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Abstract— In this paper, we propose a novel optimization-
based pre-equalization filter (PEF) design framework for direct-
sequence ultra-wideband (DS-UWB) systems with pre-Rake com-
bining. The key feature in our design is that we explicitly
take into account the spectral mask constraints that are usually
imposed in practice by the telecommunications regulation and
standardization bodies. This avoids the need for an inefficient
power back-off, which is necessary for the existing pre-Rake-based
transmitter structures designed solely based on average transmit
power constraints. We consider two PEF design structures. In the
first structure, the PEF is placed before the up-sampling unit at
the transmitter. In the second structure, the PEF is placed after
the up-sampling unit. We show that these two structures are
significantly different in terms of their capabilities in reducing
the residual inter-symbol interference at the receiver and also in
following the spectral mask at the transmitter. This introduces
a trade-off such that one design structure outperforms the other
one, depending on the system parameters. In this regard, we show
that if the spreading factor is large enough, the second design
structure has a superior performance. Simulation results confirm
that both of the proposed PEF structures lead to significant
performance gains over PEF designs without explicit spectral
mask considerations. In addition, our PEF designs have the
capability of adhering to spectral masks with arbitrary shapes.

Index Terms— Spectral mask constraints, pre-equalization,
pre-Rake combining, ultra-wideband communication, inter-
symbol interference, optimization, semi-definite programming.

I. INTRODUCTION

Ultra-wideband (UWB) is an emerging technology for high-
rate short-range transmission, e.g., in wireless personal area
networks. Due to their extremely large bandwidth, both direct-
sequence (DS) [1], [2] and impulse-radio (IR) [3], [4] UWB
systems can resolve even dense multipath components such
that Rake combining can be used at the receiver to significantly
reduce the negative impacts of fading in the received signal
[4]. However, for many UWB applications, the receiver is
a portable device with severely limited signal processing
capabilities, making the implementation of Rake combiners
with a sufficiently large number of fingers very challenging.

To overcome this problem, a promising approach is to
move computational complexity from the receiver to the more
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powerful transmitter (e.g., an access point). In this regard, pre-
Rake combining can be used [5], [6]. It exploits the reciprocity
of the UWB radio channel, which has recently been confirmed
experimentally in [7]. Ideally, with pre–Rake combining at
the transmitter, channel estimation, diversity combining, and
equalization are not required at the receiver, and a simple
symbol–by–symbol detector can be used [1], [6]. However,
pre-Rake combining has several drawbacks. In particular, for
long channel impulse responses (CIRs), which are typical for
UWB applications, it may entail a relatively high error floor if
simple symbol–by–symbol detection is applied at the receiver
[8]. To remedy this problem, while keeping the receiver sim-
ple, pre-equalization can be used at the transmitter, possibly
along with a pre-Rake combiner, to reduce the residual inter-
symbol interference (ISI) at the receiver [9], [10].

Most of the previous work on UWB pre-Rake and pre-
equalizer design (e.g., in [1], [5]–[10]) includes only con-
straints to limit the average transmit power. However, prior
studies do not include constraints to limit the power spectral
density (PSD) of the transmitted UWB signals. This can
severely affect the overall system performance as most of the
telecommunications regulation bodies, e.g., the US Federal
Communications Commission (FCC), impose spectral mask
constraints to limit UWB emission levels to prevent harmful
interference on incumbent legacy narrow-band receivers. In
such a setting, the existing UWB pre-filtering techniques can
be far from optimal, as they require an appropriate power back-
off so that the mandatory spectral masks are not violated.

In this paper, we propose two novel pre-equalization filter
(PEF) designs with pre-Rake combining for DS-UWB sys-
tems. The two designs differ in where the PEF is located
with respect to the up-sampling unit at the transmitter. The
contributions of this paper can be summarized as follows.

• New Problem Formulation: For each design, we formulate
an elaborate optimization problem, with the coefficients
of the PEF being the optimization variables. Each op-
timization problem includes constraints with respect to
the spectral mask, residual ISI, and the average transmit
power. To the best of our knowledge, this work is the first
to explicitly take into account spectral mask constraints
for pre-equalization in UWB systems.

• Efficient Algorithm Design: Since the formulated opti-
mization problems are non-convex and difficult to solve
in general, we propose a simple algorithm based on a
semi-definite relaxation technique in order to find close-
to-optimal solutions for each PEF design problem.

• Design Trade-off : For the existing pre-filter designs with-
out spectral mask consideration (cf. [9]), placing the PEF



before the up-sampler can reduce the required length
of the PEF. This is mainly due to a better residual ISI
reduction. However, we will show in this paper that a PEF
located before the up-sampling unit has major difficul-
ties satisfying spectral mask constraints. This limits the
achievable performance, particularly when the spreading
factor is large. In fact, we will show that whether it is
more beneficial to place the PEF before or after the up-
sampling unit highly depends on the system parameters.

• Improved Performance: Simulation results confirm that
our PEF designs lead to significant performance gains
over PEF designs that do not take into account the
spectral mask constraints. In particular, our designs out-
perform the PEF designs in [9] and [10].

Note that the PEF designs in this paper are different from
the previous work in the literature on UWB pulse-shaping with
spectral mask considerations, e.g. in [3], [11], which does not
address pre-equalization as well as residual ISI suppression.

Organization: The system model is presented in Section II.
We formulate the PEF optimization problems in Section III.
An efficient algorithm to solve these problems is provided in
Section IV. Simulation results are given in Section V. The
paper is concluded in Section VI.

Notation: E{·}, [·]T , (·)∗, [·]H , ℜ{·}, ⌈·⌉, δ(·), and
∗ denote expectation, transposition, complex conjugation,
Hermitian transposition, the real part of a complex num-
ber, the ceiling function, the Dirac delta function, and
convolution, respectively. Also X(ejω) , F{x[k]} =∑∞

k=−∞ x[k]e−jωk, X(jΩ) , F{x(t)} =
∫ +∞
−∞ x(t)e−jΩtdt,

Φxx(e
jω),F{ϕxx[τ ]}=

∑∞
τ=−∞ ϕxx[τ ]e

−jωτ , and ϕxx[τ ] ,
E{x[k]x∗[k − τ ]} denote the discrete–time Fourier transform,
the continuous–time Fourier transform, the power spectral den-
sity, and the autocorrelation function, respectively. Depending
on the context, x[n] represents either a sequence or the nth
element of a sequence. When x[n] is up-sampled by a factor
of N > 1 it yields a new sequence xN [k] where xN [k] = x[n]
if k = Nn and xN [k] = 0 if k ̸= Nn.

II. SYSTEM MODEL

In this section, we consider two DS-UWB transceiver struc-
tures, each one with a single transmit antenna and a single
receive antenna as shown in the block diagrams in Fig. 1.
Here, our system setup is similar to that in [2]. Next, we
explain the details of the system model and the differences
between the two design structures shown in Figs. 1(a) and (b).
We denote the symbol duration by Ts and the chip duration
by Tc = Ts/N , where N is the spreading factor. All signals
and systems are represented in complex baseband.

A. Transmitter Structure I

Consider the DS-UWB system block diagram in Fig. 1(a).
At the transmitter, a sequence of independent and identically
distributed (i.i.d.) data symbols a[n] ∈ {±1} is filtered with
PEF f1[n] of length Lf , and the filter output signal is obtained
as

v1[n] , f1[n] ∗ a[n] =
Lf−1∑
l=0

f1[l]a[n− l]. (1)

N g[k] h[k]
v1[n] s1[k]a[n]

wc[k]

c[N − 1− k]
r1[n]

ṽ1[k]

o1[k]
â1[n− n0]

f1[n] c[k]

N

(a) Structure I: Pre-equalization filter is placed before the up-sampler.

g[k] h[k]N

wc[k]

â2[n− n0]
r2[n]

a[n] ã2[k]
f2[k]

c[N − 1− k]N
o2[k]

c[k]
ṽ2[k] s2[k]

(b) Structure II: Pre-equalization filter is placed after the up-sampler.

Fig. 1. Block diagrams of the two UWB structures studied in this paper. Each
structure includes one transmit antenna, pre-equalization, pre-Rake combining,
and one receive antenna. The two transceiver structures differ in where the
PEF is located with respect to the up-sampling unit at the transmitter. The
receiver has minimal complexity in both structures. Only a simple –by–symbol
detector is used at the receiver in both Structures I and II.

We will optimize the PEF to minimize the residual ISI at
the receiver in Sections III and IV. Here, we place the PEF
before the up-sampling unit. It is shown in [9] that for the case
without spectral mask constraints, this structure can reduce the
required length of the PEF. The output signal of the PEF is
up-sampled by a factor of N ≥ 1 to yield ṽ1[k] , vN1 [k].
Sequence ṽ1[k] is then filtered with a (real-valued) spreading
sequence c[k], 0 ≤ k < N , which is normalized such that∑N−1

k=0 |c[k]|2 = 1, and a pre-Rake filter g[k] of length Lg.
The resulting transmit sequence s1[k] is given by

s1[k] = ṽ1[k] ∗ g̃[k] =
∞∑

i=−∞
v1[i]g̃[k − iN ], (2)

where

g̃[k] , c[k] ∗ g[k] =
N−1∑
i=0

c[i]g[k − i] (3)

includes the combined effects of the pre-Rake filter g[k]
and spreading sequence c[k]. Here, we consider a general
transmitter structure as we do not impose any restrictions on
c[k] and g[k]. If a spreading sequence is not applied, e.g. as in
[5]–[7], we simply have c[0] = 1 and c[k] = 0, 1 ≤ k < N .
In general, g[k] depends in some way on the CIR h[k], which
has length Lh. In an all-pre-Rake (also called time-reversal)
filter, we have [5]

g[k] , h∗[Lh − k − 1], 0 ≤ k < Lg, Lg = Lh. (4)

B. Transmitter Structure II

Next, we consider the second DS-UWB transceiver structure
shown in Fig. 1(b). Unlike the case for the first structure in Fig.
1(a), here the PEF is placed after the up-sampling unit. We
will show in Section V that in most practical cases, particularly
when the PEF filter length Lf and the spreading factor N
are not too small, Structure II can significantly outperform



Structure I due to an improved capability of conforming to
the spectral mask constraints. According to the second design
structure in Fig. 1(b), at the transmitter a sequence of i.i.d.
data symbols a[n] ∈ {±1} is first up-sampled by a factor of
N ≥ 1 to yield ã2[k] , aN2 [k]. It is then, respectively, filtered
with a PEF f2[k] of length Lf , spreading sequence c[k] of
length N , and pre-Rake-combining filter g[k] of length Lg .
The resulting transmit sequence s2[k] is given by

s2[k] = ã2[k] ∗ f2[k] ∗ g̃[k], (5)

where g̃[k] is as in (3) and includes the combined effects of
the pre-Rake filter and spreading.

C. Channel Model

The equivalent baseband discrete-time CIR

h[k] , gT (t) ∗ h(t) ∗ gR(t)|kTc (6)

contains the combined effects of a square-root Nyquist trans-
mit filter gT (t) [2], the continuous-time CIR h(t), and the
receive filter gR(t), sampled at chip interval Tc. For the
wireless channel, we adopt the IEEE 802.15.3a channel model
[12], [13]. Consequently, the passband version h′(t) of the
baseband CIR h(t) consists of Lc clusters of Lr rays and is
modeled as

h′(t) = ϑ

Lc∑
l=1

Lr∑
k=1

ρk,lδ(t− Tl − τk,l), (7)

where Tl is the delay of the lth cluster, τk,l is the delay of the
kth ray of the lth cluster, ρk,l is the random multipath gain
coefficient, and ϑ models the lognormal shadowing. In [12],
[13], four parameter sets for the various channel model (CM)
parameters in (7) are specified. The resulting channel models
are known as CM1, CM2, CM3, and CM4. They represent
different usage scenarios and entail different amounts of ISI.

D. Receiver Structure I

The received signal is obtained as

o1[k] =

Lh−1∑
l=0

h[l]s1[k − l] + wc[k], (8)

where wc[k] denotes the chip-level additive white Gaussian
noise (AWGN) with variance σ2

c , E{|wc[k]|2}. Received sig-
nal o1[k] is filtered with the time-reversed spreading sequence
c[N − 1 − k], 0 ≤ k < N , and is down-sampled at times
k = Nn+k0, where 0 ≤ k0 < N denotes the sampling phase.
The resulting receiver output signal r1[n] can be expressed as

r1[n] =

∞∑
l=−∞

q[Nl + k0]v1[n− l] + ws[n], (9)

with overall CIR

q[k] = g̃[k] ∗ h̃[k] =
Lg+N−2∑

i=0

g̃[i]h̃[k − i] (10)

and symbol-level noise

ws[n] =
N−1∑
i=0

c[i]wc[N(n− 1) + k0 + i+ 1]. (11)

Here, h̃[k] includes the combined effects of the channel filter
h[k] and the time-reversed spreading sequence c[N − 1− k]:

h̃[k] , h[k]∗c[N−1−k] =
N−1∑
i=0

c[i]h[k+ i− (N−1)]. (12)

Note that ws[n] is also AWGN noise with variance σ2
s ,

E{|ws[n]|2} = σ2
c

∑N−1
i=0 |c[i]|2 = σ2

c .
Since our goal is to design a UWB system with minimal

receiver complexity, no additional filtering is applied at the
receiver, and symbol decisions are made according to

â1[n− n0] = sign{ℜ{r1[n]}}, (13)

where â1[n−n0] is the estimate for a[n−n0] in Structure I, n0

is decision delay, and sign{x} = 1 if x ≥ 0 and sign{x} = −1
otherwise. Note that no equalizer is used at the receiver.

E. Receiver Structure II

The received signal is obtained as

o2[k] =

Lh−1∑
l=0

h[l]s2[k − l] + wc[k]. (14)

Applying (5) in (14), the resulting receiver output signal r2[n]
can be expressed as

r2[n] =

∞∑
l=−∞

b[Nl + k0]a[n− l] + ws[n], (15)

where

b[k] , f2[k] ∗ q[k] =
Lf−1∑
i=0

f2[i] q[k − i] (16)

with overall CIR q[k] as in (10) and symbol-level noise ws[n]
as in (11). At the receiver, the symbol decisions are made as
â2[n− n0] = sign{ℜ{r2[n]}}, similar to (13) in Structure I.

III. FORMULATION OF PEF DESIGN
OPTIMIZATION PROBLEMS

In this section, we propose an optimization framework for
the design of efficient PEFs with explicit spectral mask and
various other design considerations. The proposed framework
is applicable to both Structures I and II shown in Figs. 1(a)
and (b). We will provide an algorithm to solve the optimization
problems formulated in this section in Section IV.
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Fig. 2. FCC spectral mask for UWB transmissions in outdoor environment.
A typical operation range for UWB systems is the 3.1-10.6 GHz band.

A. Problem Formulation for Structure I

Consider Structure I in Fig. 1(a). It is convenient to first
rewrite (9) in vector form as

r1[n] = (Q f1)
Ha[n] + ws[n], (17)

where

a[n] , [a[n] . . . a[n−Lt+1]]T , f1 , [f1[0] . . . f1[Lf−1]]H ,
(18)

and Q is an Lt × Lf column-circulant matrix with vector

[q[k0] q[N + k0] . . . q[N(Lq − 1) + k0] 0
T
Lf−1]

H

as its first column. Here, 0Lf−1 denotes an (Lf−1)×1 vector
with all entries equal to zero, and

Lt , Lq+Lf −1 and Lq , ⌈(Lg+Lh+2N−3)/N⌉
(19)

are the lengths of the impulse response of the overall system
(including the PEF) and the sampled overall CIR q[Nn+ k0],
respectively. Next, we study PEF design aspects.

1) Spectral Mask Constraints: The telecommunications
regulation and standardization bodies, such as the FCC in
the US, impose regulations which limit the permitted PSD
for UWB transmissions to prevent interference to incumbent
legacy narrow-band receivers. The FCC spectral mask for
outdoor communications is shown in Fig. 2 [14].1

We first note that our system model is in discrete–time,
while the spectral masks are usually defined in continuous–
time. Let Ω and ω denote the angular frequencies associated
with the continuous–time and discrete–time Fourier transform,
respectively. We define Ωmin and Ωmax as the minimum
and maximum frequencies used by the UWB system (e.g.,
Ωmin = 2π × 3.5 GHz and Ωmax = 2π × 4.5 GHz [2]).

1In addition to the spectral mask constraint, the FCC has also issued a peak
power constraint in time domain. As shown in [15], for IR-UWB systems
with small pulse rates (corresponding to DS-UWB systems with relatively
large spreading factors), the peak power constraint in time domain is the
binding one, whereas for high-rate IR-UWB systems (or DS-UWB systems
with moderate spreading), it is the spectral mask constraint which is binding.
For practical relevance, we focus on the latter case. For example, given a
system bandwidth of 1 GHz, DS-UWB systems with spreading factors N ≤
50 are well within the regime where the spectral mask constraint is binding.

Let Bs = Ωmax − Ωmin denote the total bandwidth used
by the designed UWB system. Also let m(Ω) denote the
spectral mask (e.g., m(Ω) = −41.3 dBm/MHz for any Ωmin ≤
Ω ≤ Ωmax which is set by FCC). According to the FCC,
the radiated emissions are measured at a resolution bandwidth
of 1 MHz [14]. Therefore, we need to assure obeying the
spectral mask within every 1 MHz of occupied bandwidth.
Let Ω1, . . . ,ΩK denote K , Bs

2π×1MHz + 1 discrete frequency
levels which uniformly spread out over the bandwidth Bs.
Clearly, ∆Ω = Ω2−Ω1 = . . . = ΩK −ΩK−1 = 2π×1 MHz.
For each µ = 1, . . . ,K, it is required that [14]∫ ωµ+

∆ω
2

ωµ−∆ω
2

∣∣∣∣GT

(
j
ω

Tc

)∣∣∣∣2Φs1s1(e
jω)dω ≤

∫ Ωµ+
∆Ω
2

Ωµ−∆Ω
2

m(Ω) dΩ,

(20)
where ωµ , Tc Ωµ [16, Ch. 1.7], ∆ω , Tc ∆Ω, GT (j

ω
Tc
) =

F{gT (t)}, and Φs1s1(e
jω) denotes the PSD for transmitted

signal s1[k]. Recall that gT (t) is the transmit filter. We can
show that

Φs1s1(e
jω) =

∣∣∣G̃(ejω)
∣∣∣2 Φṽ1ṽ1(e

jω), (21)

where G̃(ejω) = F{g̃[k]}. We also have

Φṽ1ṽ1(e
jω) =

∣∣F1(e
jωN )

∣∣2 Φaa(e
jωN ) =

∣∣F1(e
jωN )

∣∣2 ,
(22)

where F1(e
jωN ) =

∑Lf−1
k=0 f1[k]e

−jωNk and Φaa(e
jωN ) = 1

due to the i.i.d. assumption for the data symbols a[n]. From
(21) and (22), and assuming that the spectral mask m(Ω)
and PSD |GT (j

ω
Tc
)|2 Φs1s1(e

jω) are practically constant over
Ωµ − ∆Ω

2 ≤ Ω ≤ Ωµ + ∆Ω
2 and ωµ − ∆ω

2 ≤ ω ≤ ωµ + ∆ω
2 ,

respectively, for each µ = 1, . . . ,K, inequality (20) becomes

λ(ωµ)
∣∣F1(e

jωµN )
∣∣2 ≤ m(Ωµ), (23)

where

λ(ωµ) , Tc

∣∣∣G̃(ejωµ)
∣∣∣2 ∣∣∣∣GT

(
j
ωµ

Tc

)∣∣∣∣2 . (24)

Clearly, we can ensure (23) by tuning the coefficients in the
PEF, i.e., f1[0], . . . , f1[Lf − 1]. The spectral mask constraints
in (23) can be written in vector form, using∣∣F1(e

jωN )
∣∣2 = fH1 d(Nω) dH(Nω) f1, (25)

where d(Nω) , [1 ejωN ejω2N . . . ejω(Lf−1)N ]T . There-
fore, the spectral mask in (23) imposes K inequality con-
straints on the PEF coefficients f1 as

λ(ωµ) f
H
1 d(Nωµ) d

H(Nωµ) f1 ≤ m(Ωµ), µ = 1, . . . ,K.
(26)

Note that λ(ωµ) is fixed for each µ = 1, . . . ,K as far as the
design of the PEF is concerned.

2) Energy Concentration: Since we assume that no equal-
izer is used at the receiver, it is required that for each received
symbol, most of the channel energy is concentrated in a single
channel tap. Considering (17), let Qpre denote the submatrix
of Q consisting of the first ηpre rows. Also let Qpost denote
the submatrix of Q consisting of the last ηpost rows. Here,



ηpre and ηpost are selected such that ηpre + ηpost + 1 = Lt,
where Lt is as in (19). We can rewrite Q as

Q =

 Qpre

Q0

Qpost

 . (27)

Here, Q0 denotes the (ηpre + 1)
th row of matrix Q. We can

thus rewrite (17) as

r1[n] = (Q0 f1)
∗ a0[n] + (Qpre f1)

H apre[n]

+ (Qpost f1)
H apost[n] + ws[n],

(28)

where a0 , a[n− n0] = a[n− ηpre], apre , [a[n] . . . a[n−
ηpre−1]]T , apost , [a[n−ηpre+1] . . . a[n−Lt+1]]T . In order
to achieve a low bit error rate (BER), we have to concentrate
most of the energy of the overall CIR Q f1 in a single high
energy tap Q0 f1, while keeping the residual ISI caused by
the terms (Qpre f1) apre[n] and (Qpost f1) apost[n] in (28) as
small as possible. This introduces the following constraint on
the PEF coefficients f1:

fH1 QH
preQpref1 + fH1 QH

postQpostf1 ≤ α, (29)

where α is a design parameter which imposes an upper bound
for the amount of residual ISI at the receiver. One possible
choice that leads to a desirable system performance (as shown
in Section V) is to set α = σ2

s in order to limit the ISI to be
less than or equal to the noise variance.

Note that our design goal regarding the energy concentration
in a single tap can also be interpreted in terms of the signal-
to-interference-plus-noise-ratio (SINR) for each symbol:

SINR =
fH1 QH

0 Q0f1
fH1 QH

preQpref1 + fH1 QH
postQpostf1 + σ2

s

. (30)

Clearly, by maximizing fH1 QH
0 Q0f1, while suppressing

fH1 QH
preQpref1+fH1 QH

postQpostf1, we can increase the SINR,
leading to a better (i.e., lower) BER.

3) Power Constraint: Further to the PSD constraints, we
can also limit the normalized average transmission power by
including the following constraint [9], [10]:

E{|s1[k]|2} = fH1 Υ1 f1 ≤ Pmax, (31)

where Pmax > 0 is fixed and Υ1 is a Hermitian Toeplitz
matrix with vector

[φ[0]φ[−N ] . . . φ[−N(Lf − 1)]] (32)

in its first row, where φ[k], g̃[k] ∗ g̃[−k], cf. [9, App. A].

Combining our considerations regarding spectral mask, en-
ergy concentration, and average transmit power, the proposed
PEF design based on Structure I in Fig. 1(a) is obtained as the
optimal solution of the following optimization problem over

complex-valued vector variable f1:

max
f1

fH1 QH
0 Q0f1

s.t. fH1 QH
preQpref1 + fH1 QH

postQpostf1 ≤ α

λ(ω1) f
H
1 d(Nω1)d

H(Nω1)f1 ≤ m(Ω1)

...

λ(ωK) fH1 d(NωK)dH(NωK)f1 ≤ m(ΩK)

fH1 Υ1 f1 ≤ Pmax.

(33)

Problem (33) is a non-concave maximization problem as the
objective function fH1 QH

0 Q0f1 is not concave in f1. Thus,
the standard gradient-based methods (cf. [17]) cannot be
used to solve problem (33). Moreover, problem (33) has
many nonlinear constraints. Therefore, it is difficult to solve.
Nevertheless, we can find a close-to-optimal solution for
optimization problem (33) using a semi-definite relaxation
technique, as we will explain in Section IV.

B. Problem Formulation for Structure II

Next, we consider the transceiver structure in Fig. 1(b).
From (16), we can rewrite (15) as

r2[n] = (B f2)
Ha[n] + ws[n], (34)

where a[n] is as in (18), f2 , [f2[0] . . . f2[Lf−1]]H , and B is
an Lt×Lf matrix with its ith row equal to the (N(i−1)+1)th

row of an Lb × Lf column-circulant matrix with vector

[b[k0] b[1 + k0] . . . b[Lg + Lh − 1 + k0] 0
T
Lf−1]

H

as its first column and Lb , Lg + Lh + Lf + 2N − 4.
The spectral mask constraint for Structure II can be ex-

pressed as in (20) for each µ = 1, . . . ,K, where Φs2s2(e
jω)

is similar to (21). However, we need to rewrite (22) as

Φṽ2ṽ2(e
jω) =

∣∣F2(e
jω)

∣∣2 Φã2ã2(e
jω) =

∣∣F2(e
jω)

∣∣2 . (35)

Thus, the spectral mask constraints can be reformulated as

λ(ωµ)
∣∣F2(e

jωµ)
∣∣2 ≤ m(Ωµ), µ = 1, . . . ,K. (36)

Again, we can ensure (36) by optimizing the PEF coefficients.
Comparing the spectral mask constraints in (36) and (23),

we can expect that the latter is more restrictive. To explain this,
we note that the power spectrum of the PEF in Structure I,
i.e.,

∣∣F1(e
jωµN )

∣∣2, is essentially repeated N times across the
bandwidth, thus severely limiting the degrees of freedom for
spectrum shaping. This repetition is caused by the fact that
the up-sampler is located after the PEF in Structure I. This
problem does not occur in Structure II since the up-sampler is
located before the PEF. This leads to a major improvement in
overall system performance when Structure II is used, as long
as the PEF length Lf and the spreading factor N are not too
small. We will discuss this issue in detail in Section V-C.

The spectral mask constraint in (36) can be written in vector
form as

λ(ωµ)f
H
2 d(ωµ)d

H(ωµ)f2 ≤ m(Ωµ), µ = 1, . . . ,K, (37)



where d(ω) , [1 ejω ejω2 . . . ejω(Lf−1)]T . On the other
hand, by similar steps as in [9, App. A], we can show that the
power constraint in Structure II is obtained as

E{|s2[k]|2} = fH2 Υ2 f2 ≤ Pmax, (38)

where Υ2 is a Hermitian Toeplitz matrix with vector
[φ[0]φ[1] . . . φ[(Lf − 1)]] in its first row. We define B0 as
a 1×Lf matrix which includes the (ηpre + 1)

th row of matrix
B. We also define Bpre and Bpost as the sub-matrices of
B containing the first ηpre and the last ηpost rows of B,
respectively. Finally, we notice that the energy concentration
for Structure II is defined similarly as in (29). Therefore,
an optimal PEF design based on Structure II in Fig. 1(b) is
obtained by solving the following optimization problem over
complex-valued vector variable f2:

max
f2

fH2 BH
0 B0f2

s.t. fH2 BH
preBpref2 + fH2 BH

postBpostf2 ≤ α

λ(ω1) f
H
2 d(ω1)d

H(ω1)f2 ≤ m(Ω1)

...

λ(ωK) fH2 d(ωK)dH(ωK)f2 ≤ m(ΩK)

fH2 Υ2 f2 ≤ Pmax.

(39)

We notice that problem (39) is also a non-convex quadratic
optimization problem, similar to problem (33). Next, we will
explain how we can solve these problems efficiently.

IV. SOLUTION OF THE FORMULATED OPTIMIZATION
PROBLEMS

In this section, we provide an algorithm to find close-to-
optimal solutions for optimization problems (33) and (39). We
first rewrite these problems in equivalent real-valued represen-
tations and solve them by using semi-definite relaxation and
semi-definite programming techniques.

A. Real-valued Representation

Recall that vectors f1 and f2 in optimization problems (33)
and (39) are complex. However, not all optimization solvers
support complex-valued variables. In this section, we rewrite
problems (33) and (39) in equivalent real-valued forms. Let
x1 and y1 denote the real and imaginary parts of vector f1.
Similarly, let x2 and y2 denote the real and imaginary parts
of vector f2. We have

f1 = x1 + j y1, f2 = x2 + j y2. (40)

For notational simplicity, we define

z1 ,
[

x1

y1

]
, z2 ,

[
x2

y2

]
. (41)

By using simple calculus, we can obtain 2Lf × 2Lf real-
valued matrices Ψ0, Ψpre, Ψpost, Φ0, Φpre, and Φpost from
Q0, Qpre, Qpost, B0, Bpre, and Bpost respectively, such that

fH1 QH
0 Q0f1 = zT1 Ψ0z1, (42)

fH1 QH
preQpre f1 = zT1 Ψprez1, (43)

fH1 QH
postQpost f1 = zT1 Ψpostz1, (44)

and

fH2 BH
0 B0f2 = zT2 Φ0z2, (45)

fH2 BH
preBpre f2 = zT2 Φprez2, (46)

fH2 BH
postBpost f2 = zT2 Φpostz2. (47)

We can also obtain 2Lf × 2Lf real-valued matrices Γ1(ωµ)
and Γ2(ωµ), for each µ = 1, . . . ,K, such that we have

λ(ωµ) f
H
1 d(Nωµ) d

H(Nωµ) f1 = zT1 Γ1(ωµ) z1, (48)
λ(ωµ) f

H
2 d(ωµ) d

H(ωµ) f2 = zT2 Γ2(ωµ) z2. (49)

In a similar way, we can obtain 2Lf×2Lf real-valued matrices
Λ1 and Λ2 such that

fH1 Υ1 f1 = zT1 Λ1z1, fH2 Υ2 f2 = zT2 Λ2z2. (50)

We are now ready to rewrite problem (33) as the following
problem over real-valued variables:

max
z1

zT1 Ψ0z1

s.t. zT1 (Ψpre +Ψpost) z1 ≤ α,

zT1 Γ1(ωµ) z1 ≤ m(Ωµ), µ = 1, . . . ,K,

zT1 Λ1 z1 ≤ Pmax.

(51)

We note that problems (33) and (51) are equivalent. In fact,
their solutions can be converted into each other through the
relationship in (40). They are also both non-concave problems.

We can also rewrite problem (39) as the following problem
over real-valued variables:

max
z2

zT2 Φ0z2

s.t. zT2 (Φpre +Φpost) z2 ≤ α,

zT2 Γ2(ωµ) z2 ≤ m(Ωµ), µ = 1, . . . ,K,

zT2 Λ2 z2 ≤ Pmax.

(52)

We notice that problems (51) and (52) have similar structures.
In particular, they are both real-valued non-concave quadratic
maximization problems. In the remainder of this section, we
will explain how we can solve optimization problems (51) and
(52) with an acceptable accuracy.

B. Semi-definite Relaxation

Consider problem (51) based on Structure I. We introduce
a new real-valued matrix W1 as

W1 , z1 z
T
1 . (53)

Clearly, matrix W1 is positive semi-definite (i.e., W1 ≽ 0)
and has unit rank. We also note that for any 2Lf × 2Lf

Hermitian matrix A, we have

zT1 A z1 = trace (AW1) . (54)

Therefore, problem (51) is equivalent to

max
W1≽0

trace (Ψ0 W1)

s.t. trace ((Ψpre +Ψpost)W1) ≤ α,

trace (Γ1(ωµ)W1) ≤ m(Ωµ), µ = 1, . . . ,K,

trace(Λ1 W1) ≤ Pmax,

rank(W1) = 1.

(55)



Problem (55) is still as difficult as problem (51), due to the
rank constraint rank(W1) = 1.

Next, we discard the rank constraint and consider the
following relaxed optimization problem:

max
W1≽0

trace (Ψ0 W1)

s.t. trace ((Ψpre +Ψpost)W1) ≤ α,

trace (Γ1(ωµ)W1) ≤ m(Ωµ), µ = 1, . . . ,K,

trace(Λ1 W1) ≤ Pmax.
(56)

Problem (56) is a semi-definite programming (SDP) problem
[18]. SDP is a generalization of linear programming (LP) over
matrices (rather than vectors as in LP). Several solvers, such as
SeDuMi [19] can efficiently solve the SDP problem in (56).
In Section IV-C, we will explain how solving problem (56)
can help us find close-to-optimal solutions for problem (55).

In a similar way, we can introduce W2 , z2 zT2 and obtain
the SDP relaxation of optimization problem (52) over real-
valued matrix variable W2 based on Structure II.

C. PEF Design Algorithm

Let W⋆
1 denote the optimal solution for SDP problem (56).

If rank(W⋆
1) = 1, then the solution z⋆1 for problem (55) can be

obtained by using eigenvalue decomposition of matrix W⋆
1 . If

rank(W⋆
1) > 1, then we can still obtain a close approximation

of z⋆1 (and also for x⋆
1 and y⋆

1) by using the following steps
which are based on the recent results in [20], [21]:

• Step 1. Using eigenvalue decomposition, obtain matrix
U⋆

1 such that W⋆
1 = U⋆

1 U
⋆T
1 :

W⋆
1 = V⋆T

1 Σ⋆
1 V

⋆
1 ⇒ U⋆

1 = V⋆T
1 Σ

⋆ 1
2

1 ,

where V⋆
1 is a unitary matrix and matrix Σ⋆

1 is diagonal.
• Step 2. Using eigenvalue decomposition, obtain unitary

matrix Θ⋆
1 which can make Θ⋆T

1 U⋆T
1 Ψ0U

⋆
1Θ

⋆
1 diagonal:

U⋆T
1 Ψ0U

⋆
1=Θ⋆

1Ξ
⋆
1Θ

⋆T
1 ⇒ Ξ⋆

1=Θ⋆T
1 U⋆T

1 Ψ0U
⋆
1Θ

⋆
1,

where Ξ⋆
1 is a diagonal matrix.

• Step 3. Let ζi, i = 1, . . . , 2Lf , be i.i.d. random variables
taking values −1 and +1 with equal probabilities. Also,
let ζ = (ζ1, . . . , ζ2Lf

). We select

z⋆1 =

[
x⋆
1

y⋆
1

]
=

1

κmax
U⋆

1 Θ
⋆
1 ζ, (57)

where

κmax=max

{
max

1≤µ≤K

ζT Θ⋆T
1 U⋆T

1 Γ1(ωµ)U
⋆
1 Θ

⋆
1 ζ

m(Ωµ)
,

ζT Θ⋆T
1 U⋆T

1 Λ1 U
⋆
1 Θ

⋆
1 ζ

Pmax
,

ζTΘ⋆T
1 U⋆T

1 (Ψpre +Ψpost)U
⋆
1Θ

⋆
1ζ

α

}
.

We can verify that for any random choice of vector ζ,
the obtained x⋆

1 and y⋆
1 in (57) satisfy all inequality

constraints in problem (51). We then set f⋆1 = x⋆
1 + j y⋆

1 .

Let f1,opt denote the optimal solution of the PEF design
optimization problem in (33). We have

f⋆H1 QH
0 Q0f

⋆
1 ≤ fH1,optQ

H
0 Q0f1,opt ≤ trace (Ψ0W

⋆
1) , (58)

where the last inequality is valid because problem (56) is less
restrictive than problem (33). From (58), the optimality loss
when using f⋆1 instead of f1,opt is upper-bounded as

fH1,optQ
H
0 Q0f1,opt − f⋆H1 QH

0 Q0f
⋆
1

fH1,optQ
H
0 Q0f1,opt

= 1− f⋆H1 QH
0 Q0f

⋆
1

fH1,optQ
H
0 Q0f1,opt

≤ 1− f⋆H1 QH
0 Q0f

⋆
1

trace (Ψ0W⋆
1)
.

(59)

By using the upper bound in (59), we have verified through
simulations (see Section V-B) that the optimality loss for
the proposed design algorithm is small (less than 0.1%) in
almost all simulated scenarios. Thus, a PEF design based
on coefficients f⋆1 has almost the same performance as that
achieved with the optimal coefficients f1,opt. Moreover, by
following the analysis in [22], we can show that the optimality
loss is always guaranteed to be less than 36%.

In a similar way, we can revise the three algorithmic steps
above to obtain close-to-optimal solutions f⋆2 for optimization
problem (39) for Structure II. Furthermore, we can show that

fH2,optB
H
0 B0f2,opt − f⋆H2 BH

0 B0f
⋆
2

fH2,optB
H
0 B0f2,opt

≤ 1− f⋆H2 BH
0 B0f

⋆
2

trace (Φ0W⋆
2)
,

(60)
where f2,opt denotes the optimal solution of the PEF design
problem in (39) and W⋆

2 denotes the solution obtained from
the corresponding semi-definite relaxation. The inequality in
(60) provides an upper bound on the optimality loss of our
proposed design in Structure II.

V. SIMULATION RESULTS

In this section, we assess the performance of our proposed
PEF structures via simulations. We compare them with pure
all-pre-Rake combining (without pre-equalization) [1], [6]–[8],
the symbol-level minimum mean squared error (MMSE) pre-
equalizer [9], and the chip-level MMSE pre-equalizer [10].
Unless stated otherwise, our simulation setting is as follows.
The operational bandwidth is Bs = 2π× 1 GHz with Ωmin =
2π×3.5 GHz and Ωmax = 2π×4.5 GHz [2], i.e., K = 1001.
We use channel model CM1. We set the filter length to Lf =
10, the spreading factor to N = 6, the maximum transmit
power to Pmax = 1, ηpre = ηpost = ⌊Lt

2 ⌋, and α = σ2
s .

A. Performance Comparison

Simulation results for the achieved BER for various pre-
filter designs are shown in Fig. 3. Here, we consider channel
models CM1 (solid lines) and CM4 (dashed-dotted lines). The
length of the CIRs for channel model CM1 and CM4 are
Lh = 50 and Lh = 360, respectively [12], [13]. We applied an
appropriate power back-off in the cases where only the all-pre-
Rake filter, the symbol-level MMSE PEF, and the chip-level
MMSE PEF are used to avoid violating the spectral mask
constraints. Note that no power back-off is needed for our
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Fig. 3. BER vs. SNR 1
σ2
s

for all-pre-Rake filter, e.g., [1], (with power back-
off), symbol-level MMSE PEF [9] (with power back-off), chip-level MMSE
PEF [10] (with power back-off), and our proposed optimal PEF designs:
Structure I and Structure II. Solid and dash-dotted lines indicate the simulation
results for channel models CM1 and CM4, respectively.

optimal designs as we take the spectral mask into account
in the PEF optimization. Let us first consider the results for
channel model CM1. We can see that our designed optimal
PEFs significantly improve the BER compared to the case
where no PEF is included at the transmitter [1], [6]–[8], as well
as to the cases where the MMSE PEF designs without spectral
mask consideration are used [9], [10]. The performance is
relatively poor for the MMSE PEFs as the designed filters
(both at symbol-level and at chip-level) require major power
back-off to meet the spectral mask before they can be used.
The performance for the case with no PEF is also poor due to
not only the impact of the power back-off, but also the negative
impact of the residual ISI since the receiver does not include
an equalizer. Next, consider the results for channel model
CM4. Similar to the CM1 case, we can see that Structure II
outperforms Structure I and all other design approaches when
the SNR is low. However, since there are more residual ISI for
CM4 than CM1, for CM4 Structure II performs poorly at high
SNRs where ISI is the dominant binding factor. Interestingly,
the chip-level MMSE PEF’s performance is very poor as well
in this case confirming the ISI limitation of short chip-level
filters. While the performance of Structure II can be improved
by increasing the filter length Lf and spreading factor N (see,
e.g., Section V-C and Section V-D), we can see in Fig. 3 that
Structure I even with the current filter length is capable of
significantly reducing the BER and outperforming all other
design schemes, including the symbol-level MMSE PEF [9].

For the results in Fig. 3, we have also included the BER
bounds with and without spectral mask for both channel
models CM1 and CM4. For the BER bounds with spectral
mask, we assume that the optimum all-pre-Rake filter and an
optimum PEF based on Structure II with a large number of
coefficients (i.e., Lf = 50) and without the ISI suppression
constraint are used at the transmitter and we ignore any ISI
caused at the receiver. The BER bound without spectral mask
is identical to the matched-filter bound which can be shown to
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Fig. 4. Power spectrum of the transmitted UWB signals in baseband
representation within Bs = 2π×1 GHz bandwidth for the all-pre-Rake filter
(without power back-off), symbol-level MMSE PEF [9] (without power back-
off), chip-level MMSE PEF [10] (without power back-off), and our proposed
optimal PEF designs: Structure I and Structure II. Channel model is CM1.

be the same for both CM1 and CM4 [9]. We can see that the
obtained BER for the proposed PEF designs, in particular the
BER for Structure II when channel model CM1 is simulated
and the BER for Structure I when channel model CM4 is
simulated, are close to the idealized BER bounds, and the gap
can be further reduced by increasing parameters Lf and N .

The power spectrum of the transmitted baseband UWB
signals for various design schemes are shown for a random
realization of CM1 in Fig. 4 (using a spectral oversampling
factor of four corresponding to 4004 frequency points). Here,
we normalized the spectral mask level to one for simplicity.
We only included the results for channel model CM1. We
can see that our designed optimal PEFs lead to transmitted
signal power spectra that fully obey the spectral mask. In
multiple frequency ranges (e.g., from 300 to 400 MHz for
Structure II) the UWB transmit signal power spectrum lies
on the unit-level line, approaching the shape of the spectral
mask. On the other hand, the all-pre-Rake filter as well as the
MMSE PEFs significantly violate the spectral mask within
large portions of the operational frequency bandwidth. For the
results shown in Fig. 4, the transmit power has to be down-
scaled approximately by factors of 5, 3, and 12 for pre-Rake
combining without PEF, the symbol-level MMSE PEF, and
the chip-level MMSE PEF, respectively. Note that the spectral
mask we considered here is flat as we focused on the typical
UWB frequency range shown in Fig. 2. An example for a
spectral mask which is not flat will be studied in Section V-F.

B. Optimality

Recall that the semi-definite relaxation in Section IV-B may
lead to some loss in optimality in our PEF designs with respect
to solving the original problems (33) and (39). In general, it is
difficult to obtain the exact loss in optimality in each simulated
scenario. However, the inequalities in (59) and (60) can help to
obtain upper bounds on loss in optimality. Results are shown
in Fig. 5 for 100 random channel realizations. We can see
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Fig. 5. Upper bounds on the loss of optimality in our proposed PEF design
Structures I and II with respect to solving optimization problems (33) and (39),
respectively. Here, we show the results for 100 random channel realizations.

that our designs are very close to optimal for all cases. In
most cases, the loss in optimality is less than 0.1%.

C. Design Trade-off

From the results in Fig. 3, although Structure II outperforms
Structure I for SNR values less than 21 dB, it has inferior
performance for higher SNRs. This suggests that there is a
trade-off involved in determining which design structure is
superior. In Fig. 6, we compare Structures I and II, where
1
σ2
s
= 18 dB, PEF length Lf = 5, and the spreading factor

N varies from 1 to 12. We can see that as N increases, the
detection accuracy at the receiver monotonically improves for
Structure II. This is because the second structure mostly suffers
from residual ISI (as the degraded performance for high SNR
values in Fig. 3 also suggests, especially for CM4). Therefore,
additional spreading is helpful to reduce the residual ISI and
to improve the BER. On the other hand, the performance of
Structure I becomes quickly saturated as N increases and even
slightly degrades for N > 6. This phenomenon does not occur
in most communication systems where spreading is used. The
results in Fig. 6 imply that if the PEF length Lf as well as
the spreading factor N are small, then the first design structure
works better than the second one. However, as the spreading
factor increases, then it is Structure II which is preferred.

To explain why the BER starts increasing in Structure I as
N grows, we look at the power spectrum for each PEF design
for a sample channel realization in Fig. 7. Recall that the
spectral mask constraints are as in (23) and (36) for Structure
I and Structure II, respectively. For Structure I, the product
λ(ωµ)

∣∣F1(e
jωµN )

∣∣2 forms the transmit signal spectrum at
frequency ωµ, where µ = 1, . . . ,K. On the other hand, for
Structure II, the product λ(ωµ)

∣∣F2(e
jωµ)

∣∣2 forms the transmit
signal spectrum. Considering the shapes of

∣∣F1(e
jωµN )

∣∣2 and∣∣F2(e
jωµ)

∣∣2 in Fig. 7, we can see that the power spectrum for
the designed PEF is essentially repeated N = 6 times across
the operational bandwidth for Structure I. This repetition is
caused by the fact that the up-sampling unit is located before
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Fig. 6. Measured BER for Structure I and Structure II when the spreading
factor N varies from 1 to 12 for filter length Lf = 5.
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Fig. 7. Power spectral density of the optimal PEF for Structures I and II,
when Lf = 5, and the PSD of the all-pre-Rake filter.

the PEF. As a result, any changes we make in the shape
of the power spectrum of

∣∣F1(e
jωµN )

∣∣2, affect six different
points on the transmit signal spectrum λ(ωµ)

∣∣F1(e
jωµN )

∣∣2
within the bandwidth. Therefore, as N increases, it becomes
more difficult for the PEF in Structure I to obey the spectral
mask at all frequencies without degrading the overall system
performance and increasing the BER. This explains why the
performance is saturated and starts getting worse when N
increases for Structure I in Fig. 6.

D. Complexity

Although we tackled the non-convexity in optimization
problems (33) and (39) by using a semi-definite relaxation
technique in Section IV-B, solving the resulting semi-definite
programs can still be time consuming due to the large number
of spectral mask constraints. For example, when the system
bandwidth is Bs = 2π × 1 GHz, problems (33) and (39)
include K = 1001 spectral mask constraints. In this section,
we examine the performance-complexity trade-off involved
when we reduce the number of constraints. The simulation
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we show the results only for Structure II when N = 6 and 1
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= 18 dB.

results are shown in Fig. 8, where 1
σ2
s
= 18 dB and we include

between 1% and 100% of the spectral mask constraints for
various PEF length in Structure II. In this figure, the compu-
tation time is normalized with respect to the computation time
for the symbol-level MMSE PEF design (Lf = 10) in [9] in
order to have a platform-independent comparison. The spectral
mask constraints are always at frequencies which uniformly
spread out over bandwidth Bs. For example, if only 10% of the
constraints are included in the PEF design optimization prob-
lems, they are located at frequencies µ1, µ11, . . . , µ991, µ1001.
Clearly, in this case, the power spectrum of the transmitted
signal may violate the spectral mask at other frequencies, e.g.,
at µ2, . . . µ10. This requires applying an appropriate power
back-off, when needed. As a result, the performance degrades
when fewer constraints are included. However, using fewer
constraints can significantly reduce the computation time as
shown in Fig. 8(b), making the designs more suitable in
practice. Interestingly, no performance degradation is observed
in Fig. 8(a) as long as we include at least 20% of the spectral
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Fig. 9. The impact of the choice of parameter α on the BER for three
random channel realizations when Structure II is simulated. The performance
for the proposed PEF can be further improved by optimizing parameter α.

mask constraints. This is because the power spectrum is usu-
ally smooth. Moreover, in many cases for a given complexity,
a better performance can be achieved by using longer filters
with fewer constraints. For example, if we set Lf = 20 and
include only 10% of the spectral mask constraints, we can
reduce the BER by a factor of 10, compared to the case that
we set Lf = 5 and include all spectral mask constraints. The
computation time is even longer in the latter case. The results
for Structure I are similar and are omitted for brevity.

E. Impact of Design Parameter α

The performance of the designed PEFs can be further
improved if we optimize the residual ISI limit α in (29).
This is shown in Fig. 9, where we plotted the resulting BER
versus normalized α, for three random channel realizations for
Structure II, where 1

σ2
s
= 18 dB. We can see that the choice of

α = σ2
s is optimal for the second channel realization. However,

changing α to 2.5 σ2
s and σ2

s

2 can improve the performance
for the first and the third channel realizations, respectively.
Of course, this comes at the cost of extra computational
complexity. Therefore, a fixed α is usually more appropriate
in practice. Similar results can be obtained for Structure I.

F. Arbitrary Spectral Mask

In all simulation scenarios so far, we have assumed that the
UWB system operates within its typical frequency range where
the spectral mask is flat. In this section, we show that our PEF
designs, particularly for Structure II, are flexible enough to be
accommodated in any arbitrary spectral mask. As an example,
consider the spectral mask shown in Fig. 10. For the results in
this figure, we set the PEF length to Lf = 30 and the spreading
factor to N = 9. In this example, the spectral mask includes a
notch within the −100 MHz to 100 MHz baseband frequency
range. As a possible practical scenario, this frequency range
could have been reserved for the transmissions of a certain
close-by incumbent legacy system in a cognitive radio scenario
[23]. Fig. 10 shows that the Structure II can still nicely take
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Fig. 10. Power spectrum for an arbitrary spectral mask with a notch
indicating a frequency range in the middle of the operational bandwidth which
is primarily reserved for nearby incumbent legacy narrow-band transmissions.

on the shape of the spectral mask and exactly follow it at
various frequencies. On the other hand, even Structure I is
partly capable of following the changes in the imposed spectral
mask; although it is not as flexible as Structure II. Similar
results can be observed for other spectral mask shapes.

G. Multi-User Case

For simplicity of implementation, the proposed PEF design
procedure in this paper was based on the single-user case.
Extensions to the multi-user case seem feasible, but are outside
the scope of this paper. Still, it is interesting to study the
behavior of the proposed PEF transmitter structures in the
presence of multiple interfering users. Fig. 11 presents BER
results vs. SNR 1

σ2
s

in the presence of up to two interfering
users (channel model CM2, BER results averaged over 100
CIR realizations) for the case that (i) all users employ an
all-pre-Rake filter (matched to their own CIR in direction of
the dedicated receiver) and (ii) all users employ our proposed
optimal PEF design, Structure I (filter length Lf = 10,
Bs = 2π×1 GHz, K = 1001; PEF also matched to own CIR
in direction of the dedicated receiver). The CIRs associated
with the interfering links were modeled statistically indepen-
dent from those between the individual transmitters and the
dedicated receivers. The spreading codes for the individual
users were chosen according to [2], Table 6 (N = 12), where
the user of interest was equipped with spreading code #3 and
the interfering users with spreading codes #1 and #4. At the
receiver of interest, the interfering signals were received with
an attenuation of 10 dB compared to the desired signal. As
can be seen, the performance degradation of the optimal PEF
design in the presence of multiple users is similar to that in
the case of pure all-pre-Rake combining. For example, at a
BER of 10−3 a performance degradation of about 2 dB has
to be accepted in the presence of two interfering links. Note,
however, that the performance advantage of the optimal PEF
design compared to the all-pre-Rake combining without a PEF
(which is about 2 dB in this example at a BER of 10−3) is
preserved in the case of multi-user interference.
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Fig. 11. BER vs. SNR 1
σ2
s

in the presence of multiple interfering users
for the case that (i) all users employ an all-pre-Rake filter (matched to their
own CIR in direction of the dedicated receiver) and (ii) all users employ our
proposed optimal PEF design, Structure I (also matched to their own CIR).

VI. CONCLUSIONS

We proposed a novel optimization-based PEF design frame-
work for pre-Rake DS-UWB systems. Unlike the previous
work on pre-equalizer and pre-Rake filter design in the lit-
erature, here we explicitly took into account the spectral mask
constraints which are usually imposed by the telecommuni-
cations standardization and regulation bodies. As a result, our
designs avoid the need for an inefficient power back-off, which
is necessary for the previous pre-filter designs in order to meet
the spectral mask constraints. We considered two different
PEF design structures where the PEF is placed either before
or after the up-sampling unit at the transmitter. We showed
that the former works better in terms of reducing the residual
inter-symbol interference, while the latter is more efficient in
obeying the spectral mask. Therefore, each of the two designs
can be superior versus the other one depending on the system
parameters, particularly the choice of the spreading factor.
Simulation results confirmed that both of the proposed PEF
designs lead to significant performance gains over PEF struc-
tures without explicit spectral mask considerations. They have
close-to-optimal performance with respect to the formulated
optimization problems. Finally, both PEF designs have the
capability of adhering to spectral masks with arbitrary shapes.
In future work, our designs can be extended to the cases with
other classes of design objectives as well as the use of multiple
transmit and receive antennas. Moreover, it is interesting to
extend our design to a multi-user scenario, where the design
objective is to suppress not only the residual ISI but also the
interference from other users while obeying the spectral mask.
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