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I
In the evolutIon of advanced sensIng tech-
nologies, transmission systems have led distribution. the 
visibility and diagnostics of the transmission grid have 
been transformed over the past decade with the systematic 
deployment of phasor measurement units (PMus). simi-
lar and even more advanced new information sources are 
now becoming available at the distribution grid, using dis-
tribution-level PMus, also called micro-PMUs (µPMUs). 
µPMus provide voltage and current measurements at higher 
resolution and precision to facilitate a level of visibility 
into the distribution grid that is currently not achievable. 
however, mere data availability in itself will not lead to 
enhanced situational awareness and operational intelli-
gence. data must be paired with useful analytics to trans-
late these data to actionable information. In this article, we 
explore some of the opportunities to leverage µPMu data, 
combined with data-driven analytics, to help electrical dis-
tribution system planners and operators to get out in front 
of problems as they evolve.

the data generated by µPMus are a prominent exam-
ple of big data in power systems. each µPMu gener-
ates 124,416,600 readings per day. therefore, µPMus 
installed on a handful of utility distribution feeders can 
generate terabytes of data on daily basis. Because µPMus 

stream their measurements continuously, the data must be 
collected, cleansed, and processed, all in real time.

the collected µPMu data must then be dissected into 
descriptive, predictive, and prescriptive analytics. While 
descriptive analytics focuses on what happened in the past, 
predictive analytics aims at what may happen in the future. 
Both are stepping stones toward prescriptive analytics—
optimizing the future with informed decisions. here, we 
consider case studies in both descriptive and predictive 
analytics and provide a sampling of the benefits derived 
from µPMu data.
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What Is µPMU,  
and Why Is It Needed?
some of the characteristics of the distribution grid that cause 
difficulties for conventional sensing and measurement tech-
nologies include randomness of customer behavior, high 
nodal volume, lack of useful metadata, and the number of 
unknowns such as grid topology, controls, and behavior of 
behind-the-meter resources. the electric utility industry has 
recently taken important steps toward improving distribu-
tion network visibility to address some of these challenges, 
through the integration of smart meters. even though smart 

meters give a 15-min interval time-series data 
set containing valuable information on customer 
behavior, they do not provide the transient infor-
mation of voltage and current behavior useful 
for possible diagnosis of incipient failures. this 
and other shortcomings can now be addressed by 
using µPMus.

While µPMus can support or contribute to 
some of the applications of transmission-level 
PMus, such as synchronized locational measure-
ment of fundamental frequency or identification 
of interarea oscillations, it is, instead, the time 
series (i.e., the sequence of synchronized phase 
angle and magnitude measurements on three phases) 
that provides the greatest benefit to the distribu-
tion system.

a typical µPMu is connected to single- or three-
phase distribution circuits to continuously measure 
global positioning system time-referenced magni-
tudes and phase angles of voltage and current at two 
readings/cycle, or 120 readings/s. this is 108,000 
times faster than the reporting rate of a typical smart 
meter, which provides one reading every 15 min. each 
of these data sets is useful for a specific purpose—but 
using the data in their most “fit for purpose” role can 
be challenging. In sensing and measurement for the dis-
tribution grid, no one-fits-all approach exists; an all-of-

the-above mentality is needed, but this remains a research 
challenge. since 2015, several µPMu devices have been 
installed at pilot test sites in the state of california, including 
multiple 12.47-kv test feeders in the city of Riverside.

Example 1
consider the distribution feeder in figure 1, where two 
sensor locations are marked—one at the secondary of a 
69-kv/12.47-kv transformer at the feeder head and another
one at the secondary of a 12.47-kv/480-v transformer at
a commercial building. the measurements at sensor 1 are
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shown in figure 1(a)–(c). the measurements at sensor 2 are 
shown in figure 1(d)–(f). only one phase is shown here. 
the black curves with dotted markers in figure 1(a) and 
(d) show the measurements made by standard supervisory
control and data acquisition (scada) meters reporting one
root mean square (rms) value per minute. the blue curves
show the measurements made by µPMus that report 7,200
magnitude values/min.

the measurements made by µPMus provide much more 
detail about voltage fluctuations. for instance, they reveal 
several momentary voltage sags, as shown in figure 1(a) 
and (d). two synchronized voltage sags around the sixth minute 
are of particular interest and marked with arrows in both 
figures. they are zoomed in on and magnified in figure 1(b) 
and (e), respectively. these voltage sags last about 200 ms. 

the corresponding changes in current are shown in figure 1(c) 
and (e), respectively. In this example, the voltage sag is load 
induced, as opposed to grid induced, because it is caused by 
turning on a large load at the location of sensor 2. the load’s 
surge current momentarily takes down voltage. the impact 
is not only seen at the load location but can also be traced 
all the way up to the feeder head at the substation. In this 
example, the high temporal resolution as well as the time 
synchronization of the µPMu measurements is the key to 
identifying the root cause of the voltage sags.

Descriptive Analytics
Most efforts to analyze µPMu data have previously focused 
on diagnostics, where an event or a fault and possibly its root 
causes are explained after the fact. a human expert is often 
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figure 1. An example of µPMU readings compared to a standard SCADA or meter reading: (a) SCADA and μPMU mea-
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inserted into the loop, sometimes conducting the diagnosis 
with a power flow model. In this section, we discuss two 
such use cases utilizing the µPMu data collected from Riv-
erside, california.

Example 2 
figure 2 depicts the synchronized voltage transients during an 
animal-caused short-circuit fault event. the fault occurred on 
a lateral not too far from the substation, affecting mostly one 
phase. only the affected phase is shown in this figure. 

voltage phasors are measured by three µPMus at three 
locations. µPMu 1 is installed toward the end of a lateral 
(not the faulted lateral) on the faulted feeder. the short-
circuit fault momentarily brings the voltage down to zero 
at the location of µPMu 1, causing a brief interruption, as 
shown in figure 2(a). µPMu 2 is the point of common cou-
pling of the faulted feeder at the substation. the short-circuit 
fault creates a severe voltage sag at this location, as shown 
in figure 2(b). finally, µPMu 3, installed on another feeder 
several miles away from the faulted feeder, records a consid-
erable voltage sag, as shown in figure 2(c), albeit much less 
severe than what µPMu 2 has captured. 

this type of synchronized distribution grid voltage data 
can be used to calibrate the coordination of the distribution 
system protection devices. But, more importantly, these 
data could enable a quick deployment of field crews to the 

particular fault location, with an indication of what may have 
been damaged based on the observed fault characteristics.

Example 3 
the high reporting frequency of µPMus allows them to cap-
ture hundreds of voltage events every day. some of these 
events have root causes at the transmission level, which may 
not be of much interest to distribution operators. therefore, 
it is necessary to distinguish transmission-induced events 
from distribution-induced ones. the latter can then be used 
in various distribution-level diagnostics. We can make such 
a distinction by comparing synchronized voltage measure-
ments at neighboring distribution feeders. 

an example is shown in figure 3, where four voltage 
events are marked. event 1 appears in feeder 2 but not in 
feeder 1, so it is induced by the loads and equipment on 
feeder 2. events 2 and 4 appear in feeder 1 but not in 
feeder 2, so they are induced by the loads and equipment on 
feeder 1. event 3, which is the most severe voltage transient 
event in this example, appears in both feeders. therefore, it 
is most likely caused by issues at a higher voltage level, such 
as the transmission or subtransmission systems.

data from µPMus have also been used recently for other 
descriptive analytics, such as evaluating photovoltaic site 
performance; determining voltage controller behavior, topol-
ogy, as well as for phase detection; and performing resource 
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figure 2. The impact of an animal-caused short-circuit fault recorded at three geographical locations. (a) The short-circuit 
fault momentarily brings the voltage down to zero at the location of µPMU 1, causing a brief interruption. (b) The short-
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selection for electricity market participation on the demand 
side. While the suite of applications is growing, the require-
ments for analytics around data quality, communication, and 
computational power continue to be major challenges for industry 
and academia.

Predictive Analytics
descriptive analytics is tremendously useful for managing 
the existing distribution grid. the input of high-fidelity data, 
such as µPMu data, is an important leap forward. on the 
other hand, grid modernization has made a significant push 
toward predictive and prescriptive analytics.

solar power forecasting, for example, has long been hin-
dered by a lack of measurements at the distribution grid level 
and, more often than not, relies on either direct sensing of the 
generator or a forecasting approach that may use weather sen-
sors and capacity estimates per feeder. similar, and arguably 
more challenging, forecasting needs now arise at the millisec-
ond scale and transient level, e.g., with respect to the operation 
of solar panel inverters, transformers, and capacitor banks. 
µPMus and related data-driven techniques can help greatly in 
such applications.

In this section, we discuss two predictive analytics exam-
ples based on real-world µPMu data. Both examples are 
related to the monitoring and maintenance of grid equip-
ment and assets. this is motivated by the fact that a typical 
distribution feeder may have thousands of devices, such as 
transformers, capacitor banks, fuses, relays, and switches. It 
is too cost-inefficient to install a dedicated asset-monitoring 
sensor on each device. Interestingly, it is possible to moni-
tor a large number of grid assets using the synchronized and 

high-resolution measurements collected by a few µPMus and 
distinguish between different types of equipment failures. the 
collected data can lead to the identification of anomalies not 
yet significant enough to cause a fault or customer interruption 
but, if not addressed, likely to cause failures in the near future.

Example 4 
a distribution feeder includes a three-phase switched capac-
itor bank rated at 900 kvar. the capacitor bank is switched 
on and off by a vacuum switch. the timing of the switch-
ing is controlled by a volt-var controller. a transient limiting 
inductors device is installed in series with each phase of the 
switched-capacitor bank to limit transient currents during 
switching events or faults. the capacitor bank is installed a 
few miles away from the substation on a lateral. 

however, its operation can be observed remotely using 
a µPMu installed at the feeder head at the substation. a 
switch-off event of the capacitor bank is captured and shown 
in figure 4. first, using the voltage magnitude measure-
ments, one can confirm that switching off the capacitor 
results in a permanent drop in voltage, as one would expect 
and as shown in figure 4(a). Importantly, there is also a 
severe current overshoot on phase a and a severe current 
undershoot on phase c during such a capacitor bank switch-
off event, as shown in figure 4(b). We can conclude that the 
capacitor bank is switched off at zero crossing of phase B. 

Repeated current synchrophasor measurements on mul-
tiple days show a very similar switching-off signature. the 
overshoot and undershoot on phases a and c last for about 
200 ms (a relatively long time). It appears that the capacitor 
bank is not initially de-energized on phases a and c at the 
time of switching until several cycles later, as shown by the 
current phase angle measurements in figure 4(c). this may 
indicate some hardware or control malfunction, while the 
large magnitude and the long duration of the current over-
shoot and undershoot could be a power quality concern 
for customers. this type of event analysis allows proac-
tive crew dispatch for repair or replacement with minimal 
customer interruption.

Example 5 
a distribution substation transformer has an incipient failure not 
yet detected. µPMus are installed in nonoptimal locations, i.e., 
with no primary intention to monitor the operation of the trans-
former. during a typical on-load tap changer (oltc) action 
(commonly utilized for voltage regulation across the united 

µPMUs provide voltage and current measurements at higher 
resolution and precision to facilitate a level of visibility into the 
distribution grid that is currently not achievable.
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states), the effective turns ratio of the transformer is changed; 
this is accomplished with a mechanical movement of a spring-
loaded contact, often in an oil-filled environment. common 
methods for sensing the failure of such a component include 
dissolved gas analysis and oil-level measurements. these meth-
ods often require taking the device offline for complete testing. 

In this real-world example, precise synchronized voltage 
measurements from µPMus were also examined to deter-
mine any anomalous behavior related to the tap changes. 
anomalies were, in fact, detected on the primary side of the 
transformer in the form of synchronized voltage rise and 
sag during a tap change, as seen in figure 5, despite the lack 
of additional prior indications by other sensors on the field. 
this could be related to the abnormal behavior of the resis-
tor or reactor bridge within the oltc (used to limit the cir-
culating current during the mechanical change) or to an oil 
leak causing arcing within the device. Interestingly, neither 
the oil sensor nor the smart meters had detected the pres-
ence of an anomaly. When the field crew visited the trans-
former location after the µPMu data analysis, it was deter-
mined that a repair was necessary. following the repair, the 
anomaly disappeared. With continued oil leakage and in the 
absence of µPMu data analysis, there would have been a 
catastrophic transformer failure and customer interruption.

A Note on Examples 4 and 5
It is worth emphasizing that neither the capacitor bank an -
omalies in example 4 nor the transformer anomalies in 

may/june 2018 

example 5 were identified by other existing sensors on the 
utility grid. Both sets of anomalies were in the form of tran-
sient events that were visible only to the sensors with high 
sampling rates at milliseconds, such as µPMus. although 
the real-life µPMus that provided the measurements to per-
form the analyses in examples 4 and 5 were not initially 
intended for the analyses in either example, they were able 
to provide highly insightful measurements to detect incipi-
ent failures.

the application of incipient failure detection, coupled with 
close to real-time communication, will allow early corrective 
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actions. for instance, in example 5, the action to reduce 
transformer load was taken quickly, without major opera-
tor or field crew intervention, and the transformer was then 
flagged for repair. such proactive approaches help prevent 
consumer interruptions, enable utilities to repair rather 
than run to failure, and minimize field crew dispatch time.

Unlocking the Power of Big Data
from examples 1–5, it is clear that there is an enormous 
amount of information to extract from even a small number of 
µPMus, as long as one can zoom in on, detect, and scrutinize 
each event within its millisecond time scale. In particular, 
one can expand the core ideas presented by these examples 
to remotely monitor hundreds of pieces of grid equipment, 
assets, distributed energy resources, inverters, and loads on 
each feeder, thus building the key to true situational aware-
ness in power distribution systems. 

however, the main challenge is to go beyond manual meth-
ods based on the intuition and heuristics of human experts, 
such as those described in examples 1–5. Instead, it is crucial 
to develop the machine intelligence needed to automate and 
scale up the analytics on billions of µPMu measurements 
and terabytes of data on a daily basis and in real time. In this 
section, we make the case that big data analytics (Bda) is 
the key to addressing the challenges in working with µPMu 
measurements and so turn the data into actionable insights in 
a scalable fashion.

Bda is the process of examining big data to uncover hid-
den patterns, unknown correlations, customer preferences, 

population behaviors, incipient failures, operation irregular-
ities, and other useful data-driven intelligence. In power sys-
tems, the findings from Bda may lead to relieving threats; 
preventing, predicting, or responding more quickly to faults; 
improved efficiency; new revenue opportunities; and better 
customer service.

significant technical advances have recently been made 
within the area of Bda in the form of new predictive and 
forecasting techniques; data mining and machine learning 
tools to enhance classification, regression, clustering, and 
dimension reduction; artificial intelligence to enable cogni-
tive simulation, expert systems, and perception; statistical 
analysis; and advanced data visualization. as computational 
power grows and is potentially distributed out to the grid 
edge, the analytics field will expand and enable the modern-
ized power distribution grid to develop.

the first, and most important, Bda application in the 
context of this article is diagnosis and prognosis based on 
µPMu data in an automated fashion using machine intel-
ligence—as opposed to case by case or even manually, as 
is currently the norm in this field. for instance, recall from 
example 3 that filtering out the voltage transient events 
caused at the transmission level is a critical task that must 
be performed continuously to allow a focus on events that 
may indicate any potential anomaly in terms of grid equip-
ment and customer loads on the distribution feeder of inter-
est. therefore, the visual classification approach discussed 
in the “descriptive analytics” section has limited use in a 
real-world application. fortunately, one can use proper 

Since 2015, several µPMU devices have been installed at pilot 
test sites in the state of California, including multiple 12.47-kV  
test feeders in the city of Riverside.
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station: (a) phase A, (b) phase B, and (c) phase C.

statistical analysis tools to conduct such classification, in 
large part, automatically. 

as shown in figure 6, all transient voltage events above 
0.1% rated magnitude during one day are cross-correlated 
using synchronized voltage measurements on three phases of 
two neighboring feeders. each point indicates an event that 
was detected on at least one feeder. the location on the y-axis 
indicates the transient voltage change detected on feeder 1, 
while the location on the x-axis indicates the change detect-
 ed on feeder 2. the events are either voltage sags or voltage 
swells. In figure 6, and on each phase, the diagonal points 
indicate those voltage transient events initiated at the trans-
mission level. they comprise roughly one-third of all major 
voltage transient events that appear on these two distribu-
tion feeders. they are not of primary interest to distribu-
tion engineers.

the events distribution engineers care about are, rather, the 
two groups of points that fall inside the two dashed ellipsoids 
marked in figure 6. note that the ellipsoids are marked on 
only phase a to avoid crowding the figure; however, similar 
ellipsoids can be also identified for phases B and c. “group 
1” indicates the major transient voltage sags caused by the 
equipment and/or loads on feeder 1. “group 2” indicates the 
major transient voltage sags caused by the equipment and/
or loads on feeder 2. the events in group 1 comprise 65%, 
71%, and 70% of all major voltage transient events on phases 
a, B, and c of feeder 1, respectively. the events in group 2 
comprise 60%, 65%, and 64% of all major voltage transient 
events on phases a, B, and c of feeder 2, respectively. the 

two feeders have equal ratings. extended statistical and data 
mining analysis, along with the use of techniques such as pat-
tern recognition, could be used to identify the root causes of 
the differences between the two feeders as well as whether a 
site visit or repair is necessary. essentially, this is an input-
to-risk-based maintenance schedule, with a greater number 
of anomalies located on the distribution system leading to a 
greater potential for an outage.

data-driven techniques based on µPMu measurements 
can sometimes turn traditionally challenging problems of 
power distribution systems into somewhat trivial tasks. one 
such example is phase identification, which is the problem 
of identifying the correct phase connection for each single-, 
two-, or three-phase load. traditionally, phase identifica-
tion is performed by analyzing the correlations across volt-
age rms values. however, phase identification can also be 
accomplished using a simple data-driven analysis of phase 
angle measurements. 

an example is given in figure 7. here, we plot the proba-
bility distribution, in the form of a discrete histogram, of the 
relative phase angle difference between the voltage phasor at 
a single-phase load and the voltage phasor at each phase of the 
substation. the distribution is formed close to 0°, 240°, and 
120° for phases a, B, and c, respectively. clearly, the load 
is connected to phase a. this is also a technique that could 
enhance the ability to use smart-meter data. With the meter’s 
phase identified, more focused control can be developed at a 
granular level. this technique can be applied throughout the 
distribution system and will become significantly important 

The application of incipient failure detection,  
coupled with close to real-time communication,  
will allow early corrective actions.
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as the balance of the distribution system becomes more vari-
able with behind-the-meter generation.

traditional power system analysis is typically based on 
modeling physical systems. In contrast, Bda approaches are 
much more data driven. for example, in the previously dis-
cussed phase identification problem, we do not need to know 
the topology of the feeder. however, we might benefit from 
a hybrid of data- and model-based approaches. In that case, 
there is a need for technical tradeoffs between the details of 
the models and the dimension of the data.

the applications of Bda go far beyond the previously 
described case studies. In fact, most of the recently developed 
Bda tools and techniques are discovery- and exploration-ori-
ented. In other words, they do not require us to predetermine 
what, exactly, we expect to look for or see in the data. In this 
regard, instead of building systems that manipulate the µPMu 
data to reach certain foreseen objectives (such as phase identifi-
cation or equipment fault detection), the Bda paradigm seeks 
to enable and facilitate different possible (yet still unknown) 
objectives to be pursued. there is also a great potential to develop 
methodologies that can extract actionable insights from the 
aggregation and disaggregation of the data from other sources 
in addition to µPMus, such as smart meters, transmission-level 
PMus, power quality sensors, and grid metadata.

as we enter this new frontier in visibility and controllabil-
ity for the electric distribution system, with customers and 
customer-side resources becoming heavily engaged in their 
own supply, it is easy to say that a highly accurate, high-
fidelity distribution-level synchrophasor measurement is a 
hammer looking for a nail. the case studies illustrated  here 
are common grid health and visibility problems, which have 
had little application for scalable solutions in recent years. 
each of these issues was detected by one sensor or a pair of 
sensors on a distribution feeder with a limited set of deploy-
ments in a research environment and very limited application 
of advanced Bda techniques. 

there are numerous Bda techniques being developed out-
side of the field of power engineering that can be adapted. 
for example, in genetics, Bda is used to search for the cor-
relation of genetic mutation to cancer diagnoses. In social 
science, Bda can help identify target audiences for products 
and services. With further enhancement of these techniques 
and development of new areas of research such as hybrid 
data-driven and power flow model approaches, we can 
enable an unprecedented level of visibility and true opera-
tional excellence for a modernized grid.
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Proactive approaches help prevent consumer interruptions, 
enable utilities to repair rather than run to failure, and minimize 
field crew dispatch time.


