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Abstract— Real-time electricity pricing models can potentially
lead to economic and environmental advantages compared to the
current common flat rates. In particular, they can provide end
users with the opportunity to reduce their electricity expenditures
by responding to pricing that varies with different times of
the day. However, recent studies have revealed that the lack
of knowledge among users about how to respond to time-
varying prices as well as the lack of effective building automation
systems are two major barriers for fully utilizing the potential
benefits of real-time pricing tariffs. We tackle these problems
by proposing an optimal and automatic residential energy con-
sumption scheduling framework which attempts to achieve a
desired trade-off between minimizing the electricity payment and
minimizing the waiting time for the operation of each appliance
in household in presence of a real-time pricing tariff combined
with inclining block rates. Our design requires minimum effort
from the users and is based on simple linear programming
computations. Moreover, we argue that any residential load
control strategy in real-time electricity pricing environments
requires price prediction capabilities. This is particularly true
if the utility companies provide price information only one or
two hours ahead of time. By applying a simple and efficient
weighted average price prediction filter to the actual hourly-based
price values used by the Illinois Power Company from January
2007 to December 2009, we obtain the optimal choices of the
coefficients for each day of the week to be used by the price
predictor filter. Simulation results show that the combination of
the proposed energy consumption scheduling design and the price
predictor filter leads to significant reduction not only in users’
payments but also in the resulting peak-to-average ratio in load
demand for various load scenarios. Therefore, the deployment of
the proposed optimal energy consumption scheduling schemes is
beneficial for both end users and utility companies.

Keywords: Wholesale electricity market, real-time pricing, inclin-
ing block rates, price prediction, energy consumption scheduling.

I. INTRODUCTION

Since electricity is non-storable economically, wholesale
prices (i.e., the prices set by competing generators to regional
electricity retailers) vary from day to day and usually fluctuate
by an order of magnitude between low-demand night-time
hours to high-demand afternoons. However, in general, almost
all retail consumers are currently charged some average price
that does not reflect the actual wholesale price at the time
of consumption [1]. As a remedy to this problem, various
time-differentiated pricing models have been proposed: real-
time pricing (RTP), day-ahead pricing (DAP), time-of-use

Manuscript was received on January 29, 2010; revised on May 17, 2010;
and accepted on June 7, 2010.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Toronto, Toronto, ON, Canada, M5S 2E4, e-mails:
hamed@comm.utoronto.ca and alberto.leongarcia@utoronto.ca.

pricing (TOUP), critical-peak pricing (CPP), etc. In all of
these variations, the main idea is two-fold: First, allowing
retail prices to reflect fluctuating wholesale prices to the end
users so that they pay what the electricity is worth at different
times of the day; Second, encouraging users to shift high-load
household appliances to off-peak hours to not only reduce their
electricity costs but also to help to reduce the peak-to-average
ratio (PAR) in load demand1 [2]–[5].

The research literature includes a wide range of work related
to RTP. The earliest peak-load pricing discussion dates more
than half a century ago [6], [7]. More recent theoretical and
simulation studies in [8]–[12] have focused on understanding
the economic advantages of RTP. Many of these (e.g., [10],
[11]) have proposed carefully designed tariff models in order
to improve system performance and users’ participation in
RTP and CPP programs. On the other hand, the environmental
implications of RTP are examined in [13] and it is shown
that RTP can potentially reduce the emission levels of SO2,
NOx, and CO2 in many regions in the U.S., where peak
demand is met more by oil-fired capacity than by hydropower.
Time-differentiated pricing is currently implemented in various
regions in North America, e.g., in form of hourly-based DAP
tariff used by the Illinois Power Company in the U.S. [14]
and the three-level (on-peak, mid-peak, off-peak) TOUP tariff
used by the Ontario Hydro Company in Toronto, Canada [15].

Another alternative to the common flat rates in retail elec-
tricity market is the conservation rates model with inclining
block rates (IBR). In IBR pricing, the marginal price increases
by the total quantity consumed [16]. That is, beyond a certain
threshold in the total monthly/daily/hourly residential load, the
electricity price will increase to a higher value. This creates
incentives for end users to conserve to distribute their load
at different times of the day in order to avoid paying for
electricity at higher rates. In addition, IBR helps in load
balancing and reducing the PAR [17]. It has been widely
adopted in the pricing tariffs by some utility companies since
the 1980s. For example, the Southern California Edison, San
Diego Gas & Electric, and Pacific Gas & Electric companies
currently have two-level residential rate structures where the
marginal price in the second level (i.e., the higher block)
is 80% or higher than the first level (i.e., the lower block),
depending on the utility [18]. In Canada, the British Columbia

1Appropriate load-shifting is foreseen to become even more crucial as plug-
in hybrid electric vehicles (PHEVs) become more popular. Most PHEVs need
0.2 - 0.3 kWh of charging power for one mile of driving [2]. This will
represent a major new load on the existing distribution system. In particular,
during the charging time, the PHEVs double the average household load [2].



Hydro Company currently uses a two-level conservation rate
structure with 40% higher prices at the second level [19].

Recent studies have shown that despite several advantages
that RTP and IBR can offer, the lack of knowledge among the
users about how to respond to time-varying prices and the lack
of effective home automation systems are two major barriers
for fully utilizing the benefits of real-time pricing tariffs [20],
[21]. In fact, most of the current residential load control
activities are operated manually. This makes it difficult for
users to optimally schedule the operation of their appliances in
response to the hourly updated pricing information they may
receive from the utilities in an RTP program. For example,
the experience of the RTP program in Chicago has shown that
although the price values were available via telephone and
the Internet, only rarely did households actively check prices
as it was difficult for the participants to constantly monitor
the hourly prices to respond properly [1]. Another example is
the results from a more recent study by The Utility Reform
Network (TURN) in San Francisco which has reported that
most users do not have time and knowledge to even pursue
their own interest while they respond to real-time prices [22].

The main focus of this paper is on proposing a computa-
tionally feasible and automated optimization-based residential
load control scheme in a retail electricity market with RTP
combined with IBR. We aim to minimize the household’s
electricity payment by optimally scheduling the operation and
energy consumption for each appliance, subject to the special
needs indicated by the users. We assume that each residential
consumer is equipped with a smart meter [23], connected
to a smart power distribution system with a two-way digital
communication capability through computer networking [24]–
[26]. While periodically receiving the updated information
on prices from the utility, each smart meter includes an
energy scheduling unit which decides on energy consumption
in the household. Depending on the scheduling horizon, the
operation of the energy scheduling unit is complemented by a
price predictor unit which estimates the upcoming prices by
applying a weighted averaging filter to past prices. We obtain
the optimal coefficients of the price predictor filter and show
that it is best to use different coefficients at different days of
the week. In this regard, we use the actual RTP tariffs adopted
by the Illinois Power Company (IPC) from January 2007 to
December 2009 which was available to public online at [27].

The results and analysis in this paper differ from the related
work in the literature in several aspects. Unlike [9] we do
not focus on understanding the residential user’s response to
RTP models. Instead, we try to help the users to shape their
response properly and in an automated fashion. Our work is
also different from the heuristic home automation schemes
in [21], [28] as here we use an optimization-based approach
with elaborate mathematical analysis. Furthermore, the IP-
based networking architecture proposed for home automation
in [21] can also be used for the implementation of our design
in practice. While the optimization problem we study in this
paper is partly similar to the one studied in [17] for fixed
prices, here we take into account time-varying prices as well
as the trade-off between minimizing the electricity payment
and minimizing the waiting time for the operation of each

appliance. In addition, the optimization problem we study here
is more realistic with respect to price models but requires
more efforts to be solved due to the non-differentiability of the
objective function. Last but not least, price prediction is not
studied in [9], [17]. In fact, to the best of our knowledge, none
of the prior work on residential load control has considered
real-time price prediction at the user side.

The rest of this paper is organized as follows. We introduce
the system model and notation in Section II. In Section III,
we discuss the price prediction problem and introduce our
weighted average price prediction filter which is designed and
evaluated on a weekly basis, using the actual hourly price
values adopted by the IPC. Our proposed linear programming
scheme for optimal load control is introduced in Section IV.
Remarks, special cases, and extensions are highlighted in
Section V. Simulation results are provided and discussed in
Section VI. The paper is concluded in Section VII.

II. SYSTEM MODEL

In this section, we provide a mathematical representation
of the residential load control problem in RTP environments
with IBR. We consider the general wholesale electricity market
scenario shown in Fig. 1, where each retailer/utility serves
a number of end users. The RTP information, reflecting the
wholesale prices, are informed by the retailer to the users
over a digital communication infrastructure, e.g., a local area
network (LAN). In this scenario, our focus is to formulate the
energy consumption scheduling problem in each household
as an optimization problem that aims to achieve a trade-off
between minimizing the electricity payment and minimizing
the waiting time for the operation of each household appliance
in response to the real-time prices announced by the retailer
company. We will explain how the optimization problem in
this section can be solved in practice later in Section IV.

A. Residential Consumers

Consider a residential unit that participates in a real-time
pricing program. Let A denote the set of appliances in this unit
which may include washer/dryer, refrigerator, plug-in hybrid
vehicle, etc. For each appliance a ∈ A, we define an energy
consumption scheduling vector xa as follows:

xa , [x1
a, . . . , x

H
a ], (1)

where H ≥ 1 is the scheduling horizon that indicates the
number of hours ahead which are taken into account for deci-
sion making in energy consumption scheduling. For example,
H = 24 or H = 48. For each upcoming hour of the day
h ∈ H , {1, . . . ,H}, a real-valued scalar xh

a ≥ 0 denotes the
corresponding one-hour energy consumption that is scheduled
for appliance a ∈ A. On the other hand, let Ea denote the
total energy needed for the operation of appliance a ∈ A.
For example, in case of a plug-in hybrid electric sedan, in
total Ea = 16 kWh is needed to charge the battery for a
40-miles driving range [2]. As another example, for a typical
front-loading clothes washing machine with warm wash/rinse
setting, we have Ea = 3.6 kWh per load [29]. Next, assume
that for each appliance a ∈ A, the user indicates αa, βa ∈ H



Fig. 1. A simplified illustration of the wholesale electricity market formed by multiple generators and several regional retail companies. Each retailer provides
electricity for a number of users. Retailers are connected to the users via local area networks which are used to announce real-time prices to the users.

as the beginning and end of a time interval in which the
energy consumption for appliance a is valid to be scheduled,
respectively. Clearly, we always have αa < βa. For example,
after loading a dishwasher with the dishes used at the lunch
table, the user may select αa = 2 PM and βa = 6 PM for
scheduling the energy consumption for the dishwasher as he
expects the dishes to be ready to use by dinner time in the
evening. As another example, the user may select αa = 10 PM
and βa = 7 AM (the next day) for his PHEV after plugging
it in at night such that the battery charging finishes by early
morning time when he needs to use the vehicle to go to work.
Given the pre-determined parameters Ea, αa, and βa, in order
to provide the needed energy for each appliance a ∈ A in
times within the interval [αa, βa], it is required that

βa∑
h=αa

xh
a = Ea. (2)

Further to constraint (2), it is expected that xa = 0 for any
h < αa and h > βa as no operation (thus energy consumption)
is needed outside the time frame [αa, βa] for appliance a. We
note that the time length βa − αa needs to be larger than
or equal to the time duration required to finish the normal
operation of appliance a. For example, for a single-phase
PHEV, the normal charging time is 3 hours [2]. Therefore,
it is required that βa − αa ≥ 3. Clearly, if βa − αa = 3 the
timing imposed by the user would be strict and any energy
consumption scheduling strategy has no choice but arranging
full power charging within the whole interval [αa, βa]. On
the other hand, if βa − αa ≫ 3, it is possible to select
certain hours within the large interval [αa, βa] to schedule
energy consumption such that the electricity payments can be
minimized. We will further discuss this issue in Section II-C.

All home appliances have certain maximum power levels
denoted by γmax

a , for each a ∈ A. For example, a PHEV
may be charged only up to γmax

a = 3.3 kW per hour [2].
Some appliances may also have minimum stand-by power
levels γmin

a , for each a ∈ A. Therefore, the following lower
and upper bound constraints are needed on the choices of the
energy scheduling vector xa for each appliance a ∈ A:

γmin
a ≤ xh

a ≤ γmax
a , ∀ h ∈ [αa, βa]. (3)

Finally, we note that there is usually a limit on the total
energy consumption at each residential unit at each hour. This

limit, denoted by Emax, can be set by the utility to impose
the following set of constraints on energy scheduling:∑

a∈A

xh
a ≤ Emax, ∀ h ∈ H. (4)

Together, constraints (2)-(4) determine all valid choices for
the energy consumption scheduling vectors. Therefore, we can
define a feasible scheduling set X for all possible energy
consumption scheduling vectors as

X =

{
x |

βa∑
h=αa

xh
a = Ea, ∀ a ∈ A,

γmin
a ≤ xh

a ≤ γmax
a ,∀ a ∈ A, h ∈ [αa, βa],

xh
a = 0, ∀ a ∈ A, h ∈ H\[αa, βa],∑

a∈A
xh
a ≤ Emax, ∀ h ∈ H

}
,

(5)

where x , (xa, ∀a ∈ A) denotes the vector of energy con-
sumption scheduling variables for all appliances. An energy
schedule x is valid only if x ∈ X . Clearly, the proper choice
of x would depend on the electricity prices. In this regard,
we assume that each household is equipped with a smart
meter as shown in Fig. 2. The real-time prices are provided
by the utility company via a LAN. The user announces his
needs by selecting parameters Ea, αa, βa, γmin

a , and γmax
a

for each appliance a ∈ A. Then, the energy scheduler, with
some help form the price predictor if needed, determines the
optimal choice of energy consumption scheduling vector x.
The resulting energy consumption schedule is then applied to
all household appliances in form of on/off commands with
specified power levels over a wired or wireless home area
network among the appliances and the smart meter. An exam-
ple wireless home area network (WHAN) is shown in Fig. 3.
In this setting, the in-home wireless communications can be
implemented by ZigBee transceivers, offered by the ZigBee
Alliance [30]. Another candidate for in-home communication
is HomePlug power-line communication technology, offered
by HomePlug Powerline Alliance [31]. More details about
various home area network technologies can be found in [32].

Next, we discuss the details on the real-time pricing model
as well as our proposed optimization-based load control strat-
egy in Sections II-B and II-C, respectively.
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Fig. 2. The operation of smart meter in our design. Given the real-time
prices ph(lh) for all h ∈ P from the utility, there are two main units involved
in residential load control: energy scheduler and price predictor. The latter
estimates the upcoming prices which are not announced by the utility, i.e.,
p̂h(lh) for all h ∈ H\P if the price announcement horizon P is less that the
scheduling horizon H . The proper choices of energy consumption scheduling
vectors xa for all appliances a ∈ A is determined by the energy scheduler
unit based on the solution of optimization problem (25).

B. Real-Time Pricing with Inclining Block Rates

Recall from Section I that RTP and IBR are two promising
non-flat pricing models to replace the current flat rate tariffs.
In this section, we provide a general mathematical pricing
representation which combines these two pricing models. For
now, we assume that the future pricing parameters are known
for the users ahead of time. This is indeed the case in DAP
structures. We will discuss price prediction in Section III.

Let lh ,
∑

a∈A xh
a denote the total hourly household

energy consumption at each upcoming hour h ∈ H. Recall
that H denotes the scheduling horizon. We consider a gen-
eral hourly pricing function ph(lh) which depends on three
parameters ah, bh, ch ≥ 0 and is formulated as follows:

ph(lh) =

{
ah, if 0 ≤ lh ≤ ch,
bh, if lh > ch.

(6)

It is clear that the price model in (6) is not a flat rate structure
as the price value depends on time of day and total load.
In fact, the price model in (6) represents an RTP structure
combined with IBR. To see this, let us consider the example
pricing models shown in Figs. 1(a) and (b) which are currently
implemented by IPC in the U.S. and British Columbia Hydro
Company in Canada, respectively. These examples are both
special cases of the more general pricing model in (6). For
the RTP model used by IPC in Fig. 1(a), we have

ah = bh, ∀ h ∈ H. (7)

That is, although the prices vary every hour, they are indeed
flat within each hour. On the other hand, for the IBR used by
British Columbia Hydro Company, we have

a1 = a2 = . . . = aH−1 = aH , (8)
b1 = b2 = . . . = bH−1 = bH , (9)
c1 = c2 = . . . = cH−1 = cH . (10)

That is, although the prices are dependent on consumption
level, they do not change over time; thus, they cannot reflect
the fluctuations in the wholesale prices. By combining the
two pricing scenarios in (6), both wholesale prices as well
as consumption levels are taken into account.

Fig. 3. The resulting energy consumption schedules selected by the energy
scheduler can be applied to household appliances in form of operation
commands over a wireless home area network using ZigBee transceivers.

C. Problem Formulation
Given the feasible energy scheduling set X and the RTP

model in (6), the key question is: How should each user’s
energy consumption be scheduled in response to time-varying
prices? Before answering this question, we first argue that
the user’s interest is two fold. First, each user wishes to
minimize his payment. In fact, it is reasonable to assume
that all users care about the amount on their electricity bills.
Second, depending on the appliance, some users may also
care about their comfort and getting the work done (e.g.,
washing their dishes, charging their PHEV, or cleaning their
clothes) as soon as possible. Clearly, these two objectives can
be conflicting in many scenarios. For example, in case of the
RTP structure in Fig. 4(a) and when the user wants to start
washing dishes at 9:00 AM right after finishing the breakfast,
he may choose to wait for 5 hours and postpone the operation
of the dishwasher (with Ea = 3.6 kWh per load) to 2:00 PM
in order to reduce the corresponding electricity payment from
3.6× 4.1 = 14.8 cents to 3.6× 2.9 = 10.6 cents and save 4.2
cents. However, for some reason, the user may prefer to pay
the extra 4.2 cents and finish the work by 10:00 AM. As an
alternative, the user might be willing to wait for 2 hours only
and save 1.5 cents instead. In fact, we can see that there is
a trade-off involved between the two design objectives. Next,
we explain how this trade-off can be mathematically taken into
account in an optimization-based framework.

From the RTP model introduced in Section II-B, the user’s
total electricity payment corresponding to all appliances within
the upcoming scheduling horizon is obtained as

H∑
h=1

ph

(∑
a∈A

xh
a

)
×

(∑
a∈A

xh
a

)
, (11)

where the price function ph(·) is as in (6). On the other hand,
the cost of waiting can be modeled as

H∑
h=1

∑
a∈A

ρha xh
a . (12)

Here, for each appliance a ∈ A and any hour h ∈ H, the
waiting parameter ρha ≥ 0. Clearly, ρha = 0 for all h < αa and
h > βa as the concept of waiting may only be defined within
the valid scheduling interval [αa, βa]. On the other hand, it is
reasonable to assume that we always have

ραa
a ≤ . . . ≤ ρβa

a , ∀ a ∈ A. (13)
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That is, the cost of waiting increases as more energy consump-
tion is scheduled at later hours. In particular, one can use the
following model for the waiting parameter for each a ∈ A:

ρha =
(δa)

βa−h

Ea
, ∀ a ∈ A, h ∈ [αa, βa], (14)

where δa ≥ 1 is an adjustable control parameter. The higher
the value of parameter δa the higher will be the cost of waiting.

We are now ready to formulate the energy consumption
scheduling problem as the following optimization problem:

minimize
x∈X

H∑
h=1

ph

(∑
a∈A

xh
a

)(∑
a∈A

xh
a

)

+ λwait

H∑
h=1

∑
a∈A

(δa)
βa−h xh

a

Ea
,

(15)

where the optimization variables are the energy consumption
scheduling vectors xa for all appliances a ∈ A. The first
and the second terms in the objective function in (15) denote

the total electricity payment amount and the total cost of
waiting across all appliances, respectively. Here, parameter
λwait is used in order to control the importance of the waiting
cost terms in the objective function of the proposed design
optimization problem. A typical value for this parameter can
be λwait = 1. On the other hand, parameter δa acts as a knob to
control the trade-off between the two design objectives with
respect to minimizing the payment and the waiting cost for
each appliance. Clearly, a user may assign different values δa
for different appliances. As a special case, we notice that if
for a certain appliance a ∈ A we have δa = 1, then

H∑
h=1

(δa)
βa−h xh

a

Ea
= 1, ∀ x ∈ X , (16)

where the equality is due to (2). Therefore, the waiting cost
will have no impact on the solution of optimization problem
(15). In practice, three choices of parameter δa can be pre-
determined and labeled as three operation modes:

• Strict Cost Reduction: δa = 1,
• Medium Cost Reduction: δ > 1,
• No Cost Reduction: δa ≫ 1.

Next, we address the issue of price prediction. Then, we will
explain how to solve problem (15) in practice with low com-
putational complexity in Section IV. Note that optimization
problem (15) is not tractable in its current form due to the
non-differentiability of the price function ph(lh) in (6).

III. PRICE PREDICTION IN REAL-TIME PRICING
ELECTRICITY ENVIRONMENTS

So far, we have assumed that each end user is fully aware
of the upcoming price values set by the utility company within
the scheduling horizon H . That is, the user always knows the
values of ah, bh, and ch for each h ∈ H. This assumption can
be valid in certain practical scenarios such as in DAP where
the utility company releases the pricing details for the next
24 hours on a daily basis. Examples of such real-time pricing
tariffs include the one implemented by IPC [14]. However,
we may consider more dynamic pricing scenarios where the
upcoming prices are announced only for 1 ≤ P ≪ H
hours ahead of time. Here, P denotes the price announcement
horizon. For example, we may have P = 5 or 6 hours. Clearly,
the extreme case would be P = 1 when only the next hour
price is released. In these cases, any energy consumption
scheduling policy, including the optimization-based energy
consumption scheduling approach described in Section II-C,
essentially requires some price prediction capabilities.

A. Prediction Based on Prior Knowledge

In general, price parameters may depend on several factors.
In particular, they depend on the wholesale market prices
which are not easy to predict themselves. Nevertheless, it
is usually expected that the prices are higher during the
afternoon, on hot days in the summer, and on cold days in
the winter [1]. Furthermore, one may expect that the prices
vary depending on the working days or weekends. These
pieces of information can potentially help in predicting the
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Fig. 5. Statistical analysis of the real-time prices used by Illinois Power Company from January 2007 to December 2009.

price values in an RTP environment. While we are interested
in accurate predictions, our main focus is to develop price
predictors that have low computational complexity and can be
implemented easily in residential smart meter along with the
energy scheduling unit.

Next, we use the prices adopted by IPC from January 2007
to December 2009 to evaluate different factors that may affect
RTP. The results are shown in Fig. 5. First, we plot the average
hourly prices across all days of the year for the years of 2007,
2008, and 2009 in Fig. 5(a). From the results in this figure,
we can see that although the trends are partially (not exactly)
similar in different years, the exact prices can be drastically
different. This can be due to major yearly fluctuations in the
wholesale prices, e.g., due to changes in the international price
of oil. Therefore, making an accurate prediction based on the
price values in the previous years does not seem feasible.
Next, consider the average monthly prices (across all three
years) in Fig. 5(b). We can see that there are significant
differences in prices at different months. However, unlike what
is usually expected (e.g., see [1]), the average prices are not

always higher in the summer. Thus, it is not clear if we can
predict prices based on the month of the year. Third, for
the results in Fig. 5(c), we have plotted the average prices
across all three years based on the day of the week. We
can see that there are not major differences in average prices
from Monday to Friday, except for slight price reduction on
Friday. However, the prices on Saturday and Sunday are much
less. This suggests that there can be relationships between the
upcoming prices and whether the prices are for a working day
or for a weekend. This is also shown in Fig. 5(d), where we
plotted the correlation among the hourly-prices today with
those in the previous days. From the results in this figure,
we can see that there is a very high correlation (about 0.84)
between the prices today and those yesterday. The correlation
decreases as we go further back. However, there is also a
noticeable correlation (about 0.67) between the prices today
and those on the same day last week.

In summary, the observations in Fig. 5 suggest that an effi-
cient prediction is likely by looking at the prices on yesterday,
the day before yesterday, and the same day last week. Let



TABLE I
OPTIMAL DAILY COEFFICIENTS FOR PRICE PREDICTOR FILTER

Day k1 k2 k7
Monday 0.355 0.465 0.359
Tuesday 0.858 0 0.126
Wednesday 0.837 0 0.142
Thursday 0.943 0 0.050
Friday 0.868 0 0.092
Saturday 0.671 0 0.196
Sunday 0.719 0 0.184

âh[t], b̂h[t], and ĉh[t] denote the predicted parameters for the
upcoming price tariff for each hour h on day t. Our proposed
price parameter prediction model is obtained as follows:

âh[t] = k1 a
h[t− 1]+ k2 a

h[t− 2]+ k7 a
h[t− 7], ∀ h ∈ H.

(17)
Here, ah[t − 1], ah[t − 2], and ah[t − 7] denote the previous
values of parameter ah on yesterday, the day before yesterday,
and the same day last week, respectively. In this regard,
the expression in (17) formulates a weighted average price
predictor filter with coefficients k1, k2, and k7. Similar models
can be obtained for predictions of parameters b̂h[t] and ĉh[t].
However, in practice, the threshold parameter ch[t] is usually
fixed and does not change on a daily basis. It may only change
once or twice a year at different seasons.

Given âh, b̂h, and ĉh, the predicted price is derived as

p̂h(lh) =

{
âh, if 0 ≤ lh ≤ ĉh,

b̂h, if lh > ĉh.
(18)

Here, the question is: Which choice of the filter coefficients
leads to the best prediction? To answer this question, we
applied the prices used by IPC for predicting parameter ah

based on two different coefficient selection approaches. Recall
that for the RTP tariff used by IPC, we have: ph(lh) = ah.
Hence, predicting parameter ah is enough to predict the prices.

1) All-days-same Coefficients: In this approach we assume
that k1, k2, and k7 are the same every day. By calculating the
prediction error |p̂h(lh) − ph(lh)|, we obtained the optimal
coefficients in this case as k1 = 0.718, k2 = 0, k7 = 0.216.
The prediction error resulting from the expression in (17) when
these coefficients are used observed to be 17% on average.

2) Each-day-different Coefficients: In this approach we
select parameters k1, k2, and k7 for each day of the week
separately. The optimal choices of the prediction filter coeffi-
cients are shown in Table I. We can see that the coefficients
are significantly different on Monday compared to the other
days of the week. This is because unlike all the other days,
there is a low correlation between the prices on Monday and
the day before that due to lower prices on the weekends. For
all other days, the prediction is only based on the prices on
the last day and the prices on the same day last week. In fact,
for the cases when the prices are highly correlated with those
yesterday, there is really no need to know the price values
the day before yesterday. Using the coefficients in Table I,
we observed that the prediction error can reduce to only 13%
on average. An example for predicting the prices on Tuesday
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Fig. 6. Results when we use the weighted average price predictor filter in
(17) with the choice of its coefficients according to Table I for predicting the
real-time prices used by IPC on Tuesday December 1, 2009.

December 1, 2009 based on the price values within the last
week of November 2009 are shown in Fig. 6.

From the above results we can conclude that the proposed
weighted average price prediction filter structure in (17), with
coefficients which are carefully selected based on the day of
the week as in Table I, can provide an efficient predictor
for residential load control. We also note that the proposed
prediction structure has minimum computation complexity and
its implementation only requires a lookup table for the daily
coefficients, a limited memory, and the capability of perform-
ing simple arithmetic operations. Price prediction accuracy can
further improve by using longer and more computationally
complicated price prediction filters, if needed. Next, we will
use the predicted prices in our proposed optimization-based
residential energy consumption scheduling scheme.

IV. OPTIMAL RESIDENTIAL LOAD CONTROL

Recall from Section II-C that problem (15) is not tractable
in its current form due to the non-differentiability of price
function ph(lh) in (6). In this section, we explain how we
can solve problem (15) in practice. But first, we note that
if the utility company does not release the prices for all
upcoming hours within the scheduling horizon, i.e., if the price
announcement horizon P is strictly less than the scheduling
horizon H , then part of objective function in (15) needs to
be constructed based on the price prediction results which
we discussed in Section III. In this regard, we can rewrite
optimization problem (15) in general form as follows:

minimize
x∈X

P∑
h=1

ph

(∑
a∈A

xh
a

)(∑
a∈A

xh
a

)

+
H∑

h=P+1

p̂h

(∑
a∈A

xh
a

)(∑
a∈A

xh
a

)

+ λwait

H∑
h=1

∑
a∈A

(δa)
βa−h xh

a

Ea
,

(19)

where ph(lh) and p̂h(lh) are as in (6) and (18), respectively.
We notice that in the objective function in problem (19),
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Fig. 7. An illustration of the hourly payment ph(lh) × lh with inclining
block rates. Notice that we always have ah > bh for all conservation rates.

we have decomposed the total electricity payment within the
scheduling horizon H into two parts. The first part shows the
exact payment within the next P hours while the second part
shows the estimated payment within the H−P hours after that.
Clearly, same as that in problem (15), the objective function
in optimization problem (19) is non-differentiable.

Next, consider the illustration of the hourly payment
ph(lh) × lh in Fig. 4, where ph(lh) is as in (6). Note that
in the IBR model, we always have ah < bh. Therefore, the
hourly payment is formed based on two intersecting lines:

Payment = ah lh, (20)

and

Payment = bh lh + (ah − bh) ch. (21)

Therefore, for each h ∈ P , {1, . . . P}, we have

ph(lh)× lh = max
{
ah lh, bh lh + (ah − bh) ch

}
. (22)

On the other hand, for each h ∈ H\P = {P +1, . . . , H}, we
have

p̂h(lh)× lh = max
{
âh lh, b̂h lh + (âh − b̂h) ĉh

}
. (23)

Therefore, problem (19) can be reformulated as

minimize
x∈X

P∑
h=1

max

{
ah
∑
a∈A

xh
a , bh

∑
a∈A

xh
a + (ah−bh) ch

}

+

H∑
h=P+1

max

{
âh
∑
a∈A

xh
a ,

b̂h
∑
a∈A

xh
a + (âh − b̂h) ĉh

}

+ λwait

H∑
h=1

∑
a∈A

(δa)
βa−h xh

a

Ea
,

(24)

Finally, by introducing auxiliary variables vh for all h ∈ H,
we can rewrite problem (24) as

minimize
x∈X

vh, ∀h∈H

H∑
h=1

vh + λwait

H∑
h=1

∑
a∈A

(δa)
βa−h xh

a

Ea

ah
∑
a∈A

xh
a ≤ vh, ∀ h ∈ P,

bh
∑
a∈A

xh
a + (ah − bh) ch ≤ vh, ∀ h ∈ P,

âh
∑
a∈A

xh
a ≤ vh, ∀ h ∈ H\P,

b̂h
∑
a∈A

xh
a + (âh − b̂h) ĉh ≤ vh, ∀ h ∈ H\P.

(25)

We can prove by contradiction that problems (24) and (25)
are equivalent [33, p. 130] and have exactly the same optimal
solutions in terms of the scheduled energy consumptions.
Interestingly, unlike problems (19) and (24), problem (25) is
linear and differentiable. Therefore, it can be solved efficiently
by using linear programming techniques [34]. In particular, the
interior-point method [33, pp. 615-620] can be used to solve
problem (25) in polynomial computation time.

V. REMARKS, SPECIAL CASES, AND EXTENSIONS

The proposed optimization-based residential load control
framework in this paper can be extended in various directions.
In this section, we overview a number of scenarios that can
be addressed by slight modification in the system model.

A. Appliances with Discrete Energy Consumption Levels

Recall from Section II-A that in our system model, the
hourly-based energy consumption scheduled for each appli-
ance is a continuous variable which is lower-bounded by
γmin
a and is upper-bounded by γmax

a . This setting can easily
be extended to the scenario where the scheduled energy
consumption may only take the discrete values γmin

a and γmax
a

when the appliance is “off” and “on”, respectively. For each
appliance a ∈ A and at each hour h ∈ H, let yha denote
an auxiliary binary variable such that yha , 1 if appliance
a is “on” and yha , 0 otherwise. By definition, the former
requires an energy consumption level of xh

a = γmin
a while the

latter requires an energy consumption level of xh
a = γmax

a .
Therefore, for each appliance a ∈ A, the relationship between
the energy consumption scheduling vector xa and the auxiliary
vector y , [y1a, . . . , y

H
a ] can be expressed as follows:

xh
a = yhaγ

max
a + (1− yha )γ

min
a , ∀ h ∈ [αa, βa]. (26)

From (26), if yha = 1 then xh
a = 1× γmax

a +(1− 1)× γmin
a =

γmax
a and if yha = 0 then xh

a = 0× γmax
a + (1− 0)× γmin

a =
γmin
a . By adding optimization variables ya , [y1a, . . . , x

H
a ] as

well as linear constraint (26) for each appliance a ∈ A to
optimization problem (25), the case for discrete energy con-
sumption levels can be fully incorporated in our formulation.
In this case, the modified version of problem (25) would be a
linear mixed integer program which is more complicated than



a linear program, but still can be solved by using optimization
software such as CPLEX [35] and MOSEK [36]. However,
handling the computational complexity of these algorithms
to be implemented in smart meters would remain a major
challenge in case of using discrete energy consumption levels.

B. Interruptible and Uninterruptible Residential Load

Some load such as charging the battery for a PHEV are
interruptible. That is, it is possible to charge the battery for
one hour, then stop charging for another hour, and then finish
the charging after that. However, if the load is uninterruptible,
then as soon as the corresponding appliance starts operation,
its operation needs to continue until it finishes. This requires
imposing further limitations on the choices of the energy
consumption scheduling vectors. Again, considering the case
with discrete energy consumption levels as in Section, V-A,
for each uninterruptible appliance a, let θa denote the duration
of time, in number of hours, that appliance a needs to operate
at power level γmax

a . Also at each h ∈ H, let zha denote an
auxiliary binary variable such that zha , 1 if appliance a starts
operation at hour h and zha , 0 otherwise. We have

βa−θa+1∑
h=αa

zha = 1, (27)

and
zha = 0, ∀ h ∈ H\[αa, βa − θa + 1]. (28)

That is, the operation of appliance a may start some time
between hours αa and βa − θa +1 in order to make sure that
it finishes operation by time βa. We can relate the start time
vector za , [z1a, . . . , z

H
a ] with auxiliary vector ya as

yha ≥ zha , yh+1
a ≥ zha , . . . , yh+θa−1

a ≥ zha , ∀h ∈ H. (29)

From (29), if zha = 1, then yha = yh+1
a = . . . = yh+θa−1

a = 1.
On the other hand, from (29) together with (26), we have
xh
a = xh+1

a = . . . = xh+θa−1
a = γmax

a . We conclude that
although optimal energy scheduling for uninterruptible load
requires adding some extra variables, the resulting optimiza-
tion problem still remains a linear mixed-integer program.

C. Availability of Multiple Retail Electricity Sources

Consider the case where an end user has the ability to obtain
electricity from a set of S utility companies simultaneously,
where |S| > 1. We denote the total hourly load to each utility
s ∈ S by lhs . Correspondingly, the real-time prices advertised
by each utility s is denoted by phs (l

h
s ). Similarly, we define xh

a,s

as the energy consumption scheduling variable corresponding
to each appliance a for energy consumption obtained from
each utility s at each time h. Clearly, if no IBR tariff is used
by any of the utility companies, then it is an optimal choice
for the end user to select xh

a,s = 0 for each s ̸= s⋆h where

s⋆h = min
s∈S

ahs , ∀ h ∈ H. (30)

That is, it would be optimal for the end user to obtain all its
energy need from the utility with lowest price. However, if IBR
is adopted, then obtaining the optimal solution would be more

complicated as it could be beneficial for the user to distribute
its load among the available utility companies to avoid being
charged with the rates at the higher block. Nevertheless, the
reformulated version of optimization problem (25) for the case
with multiple utility companies would still be a linear program.

D. Avoiding Load Synchronization

In general, it is desired for the power distribution and wiring
systems such that no load synchronization occurs among
different appliances in each household. As we will see in
Section VI-D, adopting IBR model helps in avoiding the
concentration of a large portion of energy consumption in a
single low-price hour. On the other hand, it is also desired
to even avoid synchronization among different appliances that
start operation exactly at the same hour in order to prevent
a sharp spike in the residential load. This can be done by
introducing a short random starting delay, e.g., a few seconds,
to diversify the starting moments among different appliances.

E. Announcing the Scheduled Consumption Back to the Utility

One of the main challenges that the utility companies face is
the need for predicting the demand load by end users. Clearly,
by knowing the upcoming demand, the utility companies and
regional power plants can better perform energy dispatching.
Such predictions may only be done statistically in the current
electric grid. However, by large deployments of the automatic
residential load control strategies that we proposed in this
paper, the end users are potentially capable of announcing
their upcoming load back to the utility company through a two-
way digital communication infrastructure as in the one already
shown in Fig. 2. More precisely, the end user can send its total
upcoming daily load l , [l1, . . . , lH ] as a control message to
the utility company. Given the expected load from all users,
the utility company would have an accurate estimation of
the load that it needs to provide within the next couple of
hours. Therefore, the proposed load control structure can not
only help users better respond to real-time prices, it can also
potentially enable the utilities to have an idea on how the
energy is and will be consumed by residential end users.

F. Handling Load Reduction Requests

Load reduction requests are usually sent out by the utilities
when electricity demand is high enough to put the grid reliabil-
ity at risk, or rising demand requires the imminent activation
of expensive/unreliable generation sets. In a smart grid, an
advance notice for load reduction can be sent through the
communication infrastructure to each meter asking the energy
scheduler to take an appropriate action. This can be done in
our design by increasing the prices used in the optimization for
the next two or three hours. This will automatically postpone
a portion of the upcoming energy consumption to some later
hours leading to a major decrease in the total load.

G. Residential Electricity Storage

As PHEVs become popular, there is an increasing interest
in using the storage capacity of their batteries to return some



energy back to the grid when needed [37]. In this setting, the
users would buy electricity for charging their batteries at some
low-price hours and then sell electricity back to the grid by
discharging their batteries when the price is high. Therefore,
the users can not only help balancing supply and demand in
the regional electricity market, but also make money. However,
due to the same reasons discussed in Section I, it is difficult
for the users to keep monitoring the real-time prices in order
to decide when it is the best time to charge or discharge their
batteries. Our proposed optimization-based load control model
can be extended in this regard by incorporating negative loads
for discharging actions. Price prediction would still be helpful.

H. Accommodating Changes in Users’ Energy Needs

The energy scheduler discussed in this paper can update
schedules at any time based on the user’s needs. For example,
assume that an initial energy schedule is planned at 8:00
AM and the appliances are assigned to consume energy
accordingly. Then, later at 11:00 AM the user decides to add
scheduling the consumption for his dishwasher with αa =
11:00 AM and βa = 3:00 PM. In that case, the energy sched-
uler can adjust the existing choices of energy consumption
schedules and solve problem (25) based on the new situation.
Clearly, for those appliances that are already in the middle of
their operation, parameter Ea is recalculated accordingly.

VI. SIMULATION RESULTS

In this section, we present the simulation results and assess
the performance of our proposed residential load control
scheme with price prediction. Unless we state otherwise, the
simulation setting is as follows. We consider a single house-
hold with various appliances and assume that it has subscribed
for the RTP program adopted by IPC. We mainly focus on its
consumption within a four months period from September 1,
2009 to December 31, 2009. In total, this duration includes 122
days. For the purpose of our study, we assume that the number
of appliances used in this household at each day varies from 10
to 25. They include certain appliances with fixed consumption
schedules such as refrigerator-freezer (daily usage: 1.32 kWh),
electric stove (daily usage: 1.89 kWh for self-cleaning and
2.01 kWh for regular), lighting (daily usage for 10 standard
bulbs: 1.00 kWh), heating (daily usage: 7.1 kWh), etc. [29]
as well as appliances with more flexible energy consumption
scheduling requirements such as dishwasher (daily usage: 1.44
kWh), clothes washer (daily usage: 1.49 kWh for energy-star
1.94 kWh for regular), clothes dryer (daily usage: 2.50 kWh),
and PHEV (daily usage: 9.9 kWh), etc. [29] [2]. We assume
that the scheduling horizon H = 24. That is, the user solves
optimization problem (25) to decide about his consumption
for the next 24 hours. On the other hand, although the pricing
model used by IPC is day-ahead (i.e., price announcement
horizon P = 24), we also address the cases where P ≪ 24
which are better representations of the “real-time” pricing
tariffs. Clearly, this would require price prediction as we
already discussed in Section III. In addition, we further add
IBR model to the real-time prices which increase by 40%
at the higher block and the higher block starts at the hourly

consumption of 2.5 kWh. Finally, in most cases, we assume
that δa = 1 for all a ∈ A, λwait = 1, and Emax ≫ 1.

A. Performance Gains from Users and Utility Prospectives

We start by looking at the resulting payments from the
users as well as the PAR in the residential load when we
use our proposed load control model. Clearly, the user is
interested in reducing its charges while the utility is interested
in having a balanced load demand with a low PAR. The trends
of daily electricity charges and PAR for a sample residential
load based on the day-ahead real-time prices adopted by IPC
from September 1 to December 31, 2009 are shown in Fig.
8. From the results in Fig. 8(a), by using the proposed load
control scheme the user’s average daily payment decreases by
25% from 108 cents to 81 cents. This is equivalent to reducing
the monthly electricity payment from $32.4 to only $24.3. On
the other hand, from the results in Fig. 8(b), the average PAR
in daily load is reduced by 38% from 4.49 to 2.75. Therefore,
the user pays less and makes a more balanced load. Similar
trends are observed in almost every day2. The results in this
figure suggest that the deployment of the proposed residential
energy consumption scheduling structure is beneficial for not
only the end user but also for the utility company.

B. Impact of Price Announcement Horizon & Price Prediction

For the experiment studied in Section VI-A, we assumed
that the price announcement horizon P = H = 24 hours.
That is, we considered the day-ahead pricing model. In this
section, we study the case when P takes values smaller
than the scheduling horizon H . As a result, it is required
to use a price predictor, as in (17), in order to plan for the
upcoming daily energy consumption. The filter coefficients
can be selected daily according to Table I. Also recall that
our price predictions showed an average prediction error of
13%. Interestingly, when we use the predicted prices in load
control, the optimality gap in the performance is significantly
less. This is shown in Fig. 9 when we plotted the average
monthly electricity payment versus the value of parameter P .
As already shown in Fig. 8(a), if P = H = 24, then the user’s
payment reduces by 25%. As we decrease P , the residential
load control would be partially based on predicted prices
rather than actual prices. Therefore, due to prediction error, the
resulted energy consumption scheduling solution may not be
optimal. Nevertheless, we can see that even for the case when
P = 2, i.e., the utility company announces the real-time prices
only for the next two hours, the increase in the user’s monthly
payment is only 1.3%, i.e., less than 50 cents. On the other
hand, we have also plotted the resulting monthly electricity
payment when an automatic but static load control is being
employed. In static load control, the pricing information used
by the energy scheduler is not updated on an hourly or daily
basis. Instead, some average seasonal off-line information (in

2The spike in the PAR on September 29th occurred because a major load
was scheduled at 4:00 AM which happened to have a very low price. However,
we can reduce PAR by increasing the price at the higher block in IBR. For
example, if the price at the higher block is 100% (instead of 40%) higher than
that in the lower block, the PAR on September 29th reduces to only 2.3276.
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Fig. 8. Trends of daily charges and PAR for a sample residential load based
on DAP adopted by IPC from September 1 to December 31, 2009.

our case, the average daily prices in the same season from
last year) are being used for deciding on energy consumption
schedules. From the results in Fig. 8, a static load control may
reduce the household’s energy cost only by 5.7%. Therefore, it
is indeed beneficial to facilitate on-line price updates, through
a two-way digital communication infrastructure.

C. The Impact of Scheduling Control Parameter δa

Recall from Section II-C that the user can balance payment
and waiting time for the operation of each household appliance
by adjusting parameter δa for each appliance a. By selecting
δa = δ = 1 for all a ∈ A, the load control strategy only tries
in reducing the electricity charges. As δ increases it will also
be desired to finish the operation of each scheduled appliance
sooner. Here, for the purpose of comparison, we define a
waiting time (in percentage) for each appliance a ∈ A as

Waiting Time =
µa − αa

βa − αa
× 100, (31)

where µa ≥ αa denotes the finishing time, i.e., the smallest
hour h such that xh

a = 0. Clearly, if the waiting time is 100%,
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Fig. 9. The impact of changes in price announcement horizon P < H in
monthly electricity payments for different load approaches.

the scheduled energy consumption is such that the operation of
the appliance a finishes by the latest acceptable hour βa. The
results on monthly electricity payment and average waiting
time are shown in Fig. 10. The trade-off is evident. As we
increase δ, the charges will increase while the waiting times
decrease. For example, as we increase δ from 1 to 1.01, the
monthly payment increases from $24.36 to $29.13 while the
waiting time decreases from 93.2% to only 17.5% of the valid
scheduling interval. Of course, it is entirely up to the user to
decide if he prefers paying less or instead getting the work
done by the appliances within a shorter period of time.

D. The Impact of Adopting Inclining Block Rates

In this section, we show that combining RTP with IBR is
indeed helpful in achieving more balanced residential load
and avoiding load synchronization. This is shown in Fig. 11.
We can see that an RTP tariff would lead to high PAR due
to congestion at low-price hours. In fact, without IBR, the
optimal solution of problem (25) is nothing but scheduling
most of all energy consumption at hours with lower prices.
This problem may not be visible in the existing manual resi-
dential load control programs as it is not easy or even possible
for the users to keep watching the prices and only turn on
their appliances when the prices are low [20], [21]. However,
in an automatic load control such a congestion scenario can
occur frequently and become troublesome. Therefore, it is
significantly beneficial to combine RTP with IBR tariffs.

E. The Impact of Number of Users

So far, we have focused our simulation studies on scenarios
with only a single user. In this section, we consider the case
when a utility company serves 10 users which are all equipped
with our proposed automatic residential load control capability.
The simulation results are shown in Fig. 12. We can see
from the PAR values in Fig. 12(a) that increasing the number
of users can further balance the aggregated load even if no
load control strategy is being deployed. This is due to the
inherent randomness in different users’ energy consumption
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needs. Nevertheless, we can see that our proposed load control
scheme can still be quite beneficial and reduce the PAR
by 22%. On the other hand, all users still pay less on
their monthly electricity bills. Although, some users (mainly
those who have more flexibility with respect to their energy
consumption needs) benefit more in general.

VII. CONCLUSIONS

Although real-time pricing has several potential advantages,
its benefits are currently limited due to lack of efficient
building automation systems as well as users’ difficulty in
manually responding to time-varying prices. Therefore, in this
paper we proposed an optimal and automatic residential energy
consumption scheduling framework which aims to achieve a
trade-off between minimizing the payment and minimizing the
waiting time for the operation of each household appliance
based on the needs declared by users. We focused on a
scenario when real-time pricing is combined with inclining
block rates in order to have more balanced residential load
with a low peak-to-average ratio. We argued that any load
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Fig. 11. The impact of adding IBR to RTP on achieved RAP.

control in real-time electricity pricing environments essentially
requires some price prediction capabilities to enable planning
ahead for the household energy consumption. By applying a
simple and efficient weighted average price prediction filter
to the actual hourly-based prices adopted by Illinois Power
Company from January 2007 to December 2009, we obtain
the optimal choices of the coefficients for each day of the
week. Simulation results show that the combination of the
proposed energy scheduler design and the price predictor leads
to significant reduction in users’ payments. This encourages
the users to participate in the proposed residential load control
program. Moreover, we observed that the peak-to-average ratio
also decreases drastically which can provide the incentives for
the utilities to support large-scale deployment of the designed
energy schedulers in residential smart meters.
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