are presented in Sections III and IV. Simulation results ate

provided in Section V. The paper is concluded in Section VI.

II. SYSTEM MODEL

A. Reader Collision Problem

Let R, with size R= |R|, denote the set of all readers. For

each r∈R, we define dR
r as the read/interrogation range of

reader r. Reader r can collect information only from those

tags which are located within its read range. Let dI
r denote

the interference range1 of reader r. Reader r’s transmission

can interfere the interrogation process of other readers on any

tag within its interference range. Two types of reader-to-tag

collisions can be distinguished. The first type is shown in

Fig. 1(a), where tag u is within the read range of reader r
and the interference range of reader n (but not within the

read range of reader n). If both readers use the same channel

and transmit simultaneously, tag u cannot correctly decode the

message from its corresponding reader, i.e., reader r. Let Ir

denote the set of readers with their interference area (but not

their read area) overlapping the read area of reader r. We have

Ir = {n : dR
r + dR

n < drn < dR
r + dI

n, n ∈ R}, (1)

1We assume that the location of the tags is not known prior to interrogations.
Therefore, the interference range of the tags are not taken into account and
we model the interference using the interference ranges of the readers only.
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Fig. 1. Two types of reader-to-tag collisions in an RFID system. Type
1 collision occurs if tag u is within the read range of reader r and the
interference range (but not the read range) of reader n. In that case, we
have dR

r + dR
n < drn < dR

r + dI
n. Type 2 reader-to-tag collision occurs if

tag u is within the read range of both readers r and n. In that case, we have
dR

r + dR
n ≥ drn. Clearly, Type 1 and Type 2 do not occur at the same time.

where drn denotes the Euclidean distance between r and n.

The first type of reader-to-tag collision if avoided if readers r
and n operate at different frequencies or time slots [13].

The second type of reader-to-tag collision is shown in

Fig. 1(b), where tag u is within the read range of both readers

r and n. Since RFID tags have low functionality and do not

have frequency selectivity [3], even if readers r and n operate

at different channels, tag u cannot decode the interrogation

message correctly when both readers transmit simultaneously

[13]. Let Sr denote the set of readers whose read area overlaps

with that of reader r. We have

Sr = {n : drn < dR
r + dR

n , n ∈ R}. (2)

The second type of reader-to-tag collision can be avoided

by having neighboring readers operate at different time slots.

Notice that having neighboring readers operate at different

frequencies cannot avoid this type of collision. Also notice

that since dI
n ≥ dR

n for all n∈R, we have

Ir ∩ Sr = {}, ∀r ∈ R. (3)

On the other hand, reader-to-reader collision occurs when

reader n transmits while reader r is receiving another message

from tag u (see Fig. 2). Let Vr denote the set of readers which

have reader r within their interference range. That is,

Vr = {n : drn < dI
n, n ∈ R}. (4)

Reader-to-reader collision can be avoided if readers operate at

different frequencies or time slots.

From (1)-(4), each reader r ∈ R can construct sets Ir, Sr,

and Vr if it can estimate its distance drn to any other reader

n 6= r. However, in this paper, we use an alternative and
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Fig. 2. Reader-to-reader collision in an RFID system.

simpler practical approach for constructing sets Ir, Sr, and

Vr for each r ∈ R which does not require the estimation of

the distances among readers. Our proposed scheme is based

on some simple measurements and employs three orthogonal

control channels 1, 2, and 3, which are different from the data

channels being used for tag interrogation. Each reader n ∈ R
periodically transmits HELLO messages over each of the three

control channels at predetermined transmit powers Γ1, Γ2, and

Γ3. Then, each reader r ∈ R keeps track of the HELLO

messages it receives over each channel to construct sets Ir,

Sr, and Vr. This is done as follows. Each reader r ∈ R sets

n ∈ Ir if and only if it hears HELLO messages from reader n
on channel 1, but not on channel 2. It sets n ∈ Sr if and only

if it hears HELLO messages from reader n on channels 1 and

2. Finally, reader r sets n ∈ Vr if and only if it hears HELLO

messages from reader n on channel 3. Here, the parameters Γ1,

Γ2, and Γ3 are set as the minimum required transmit power for

decoding HELLO messages sent from another reader within

distances dI
r +dR

r , 2dR
r , and dI

r , respectively. These parameters

are fixed, as long as the operating transmit power is fixed for

all readers. they can be simply set by the reader manufacturer

as pre-determined parameters. As we will explain in Section

II-B, each reader r ∈ R only needs to estimate sets Ir and

Sr. Therefore, in practice only two control frequency channels

will be needed as there is no need to estimate set Vr.

B. RFID Multi-Channel Medium Access Control

Let C, with size C = |C|, denote the set of available orthogo-

nal frequency channels. For multi-channel random access, we

assume that the RFID medium access control (MAC) layer

complies with the EPCglobal Class-1 Generation-2 (C1G2)

standard [14]. Each reader r∈R attempts to perform the inter-

rogation process every Tr time units. At the beginning of each

interrogation interval (see Fig. 2), reader r randomly chooses

to start an interrogation process over frequency channel c∈C
with interrogation probability pr,c ∈ [0, 1]. We have

∑

c∈C pr,c ≤ 1, ∀ r ∈ R. (5)

The channel switching delay is assumed to be small compared

to Tr. Each reader can switch to a new channel in each

interrogation interval. The scenario when each reader operates

on one channel for a long time is studied in Section IV.

Our proposed channel selection and randomized interro-

gation algorithms (see Sections III and IV) control reader-

to-reader and reader-to-tag collisions, while C1G2 MAC is

used to avoid tag-to-tag collision within each read area.

According to C1G2 MAC [14], if reader r decides to start

Query

Time 

Slot QueryRep
Tag

Reply

1st Frame
(Estimation of Nr)

2nd Frame Last Frame

Time

r r
Tr

pr,c
pr,c

Fig. 3. An interrogation interval, with length Tr time units, for reader r.

an interrogation round, it initiates its 1st interrogation frame

by broadcasting a Query message, which includes the number

of time slots within the frame. The rest of the frame is then

divided into several small time slots, each starting with a

QueryRep message to coordinate the timing of sending the

reply messages by the tags inside the read area of reader r.

Each tag randomly chooses to send its reply back to reader r
at one of the available time slots. By the end of the 1st frame,

reader r has received the replies from a subset of the existing

tags. Based on that, it estimates the total number of tags inside

its read area, denoted by Nr, using a scheme such as [2]. Given

the estimate of Nr, reader r initiates more interrogation frames

(i.e., 2nd frame, 3rd frame, etc) until it can assure, with a

certain confidence, that it has obtained the information from

all the tags inside its read area. We denote the duration of an

interrogation process by τr(Nr) as shown in Fig. 3.

We assume equal interrogation interval for all readers2:

Tr = T, ∀ r ∈ R, (6)

where T > 0. However, the interrogation intervals of different

readers may not be synchronized. Therefore, the interrogation

process for different readers may not start at the same time.

We can assume that for each pair of readers r, n ∈ R, there

exists a time difference ∆r,n, called the asynchronism factor,

between the interrogation intervals of readers r and n. The

asynchronism factor ∆r,n is shown in Fig. 4. Clearly,

−T < ∆r,n < T, ∀ r, n ∈ R. (7)

Note that ∆r,n = −∆n,r. In general, depending on the RFID

application, reader r may not always be able to estimate ∆r,n.

In this paper, unless stated otherwise, we consider the general

case, where the asynchronism factors are not known.

The asynchronism is beneficial as it allows readers to start

their interrogation not simultaneously. In Fig. 4, reader r
randomly decides to start an interrogation over one of the

channels every T time units. If the interrogation of readers

r and n have overlap, as in Fig. 4(a), then type 1 or type 2

reader-to-tag collision can occur for n∈Ir and n∈Sr, respec-

tively. Reader-to-reader collision can also occur if n∈Vr. If

the interrogation processes of readers r and n have no overlap,

as in Fig. 4(b), then reader collisions will not occur.

Let p = (pr,c, ∀ r ∈ R, c ∈ C) denote the interrogation

probability vector. Let P succ
r (p) denote the probability of com-

pleting a successful interrogation interval by reader r ∈ R.

That is, the probability that reader r starts an interrogation

2The assumption in (6) is only for the ease of exposition and can be relaxed
by slightly modifying (7), (8), and (10).
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Fig. 4. Asynchronism between interrogation intervals for readers r and n:
(a) There is a time overlapping. (b) There is no time overlapping.

interval without experiencing either reader-to-reader or reader-

to-tag collisions. We can show the following key result.

Theorem 1: Assume that the interrogation interval T is

selected large enough to be at least twice as large as the length

of any interrogation process among readers. That is, let

max
r∈R

τr(Nr) ≤ T/2. (8)

In that case, for each reader r ∈ R, we have

P succ
r (p) =

(
∏

n∈Sr

(

1 − γr,n

∑

e∈C pn,e

))

(
∑

c∈C pr,c

(
∏

m∈Ir
(1 − γr,m pm,c)

))

,
(9)

where γr,n denotes the probability that the interrogation pro-

cesses of readers r and n have any time overlapping:3

γr,n =
τr(Nr) + τn(Nn)

T
. (10)

The proof of Theorem 1 is given in Appendix A. Since

Vr ⊆ Ir ∪ Sr for each r ∈ R, if neither type 1 nor type 2

reader-to-tag collisions occur, then reader-to-reader collision

will not happen. Thus, set Vr does not appear in (9). It is easy

to verify that for the case that τr(Nr)>T/2 for all r∈R, we

should simply set γr,n = 1 for each r ∈ R and any n∈Ir .

There are several ways to determine the duration of an

interrogation process. In the EPCglobal C1G2 system, we have

τr(Nr)=eNrτ
slot ≈2.72Nrτ

slot for r∈R. Here, τ slot denotes

the duration of each time slot. On average, we have τ slot = 850
µs [3]. Using enhanced dynamic framed slotted Aloha [15]

with known Nr, we have τr(Nr)=3Nrτ
slot for r∈R.

We assume that the readers may move; however, their

movement is infrequent such that the sets Ir, Sr, and Vr can

be assumed to be fixed for all r∈R for large intervals of time.

C. Problem Formulation

Let P denote the feasible set for interrogation probabilities:

P=
{

p :
∑

c∈C pr,c ≤ 1, pr,c ∈ [0, 1], ∀ r∈R, c∈C
}

. (11)

In this paper, our goal is to select p ∈ P to increase the

probability of successful interrogation for all readers to achieve

max-min fairness. As a result, the processing load is evenly

distributed among all readers. This also implies max-min

fairness for correct interrogation of a tag in any of the read

3If ∆r,n is known (by clock synchronization of readers), then γr,n =1 if
−τn(Nn)<∆r,n <τr(Nr); and γr,n =0 otherwise.

areas. Moreover, since higher interrogation success probabil-

ity implies finishing interrogation faster, by maximizing the

minimum interrogation success probability we minimize the

maximum interrogation finishing time among readers.

A vector of feasible interrogation probabilities p ∈ P is

max-min fair if any success probability P succ
r cannot increase

without decreasing some P succ
n which is smaller than or equal

to P succ
r . To obtain max-min fairness, it suffices to solve the

following non-linear optimization problem [16, Lemma 3]:

maximize
p ∈ P

∑

r∈R fα (P succ
r (p)) (P1)

where

fα(P succ
r ) = −α−1(P succ

r )−α, (12)

and α > 0 is large (e.g., α ≥ 10). Function fα in (12)

is an α-fair utility function [16]. Solving the network utility

maximization problem in (P1) is a common design objective

in the networking literature (cf. [17], [18]). However, due

to the multi-channel property of the RFID systems and the

distinct features of the reader-to-reader and reader-to-tag inter-

ference models, problem (P1) is significantly different from the

network utility maximization problems studied in [17], [18].

In particular, as we will see in Sections III and IV, solving

problem (P1) is a challenging task due to the non-convexity

of the interrogation success probability models in (9). For the

rest of this paper, we focus on obtaining distributed algorithms

to solve the max-min fair resource allocation problem in (P1).

III. DESIGN I: FULLY DISTRIBUTED ALGORITHM

Although the utilities in (12) are concave functions in P succ
r

for α>0, problem (P1) is not a convex optimization problem

with respect to p, due to the product forms in (9). Thus, finding

the optimal solution of problem (P1) is not easy in general.

In this section, we discuss some properties of problem (P1)

which allow us to develop our first distributed algorithm.

For each reader r∈R, let pr = (pr,c ∀ c ∈ C). In design I,

the key idea is to use the iterative coordinate ascent method

[19] to locally update the interrogation probabilities for each

reader. In this method, we fix all of the components of vector

p to some values, except for those components corresponding

to one randomly selected reader (e.g., pr for reader r). Then,

in a local optimization procedure, we maximize the objective

function of problem (P1) with respect to pr. This procedure is

repeated, leading to an iterative algorithm. Iterative coordinate

ascent algorithms are particularly useful when the original

optimization problem is non-convex and difficult to solve, but

each local optimization problem is convex and tractable.

A. Local Problem

Let p−r =(pn,c, ∀n∈R\{r}, c∈C). Consider the following

local optimization problem in reader r ∈ R:

maximize
p

r
≥ 0

fα

(

P succ
r

(

pr, p−r

))

+
∑

n:r∈Sn
fα

(

P succ
n

(

pr, p−r

))

+
∑

m:r∈Im
fα

(

P succ
m

(

pr, p−r

))

+
∑

k:r/∈Sk∪Ik
fα

(

P succ
k

(

p−r

))

subject to
(

pr, p−r

)

∈ P .

(Local-P1)



Note that the objective functions in problems (Local-P1) and

(P1) are the same. For the objective function in (Local-P1), the

first term is increasing in pr. The second and third terms are

decreasing in pr. The last term does not depend on pr as for

each reader k, such that r /∈ Sk∪Ik, probability P succ
k does not

depend on pr. By solving problem (Local-P1), reader r can

select pr such that the objective function in problem (P1) is

maximized assuming that p−r is fixed (i.e., none of the other

readers change their interrogation probabilities). It is clear that

reader r is assumed not to be selfish in this case. That is, it

does not try to only maximize its own fα(P succ
r ). Instead, it

cooperates with other readers. This is necessary for achieving

the optimal RFID system performance in a distributed fashion.

We can show the following key result.

Theorem 2: For each reader r ∈ R, problem (Local-P1) is

a convex optimization problem.

The proof of Theorem 2 is given in Appendix B. From The-

orem 2, we can use various convex programming techniques to

solve problem (Local-P1) in each reader r ∈ R. In particular,

problem (Local-P1) can be solved using the interior-point

method (IPM) [20, Ch. 11] via local iterations if each reader

can obtain the information on the interrogation probabilities

of all readers within dI
max =maxn∈R dI

n distance away. Thus,

the iterative coordinate ascent method is applicable.

Solving problem (Local-P1) requires exchanging some con-

trol messages among neighboring readers. We assume that all

readers use a dedicated control channel with a frequency band

different from those used for interrogation. The transmission

power for the control messages is selected such that the

communication range of the control channel becomes at least

equal to dI
max. In that case, after updating pr, each reader

r∈R can announce the new value of pr to all readers within

its dI
max distance by broadcasting a control message. Let each

probability value occupy M bytes (e.g., M = 4 for floating

point numbers), then each control message has MC bytes,

where C is the number of channels. Thus, solving problem

(Local-P1) requires limited local signalling and is feasible, as

opposed to solving the original non-convex problem (P1). This

motivates us to propose our first algorithm.

B. FDFA Algorithm

Our proposed fully distributed frequency allocation (FDFA)

algorithm for RFID systems is given in Algorithm 1. It is

executed in each reader r ∈ R. Let T inter
r be an set of time

instances at which reader r may start an interrogation interval

based on probability vector pr. For any two consecutive

elements t1, t2 ∈ T inter
r , we have |t2−t1|=T . Let T update

r be an

unbounded set of time instances at which reader r updates its

interrogation probability vector pr by solving problem (Local-

P1) using IPM. We assume that: (a) The updates are asyn-

chronous across the readers in each neighborhood.4 That is, for

4This can be achieved if each reader broadcasts a Busy message on the
control channel while it is updating its interrogation probability vector. No
reader starts updating its interrogation probability vector if it is hearing a Busy

message. This avoids any two neighboring readers update their interrogation
probabilities simultaneously. Simultaneous updates may cause using some
outdated information and result in a ping-pong effect, impeding convergence.

Algorithm 1 - FDFA: Executed by each reader r ∈ R.

1: Allocate memory for pr and p−r .

2: Randomly choose pr and p−r such that
(

pr, p−r

)

∈ P .
3: Set clock timer t.
4: repeat
5: if t ∈ T update

r then
6: Solve problem (Local-P1) using IPM [20].
7: Update pr according to the solution.
8: Broadcast a control message to announce pr .
9: if t ∈ T inter

r then
10: Start an interrogation interval, using C1G2 MAC,
11: over frequency channel c ∈ C, with probability pr,c.
12: if a control message is received then
13: Update p−r accordingly.
14: until reader device r stops operation.

any r, n∈R such that r 6= n, we have: T
update

r ∩T
update

n = {}.

(b) There is a global constant T update such that for any r ∈ R,

there exists t1, t2 ∈ T update
r such that |t1 − t2| ≤ T update. In

other words, all readers update their interrogation probabilities

at least once every T update time units.

In Algorithm 1, lines 5 to 14 are executed repeatedly until

reader r stops operation. In lines 6 to 8, reader r updates

pr and broadcasts a control message including the updated

entries of pr, whenever the current time is in set T update
r . In

lines 10 and 11, reader r may start an interrogation according

to its interrogation probability vector pr. Upon reception of a

control message from another reader n, reader r updates its

memory p−r as in line 13. This implies that all elements of

p−r are updated in all readers r∈R within T update time units.

C. Convergence, Optimality, and Complexity

In this section, we analytically investigate the convergence

and optimality features of Algorithm 1. At each time instance

t ≥ 0, let Fα(t) denote the current value of the objective

function for problem (P1). We can show the following.

Theorem 3: For any choice of system parameters and start-

ing from any initial point:

(a) Function Fα(t) is upper bounded, i.e., Fα(t) ≤ −R
α ≤ 0.

(b) Function Fα(t) is non-decreasing in time t ≥ T update. That

is, for any time instances t1, t2 ≥ T update such that t1 ≤ t2,

we have Fα(t1) ≤ Fα(t2).
(c) Algorithm 1 converges to some F ∗

α: F ∗
α = limt→∞ Fα(t).

The proof of Theorem 3 is given in Appendix C. Theorem

3 guarantees the convergence of Algorithm 1 for any choice

of system parameters. We can further show that:

Theorem 4: Any fixed point of Algorithm 1 is a stationary

point of problem (P1). That is, it is at least a locally optimal

solution for the non-convex optimization problem (P1).

The proof of Theorem 4 is given in Appendix D. From

Theorems 3 and 4, convergence and local optimality of Al-

gorithm 1 are guaranteed. Clearly, the obtained interrogation

probabilities may not necessarily be globally optimal. How-

ever, simulation results in Section V show that Algorithm 1

usually results in near globally optimal performance, making

it a practical distributed frequency selection and randomized

interrogation algorithm for large-scale RFID systems.



To understand the complexity of Algorithm 1, we notice

that at each interrogation probability update interval (i.e., at

each time t ∈ T update
r ), we need to solve problem (Local-P1)

using IPM. It is known that IPM has polynomial complexity

[20]. Therefore, the complexity it takes to execute line 6 in

Algorithm 1 is only a polynomial function of the problem size.

Since problem (Local-P1) is a local problem for each reader

r ∈ R, the problem size is small. In fact, problem (Local-

P1) has only C variables (e.g., C = 10 as in [10], [11]) and

only a single linear constraint. Thus, Algorithm 1 is a tractable

algorithm and can be used in practical RFID systems.

IV. DESIGN II: SEMI-DISTRIBUTED ALGORITHM

For the FDFA algorithm in Section III, each reader can

switch its channel whenever it starts an interrogation interval.

Therefore, implementation of the FDFA algorithm requires

RFID reader devices that are enabled to frequently switch their

operating channel. However, in many of the existing reader

technologies, the frequency switching delay is noticeable, e.g.,

in the order of several hundred milliseconds [21]. Therefore, as

an alternative to the FDFA algorithm, in this section, we study

the case where each reader operate on only one channel for a

long period of time (e.g., several hours) and propose a semi-

distributed algorithm which is guaranteed to reach the global

optimum of the corresponding max-min fairness problem.

For each reader r ∈ R and any channel c ∈ C, we define a

new discrete variable xr,c, with xr,c = 1 if reader r operates

on channel c, and xr,c = 0 otherwise. Since each reader is

assumed to operate on only one channel, we have
∑

c∈C xr,c = 1, ∀r ∈ R. (13)

Clearly, if reader r ∈ R does not operate on a channel c∈C
(i.e., xr,c = 0), then the interrogation probability of reader r
on channel c (i.e., pr,c) is zero. This requires that

pr,c ≤ xr,c, ∀r ∈ R, c ∈ C. (14)

From (13) and (14), the max-min fair problem, when each

reader uses only one channel, becomes

maximize
p∈P(x), x∈X

∑

r∈R fα (P succ
r (p)) (P2)

where

x = (xr,c, ∀r ∈ R, c ∈ C), (15)

and

X =
{

x :
∑

c∈C xr,c =1, xr,c∈{0, 1}, ∀ r∈R, c∈C
}

, (16)

and for each x ∈ X , we have

P(x)={ p : pr,c ≤ xr,c, pr,c ∈ [0, 1], ∀ r∈R, c∈C } . (17)

Problem (P2) is a non-linear mixed-integer optimization

problem, which is difficult to solve in general. To solve

problem (P2), we need to deal with the non-convexity with

respect to p due the product forms in (9). Also note that

problem (P2) has both continuous and discrete variables.

To solve problem (P2), we use the generalized Benders

decomposition [22, pp. 114-143] and decompose problem

(P2) into two sub-problems: (a) a primal problem which

is a tractable continuous optimization problem with respect

to interrogation probabilities p; and (b) a master problem

which is a discrete optimization problem with respect to

channel allocation variables x. The solution of the primal

problem provides a lower bound on the optimal value of

the original problem (P2), while the solution of the master

problem provides an upper bound. Under certain conditions,

the iteratively obtained lower and upper bounds converge to

each other in finite time, leading to the global optimal solution

of the non-linear mixed-integer optimization problem (P2).

A. Primal and Master Problems

Given any channel assignment vector x ∈ X , we define the

primal problem to be as follows:

maximize
p∈P(x)

∑

r∈R fα (P succ
r (p)) . (Primal-P2)

The objective functions in problems (Primal-P2) and (P1) are

the same. Moreover, probabilities p in (Primal-P2) should

satisfy (14) for given x. With (13), this implies that each reader

has non-zero interrogation probability on one channel.

Lemma 1: For any x ∈ X , problem (Primal-P2) can be

transformed into an equivalent convex problem with zero

duality gap and unique stationary point by change of variables.

The proof of Lemma 1 is given in Appendix E. From

Lemma 1, problem (Primal-P2) is indeed a tractable optimiza-

tion problem. To show this, for each reader r ∈ R, we define

xr = (xr,c, ∀c ∈ C). Consider the following local and myopic

optimization problem in reader r ∈ R:

maximize
p

r
∈Pr(xr)

∑

n∈R fα

(

P succ
n (pr, p−r)

)

, (Local-Primal-P2)

where Pr(xr) = { pr : pr,c ≤ xr,c, pr,c ∈ [0, 1], ∀ c∈C }.
From Lemma 1 and Theorem 4, given x ∈ X , the iterative

coordinate ascent method can be used to obtain the unique

local (thus global) optimal solution of problem (Primal-P2).

That is, given the operating channels x for all readers, we can

distributively find the corresponding exact global optimal in-

terrogation probabilities by repeatedly solving problem (Local-

Primal-P2) among all readers. Thus, an algorithm similar to

Algorithm 1 is sufficient to solve problem (Primal-P2).

Using the generalized Benders decomposition, we also iter-

atively solve an optimization problem, called master problem,

to obtain channel allocation vector x. Let x∗(k) denote the

solution of the master problem at the kth iteration, where

x∗(1) is selected randomly. Given x∗(k) ∈ X , let p∗(k)

denote the solution of problem (Primal-P2) at x∗(k). Let

λ∗(k)
=(λ

∗(k)
r,c , ∀r∈R, c∈C) denote the vector of Lagrange

multipliers for the constraints in (14) at solution p∗(k). From

[22, Ch. 6.5] we construct the master problem at iteration k+1:

maximize
x∈X , µ≥0

µ

subject to µ≤
∑

r∈R

∑

c∈C λ
∗(j)
r,c xr,c+L

∗(j)
α , ∀ j=1, . . . , k,

(Master-P2)

where the term
∑

r∈R

∑

c∈C λ
∗(j)
r,c xr,c+L

∗(j)
α denotes the dual

function of problem (Primal-P2), given x∗(j), at p∗(j) and



λ∗(j), when x∗(j) is replaced by x. Here, we have

L
∗(j)
α = F

∗(j)
α −

∑

r∈R

∑

c∈C λ
∗(j)
r,c p

∗(j)
r,c , j = 1, . . . , k,

(18)

where F
∗(j)
α =

∑

r∈R fα(P succ
r (p∗(j))) denotes the objective

function of problem (Primal-P2) at optimal point p∗(j). Notice

that L
∗(j)
α does not depend on x. Problem (Master-P2) is a

linear binary optimization problem. It can be solved by using

the CPLEX [23] or MOSEK [24] optimization software.

Let x∗(k+1) and µ∗(k+1) denote the optimal solutions of

problem (Master-P2) at iteration k+1. By weak duality [20, p.

225], µ∗(k+1) is an upper-bound for the optimum of problem

(P2). F
∗(k)
α is a lower-bound for the optimum of problem (P2)

as it corresponds to the maximum of problem (P2) for one

choice of channel allocation x. Since problem (Master-P2)

has more constraints at iteration k + 1 than at iteration k for

any k ≥ 1, we have µ∗(k+1)≤µ∗(k). That is, the upper-bound

sequence {µ∗(k)} is non-increasing. On the other hand, the

lower-bound sequence {maxj=1,...,k F
∗(j)
α } is non-decreasing

by construction. Since the primal problem has zero duality gap,

from [22, Theorem 6.3.4], we obtain the following theorem.

Theorem 5: Starting from any x ∈ X and p ∈ P(x),
the global optimal solution of the non-linear mixed-integer

problem (P2) can be found in finite time by iteratively solving

problems (Primal-P2) and (Master-P2). The upper and lower

bound sequences converge to each other.

B. SDFA Algorithm

Our semi-distributed frequency allocation (SDFA) algorithm

for RFID systems is given jointly by Algorithms 2 and 3.

Algorithm 2 is executed by each reader r and Algorithm 3 is

executed by the back-end system. The sets T inter
r and T update

r

for each reader r are the same as those in Section III-B.

In Algorithm 3, T channel denotes an unbounded set of time

instances at which the back-end system updates the channel

allocation vector x by solving problem (Master-P2). In line 3,

we set the upper and lower bound variables UBD and LBD to

be ∞ and −∞, respectively. They are reset in line 18 whenever

the RFID system has a change of topology (due to relocation of

readers). Lines 7 to 16 are executed periodically. In line 10, we

update LBD to be equal to the best optimal value for problem

(Primal-P2) so far. Lines 12 to 16 are executed if the lower

and upper bounds are not close enough yet. The convergence

of Algorithm 2 follows from Lemma 1 and Theorems 3(c) and

4. The convergence of Algorithm 3 follows from Theorem 5.

The complexity of Algorithm 2 is the same as that of

Algorithm 1. Problem (Local-Primal-P2) can be solved in

polynomial time. However, Algorithm 3 has non-polynomial

complexity as it requires solving an integer problem in line 13.

Nevertheless, since Algorithm 3 needs to be executed in the

back-end system (not at readers), various efficient commercial

optimization software such as CPLEX [23] or MOSEK [24]

can be used to solve problem (Master-P2) in reasonable time.

Finally, we notice that in case of full coordination among the

readers and the back-end system, the SDFA algorithm can

also be implemented at the back-end system in a centralized

fashion to tackle the non-convexity of problem (P2).

Algorithm 2 - SDFA: Executed by each reader r ∈ R.

1: Allocate memory for pr and p−r , x, and λr.
2: Set xn,1 = 1 and xn,c = 0 for all n ∈ R and any c ∈ C\{1}.
3: Randomly choose pr and p−r such that

(

pr, p−r

)

∈ P(x).
4: Set clock timer t.
5: repeat
6: if t ∈ T update

r then
7: Solve problem (Local-Primal-P2) using IPM [20].
8: Update pr and λr according to the solution.
9: Broadcast a control message to announce pr .

10: if t ∈ T inter
r then

11: Start an interrogation interval, using C1G2 MAC,
12: over frequency channel c ∈ C, with probability pr,c.
13: if a control message is received then
14: Update p−r accordingly.
15: if back-end system asked for information then
16: Convey pr and λr to the back-end system.
17: Update x according to the new channel assignment.
18: Randomly set pr and p−r such that

(

pr, p−r

)

∈P(x).
19: until reader r stops operation.

Algorithm 3 - SDFA: Executed by the back-end system.

1: Allocate memory for LBD, UBD and sequences {p∗(k)},

{λ∗(k)}, {x∗(k)}, {µ∗(k)}, {F
∗(k)
α }, and {L

∗(k)
α }.

2: For all r∈R, set xr,1 =1 and xr,c =0 for any c∈C\{1}.
3: Set UBD = ∞, LBD = −∞, k = 1, and ǫ = 10−6.
4: Set clock timer t.
5: repeat
6: if t ∈ T channel,

7: Collect p∗(k)
r and λ

∗(k)
r from all readers r ∈ R.

8: Set F
∗(k)
α =

∑

r∈R
fα(P succ

r (p∗(k)
r )).

9: Set L
∗(k)
α = F

∗(k)
α −

∑

r∈R

∑

c∈C
λ
∗(k)
r,c p

∗(k)
r,c .

10: Set LBD = max{LBD, F
∗(k)
α }.

11: if UBD − LBD ≥ ǫ then
12: Set k = k + 1.
13: Solve problem (Master-P2) using MOSEK [24].

14: Update x∗(k) and µ∗(k) according to the solution.

15: Set UBD = µ∗(k).
16: Convey x∗(k) to all readers.
17: if topology has changed then
18: Set UBD = ∞, LBD = −∞, and k = 1.
19: until RFID system stops operation.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

FDFA and SDFA algorithms and compare them with five

other distributed randomized interrogation schemes: DIA [10],

S-LBT [11], FH-LBT [12], as well as random and naive

algorithms [9]. We also assess the convergence, optimality,

and robustness properties of the FDFA and SDFA algorithms.

We assume that 40 readers are randomly deployed in a

50 × 50m2 warehouse such that complete interrogation cov-

erage is achieved. Some spots can be within the read areas of

multiple readers. For each reader r, the interrogation range dR
r

is 5 m. The interference range dI
r is 8.5 m [21]. On average,

there are 1,000 uniformly distributed tags located within the

interrogation range of each reader. The interrogation interval

is T = 10 sec. We set α = 10 [25]. The average time to

finish a successful interrogation is 2.5 sec, assuming that the

enhanced dynamic framed slotted Aloha [15] is used. We set

τ slot = 1 ms. Problems (Local-P1), (Local-Primal-P2), and



(Master-P2) are solved by using the MOSEK software [24].

Although we used the protocol model [26, Section I-A.1]

in our design phases in Sections IV and III, here in the

simulations we use the physical model [26, Section I-A.2].

Different from the protocol model which incorporates only the

pairwise interference, e.g., from one reader to another reader,

the physical model is based on the signal-to-interference-plus-

noise-ratio (SINR) and incorporates the impact of aggregate

interference from multiple interference sources. The protocol

model is more tractable and useful for our design phase.

However, by using the physical model in our simulations, we

can better assess our algorithms in more realistic settings.

The simulation parameters are as follows. For each tag,

the transmit power is 10 mW [27]. The transmit power for

each reader is 40 mW. Note that since the readers are more

sophisticated devices, they can transmit at higher power levels

than the tags [27]. A deterministic path loss, based on the

Friis free space model, with an exponent equal to three [28],

is considered in order to calculate the received signal power

and the aggregate interference power at each reader and each

tag. Without loss of generality, we assume that the noise level

is −80 dBm. We define three interference thresholds, denoted

by IRR, IRT1, and IRT2, corresponding to the three different

collision scenarios defined in Section II. In our model, for each

reader, reader-to-reader collision occurs when the aggregate

interference power from all readers plus the noise power

exceeds the interference threshold IRR = −27 dBm. That is,

the reader-to-reader collision occurs if and only if the SINR

drops below the typical operation level at 2 dB. We also note

that if there are only two readers, then the interference exceeds

IRR = −27 dBm if and only if the two readers are located

within dI
r = 8.5 m, i.e., the interference range already defined

for the protocol model. Similarly, we set IRT1 = −27 dBm.

This threshold indicates the maximum aggregate reader-to-tag

interference over the same channel which allows each tag to

correctly detect the interrogation signal from its corresponding

reader. Finally, we set IRT1 = −10 dBm. The rational behind

this choice is as follows. Recall that the Type 2 reader-to-tag

collision occurs if at least one tag among all the tags inside the

read range of one reader is also located inside the read range

of another reader. Given a read range of 5 m, the interference

level exceeds −10 dBm when a tag is within the interrogation

range of more than one reader. By taking into account all

three collision models, an interrogation attempt by a reader

is successful if and only if the SINR at every tag within the

reader’s read range is above the three threshold levels.

A. Comparison with Other Distributed Algorithms

We compare the FDFA and SDFA algorithms with DIA [10],

S-LBT [11], FH-LBT [12], and random and naive algorithms

[9] in terms of the average probability of a successful interro-

gation among all readers (i.e., the ratio of the successfully

interrogated tags compared to the total number of tags in

the system). For the DIA algorithm, following the choices of

parameters in [10], we set Tsleep init = 10, Tto init = 20
ms, Tmd max = 10 ms, and Tcheck = 10 ms. For both S-

LBT and FH-LBT algorithms, the carrier sensing time is set
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Fig. 5. Comparison between the proposed FDFA and SDFA algorithms and
DIA [10], S-LBT [11], FH-LBT [12], and random and naive [9] algorithms
when the number of available frequency channels varies from 1 to 15.

to 10 ms. For the random algorithm, the back-off time is

randomly selected within the range of 5 sec and 15 sec as in

[11]. Finally, for the naive algorithm, the time interval between

any two subsequent interrogations is 10 sec. The simulation

time is 1,000 sec. The results when the number of channels

C varies from 1 to 15 are shown in Fig. 5. In this figure,

each point represents the average results of simulating 100

different randomly generated topologies. We can see that, for

all algorithms, the probabilities increase as more channels

become available. However, FDFA and SDFA algorithms

always outperform the other heuristic algorithms. Notice that

all algorithms reach some saturation levels, which are not the

same for all algorithms. Recall from Section II that reader-to-

reader and type 1 reader-to-tag collisions can be avoided if the

neighboring readers operate on different channels. However,

having the readers operate on different channels cannot avoid

type 2 reader-to-tag collision. Thus, if the number of channels

is high, different algorithms differ depending on their type

2 reader-to-tag collision avoidance. From Fig. 5, the FDFA

algorithm can better avoid type 2 reader-to-tag collisions than

the other algorithms. Similar results are obtained for the SDFA

algorithm as it also outperforms all other heuristic algorithms.

However, we can see that although the SDFA algorithm results

in finding the global optimum of problem (P2), it leads to a

worse performance compared to the FDFA algorithm, which

only finds a local optimum of problem (P1). As we will explain

in Section V-B, this is because problem (P2) is more restrictive

(i.e., has a smaller feasible set) compared to problem (P1).

Next, we investigate fairness (i.e., balanced performance)

among readers. Following the same simulation model as in

[10], [11], we assume that the number of channels is C = 10.

The simulation time is 1,000 sec. We compare the minimum

number of successful interrogations among readers for dif-

ferent algorithms. Results are shown in Fig. 6. Each curve

represents the average results of simulating 100 topologies.

We can see that FDFA and SDFA algorithms perform better

than all the heuristic algorithms as max-min fairness is indeed

the design objective for both FDFA and SDFA. Using FDFA,
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Fig. 6. Comparison between the proposed FDFA and SDFA algorithms with
the DIA [10], S-LBT [11], FH-LBT [12], and also random and naive [9]
algorithms in terms of max-min fairness.

if asynchronism factors (AFs) (i.e., ∆r,n for all r, n∈R) are

unknown, the minimum number of successful interrogations

among all readers, which is measured at the end of the

simulation is 20. We notice that as each interrogation interval

is T = 10 sec, there are in total 1000
10 = 100 interrogation

attempts during the simulation time. Since, at worst case, 20

out of 100 attempts are successful when the FDFA algorithm

is used, the minimum probability of successful interrogation

among all readers is almost 0.132. This is, 19%, 32%, 48%,

69%, and 101% higher than for DIA, S-LBT, FH-LBT, ran-

dom, and naive algorithms, respectively. If the AFs are known,

then the minimum probability of successful interrogation fur-

ther increases by 12%. Notice that by achieving max-min

fairness, the processing load becomes similar for all readers.

Furthermore, the interrogation performance becomes balanced

among different spots of the covered warehouse.

B. Convergence, Robustness, and Optimality Properties

Recall that the convergence of the FDFA algorithm to a local

optimum of problem (P1) is guaranteed by Theorems 3(c) and

4. Consider an RFID system with 10 readers. The simulation

time is divided into three phases and each phase is 50 sec. The

first phase starts at time t=0, where all readers start operation.

At time t=50 sec, five readers move to some new locations

such that they experience less interference. That is, they move

away from each other. Later on, at time t=100 sec, those five

readers move back towards each other; however, they do not

become as close as their initial locations. Results are shown

in Fig. 7. Here, T update
r = 1 sec. We see that FDFA enjoys

fast convergence in all phases5. Note that, due to topology

changes, the system parameters also change, leading to distinct

optimal solutions for problem (P1) in each phase. The fast

convergence speed for the FDFA algorithm is mainly due to

5In Fig. 7, although we can compare FDFA with the DIA and S-LBT in
terms of interrogation success probability at each phase, we cannot compare
them in terms of convergence speed. Since the DIA and the S-LBT algorithms
are not iterative, the concept of convergence does not apply to them.
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Fig. 7. Convergence and robustness properties of the FDFA algorithm and
comparison with the DIA [10] and S-LBT [11] algorithms. The location of
five readers change at times t=50 sec and t=100 sec, respectively.

the use of the coordinate ascent method. Similar results on the

fast convergence of the wireless networking algorithms which

use the coordinate ascent method have been reported in [18].

Recall from Theorem 5 that the upper and lower bounds in

the SDFA algorithm are guaranteed to converge to each other,

leading to the global optimal solution of problem (P2). Fig. 8

shows the upper and lower bound sequences for a randomly

generated RFID topology with 25 readers and 10 channels.

We can see that the upper and lower bounds converge after

only 21 iterations. From the results in Fig. 8, the optimal

value of problem (P2) is −2893. It is interesting to compare

this value with the global optimum of problem (P1), which is

−2595 (i.e., 10.3% higher). Notice that problem (P2) restricts

each reader to operate only on one channel. Thus, it has

more constraints than problem (P1). Therefore, the optimal

value of problem (P1) is always greater than or equal to the

optimal value of problem (P2). Also notice that since the

SDFA algorithm converges fast, e.g., after only 21 iterations

in this case, the number of constraints in problem (Master-P2),

which are added after each iteration, is limited, e.g., up to 21

constraints. Therefore, problem (Master-P2) is tractable and

the SDFA algorithm has a low complexity.

Next, we investigate optimality. Recall that both FDFA

and SDFA algorithms aim to maximize the objective value

of the max-min fairness problem (i.e.,
∑

r∈R fα(P succ
r (p))),

subject to different constraints. In particular, FDFA and SDFA

are designed to find the local and global optimal solutions

for problems (P1) and (P2), respectively. We determine the

percentage difference of the optimal values obtained from

FDFA and SDFA algorithms to the global optimal value of

problem (P1). We consider 100 randomly generated topolo-

gies, each has 40 readers and 10 channels. The global optimum

of problem (P1) is approximately obtained by running the

FDFA algorithm 100 times, with each time starting from a

different randomly selected initial point. The global optimal

value is then selected to be the maximum observed local

optimal value among all 100 simulations. Results are shown

in Fig. 9. On average, the FDFA algorithm achieves 93.2% of
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Fig. 8. Convergence of the lower and upper bounds in the SDFA algorithm.
We can see that the global optimal solution of problem (P2) can be found
after 21 iterations when the lower and upper bounds reach the same value.

the global optimal value of problem (P1). This implies near

optimal performance for FDFA. On the other hand, the global

optimal value of problem (P2), obtained by using SDFA, is

90.8% of the global optimal value for problem (P1). This

implies that restricting each reader to operate on one channel

for a long time, results in 9.3% lower objective values. In

summary, we conclude that if the switching delay is small

enough such that each reader can switch to a new channel

in each interrogation interval, then FDFA can be used as it

has near optimal performance in terms of solving problem

(P1). However, if each reader only operates on one channel

for several intervals, then SDFA can be used to solve (P2).

VI. CONCLUSION

In this paper, we systematically studied the frequency

channel selection and randomized interrogation problems for

large-scale and dense RFID systems. We first modeled the

reader-to-reader collision and reader-to-tag collisions (both

types) in RFID systems. We then derived the probability of

performing a successful interrogation for each reader, where

the readers operate asynchronously. The joint channel selection

and randomized interrogation problem was formulated as a

max-min fair resource allocation problem. We proposed two

distributed algorithms to solve the optimization problem. The

first algorithm, called FDFA, is fully distributed and is guaran-

teed to achieve a local optimum. It works based on the iterative

coordinate ascent update mechanism. It allows each reader to

frequently switch its operating channel. The second algorithm,

called SDFA, is semi-distributed and is guaranteed to achieve

the global optimum. The SDFA algorithm uses the generalized

Benders decomposition and restricts each reader to operate on

one channel for a long time. Simulation results show that both

FDFA and SDFA have better performance than the previously

proposed heuristic channel selection and reader anti-collision

algorithms in terms of the number of correct interrogations and

fairness among readers. They also better utilize the frequency

spectrum and have fast convergence speed.
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Fig. 9. Comparison between the FDFA and SDFA algorithms in terms of
maximizing the objective value for max-min fairness problems (P1) and (P2).

APPENDIX

A. Proof of Theorem 1

We first prove (10). Given (8), for each pair r, n ∈ R, an

interrogation cycle (which consists of all interrogation frames

within an interrogation interval) for reader n (with duration

τn(Nn)) may overlap with only one interrogation cycle of

reader r (with duration τr(Nr)). To obtain the probability of

overlap, we only need to consider the period −T/2 ≤ ∆r,n ≤
T/2. From Fig. 4, we can see that overlapping of interrogation

cycles between readers r and n occurs when

−τn(Nn) < ∆r,n < τr(Nr). (19)

Since readers randomly and independently start up their op-

eration, ∆r,n has a uniform distribution over −T/2 and T/2.

Thus, the probability of (19) happening is as in (10). Next, we

notice that for each reader r∈R, the probability of completing

a successful interrogation is obtained as

P succ
r (p) =

∑

c∈C pr,c P
(

ANoRR
r,c ∩ ANoRT1

r,c ∩ ANoRT2
r,c

)

, (20)

where P(ANoRR
r,c ∩ ANoRT1

r,c ∩ ANoRT2
r,c ) denotes the probability

that no reader collision occurs while reader r is performing

an interrogation on channel c. ANoRR
r,c , ANoRT1

r,c , and ANoRT2
r,c

correspond to the events where no reader-to-reader collisions,

no type 1 reader-to-tag collisions, and no type 2 reader-to-tag

collisions occur, respectively. Since Vr ⊆ Ir ∪ Sr, if reader-

to-tag collisions do not happen, then reader-to-reader collision

cannot happen either. Thus, we have

P(ANoRR
r,c ∩ ANoRT1

r,c ∩ ANoRT2
r,c ) = P(ANoRT1

r,c ∩ ANoRT2
r,c ). (21)

Moreover, since ANoRT1
r,c and ANoRT2

r,c are independent events

due to (3), P(ANoRT1
r,c ∩ ANoRT2

r,c ) = P(ANoRT1
r,c ) P(ANoRT2

r,c ).
Finally, we can show that for all c ∈ C, we have

P(ANoRT1
r,c )=

∏

n∈Ir
(1 − γr,n pn,c) (22)

and

P(ANoRT2
r,c )=

∏

n∈Sr

(

1 − γr,n

∑

e∈C pn,e

)

, (23)



where
∑

e∈C pn,e denotes the probability that reader n starts

an interrogation interval over any of the available channels.

Replacing (21), (22), and (23) in (20), we obtain (9). �

B. Proof of Theorem 2

By replacing (9) into the objective in (Local-P1), it becomes

fα

(
∑

c∈C θr,c pr,c

)

+
∑

n:r∈Sn
fα

(

ϑr,n(1−γr,n

∑

c∈C pr,c)
)

+
∑

m:r∈Im
fα

(
∑

c∈C ζr,m,c(1 − γr,mpr,c)
)

+ ξr ,
(24)

where

θr,c =
(

∏

i∈Sr
(1 − γr,i

∑

e∈C pi,e)
)

(

∏

j∈Ir
(1 − γr,jpj,c)

)

,
(25)

ϑr,n =
(

∏

i∈ Sn\{r}(1 − γi,n

∑

e∈C pi,e)
)

(

∑

e∈C pn,e

(

∏

j∈In
(1 − γn,j pj,e)

))

,
(26)

ζr,m,c = pm,c

(

∏

i∈Im\{r}(1 − γm,i pi,c)
)

(

∏

j∈Sm
(1 − γm,j

∑

e∈C pj,e)
)

,
(27)

and

ξr =
∑

k : r/∈Sk∪Ik
fα(P succ

k (p−r)). (28)

Note that θr,c, ϑr,n, ζr,m,c, and ξr only depend on p−r.

They can be treated as constants in problem (Local-P1). Since

fα is concave for r ∈ R, the objective function of problem

(Local-P1) is a concave-affine composition over pr. Thus, it

is concave [20, p. 84]. Since the constraint in (Local-P1) is

linear, problem (Local-P1) is a convex problem. �

C. Proof of Theorem 3

Part (a): Since P succ
r ≤1, fα(P succ

r ) ≤ fα(1) = −1/α.

Part (b): We prove this part by contradiction. First, we

assume that Fα(t1) > Fα(t2). In that case, there exists a time

instance t ∈ [t1, t2] such that running Algorithm 1 results

in reducing the value of the objective function of problem

(P1) at time t. In other words, there exists a reader r ∈ R
such that t ∈ T update

r and Fα is reduced by executing line 6

of Algorithm 1 in reader r. However, this is impossible as

the objective function in problem (P1) is the same as that in

problem (Local-P1). Thus, we indeed have Fα(t1) ≤ Fα(t2).
Part (c): The limit in this part directly results from Parts

(a) and (b). Notice that any upper bounded non-decreasing

sequence of real numbers converges to a fixed point. �

D. Proof of Theorem 4

Let p∗ denote any fixed point of Algorithm 1. Given

p−r =p∗
−r for r∈R, pr =p∗

r is optimum for problem (Local-

P1). Since (Local-P1) is convex, p∗ should satisfy the Karush-

Kuhn-Tucker (KKT) conditions [20, p. 244] corresponding

to (Local-P1) for all r ∈ R. By definition, each stationary

point [29, p. 194] of non-convex problem (P1) also satisfies

all the KKT conditions for problem (P1). Since the objective

functions in (P1) and (Local-P1) are the same and the set of

constraints in (P1) is the union of those in (Local-P1) for all

r∈R, the KKT conditions for (P1) are equal to the union of

the KKT conditions for (Local-P1) for all r ∈ R. Thus, since

p∗ satisfies the KKT conditions of Local-P1) for all readers,

it also satisfies the KKT conditions for P1), i.e., each fixed

point p∗ is a local optimal solution for problem (P1). �

E. Proof of Lemma 1

Given x ∈ X , let c(r) denote the operating channel for

reader r ∈R. That is, xr,c(r) = 1. From (16), exactly one of

the entries xr,1, . . . , xr,C is equal to 1. From (9), we have

P succ
r (p) =

(
∏

n∈Sr

(

1 − γr,npn,c(n)

))

(

pr,c(r)

(
∏

m∈Ir
(1 − γr,mpm,c(m))

))

.
(29)

Since for any α > 0, utility fα is an increasing function,

problem (Primal-P2) is equivalent to

maximize
p∈P(x), δ>0

∑

r∈R fα(δr)

subject to δr ≤
(
∏

n∈Sr

(

1 − γr,npn,c(n)

)) (

pr,c(r)×

(
∏

m∈Ir
(1−γr,mpm,c(m)))

)

, ∀r∈R,
(30)

where δ = (δr, ∀ r ∈ R). Problem (30) is still non-convex

because of the product forms in the constraints. For each reader

r ∈ R, we define δ̃r = log(δr). We also define:

f̃α(δ̃r) = fα(exp(δ̃r)) = −α−1(exp (δ̃r))
−α. (31)

Clearly, f̃α(δ̃r) = fα(δr). Thus, problem (30) becomes

maximize
p∈P(x), δ̃>0

∑

r∈R f̃α(δ̃r)

(32)
subject to δ̃r−

∑

n∈Sr
log(1−γr,npn,c(n))−log(pr,c(r))

−
∑

m∈Ir
log(1−γr,mpm,c(m))≤0, ∀r∈R,

All constraints in problem (32) are convex. Moreover, f̃α(δ̃r)
is concave in δ̃r. Therefore, problem (32) is a convex problem

with zero duality gap and a unique stationary point. Since

problems (32), (30), and (Primal-P2) are equivalent, the same

statements are true for problem (Primal-P2). �
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