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Abstract—The emergence of cloud computing has established
a trend towards building massive, energy-hungry, and geograph-
ically distributed data centers. Due to their enormous energy
consumption, data centers are expected to have major impact
on the electric grid by significantly increasing the load at
locations where they are built. However, data centers and cloud
computing also provide opportunities to help the grid with respect
to robustness and load balancing. To gain insights into these
opportunities, we formulate the service request routing problem in
cloud computing jointly with the power flow analysis in smart grid
and explain how these problems can be related. Simulation results
based on the standard setting in the IEEE 24-bus Reliability Test
System show that a grid-aware service request routing design in
cloud computing can significantly help in load balancing in the
electric grid and making the grid more reliable and more robust
with respect to link breakage and load demand variations.

I. INTRODUCTION AND MOTIVATION

Cloud computing has been envisioned as the next-generation
computing paradigm for its major advantages in on-demand
self-service, ubiquitous network access, location independent
resource pooling, and transference of risk [1]. The main
element in cloud computing is a shift in the geography of
computation from the network edges to the Internet, i.e.,
the cloud. The cloud providers own large data centers with
massive computation and storage capacities. They sell these
capacities on-demand to the cloud users who can be software,
service, or content providers for the users over the web [2].

The major cloud providers such as Google, Microsoft, and
Amazon have built and are working on building the world’s
largest data centers across the United States and elsewhere.
Each data center includes hundreds of thousands of computer
servers, cooling equipment, and substation power transformers.
For example, consider Microsoft’s data center in Quincy,
Washington. It has 43,600 square meters of space and uses 4.8
kilometers of chiller piping, 965 kilometers of electric wire,
92,900 square meters of drywall, and 1.5 metric tons of backup
batteries. The company does not release the number of servers
at this site; however it says that the data center consumes 48
megawatts which is enough to power 40,000 homes [3]. As
another example, the National Security Agency is planning to
build a massive data center at Fort Williams in Utah which is
expected to consume over 70 megawatts electricity [4].

The interactions between cloud computing, data centers, and
smart grid are illustrated in Fig. 1. On the one hand, data
centers are key elements of the cloud computing [2]. They
are also expected to have major impact on the Internet and
affect routing and congestion control algorithms [5]. On the
other hand, due to their enormous energy consumption, data
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Fig. 1. The interactions between cloud computing systems and smart grid
through massive, energy-hungry, and geographically distributed data centers.

centers are expected to have major impact on the electric grid
by increasing the load at locations they are built. Moreover, as
data centers grow in size, the cost of electricity is dominating
all other cost aspects in cloud computing. This leads to an in-
creasing interest in devising resource management algorithms
among data centers that take into account power grid-related
issues such as the changes in electricity price during the day
at different regions with different time-zones by dynamically
shifting the computation load towards data centers which are
located in regions with cheaper electricity [6], [7].

In this paper, unlike most of the previous work which are
concerned with the negative impact of data centers’ extra load
to the electric grid, we would like to answer this question:
is it possible to design cloud computing algorithms that can
actually help smart grid design in terms of load balancing and
robustness? We consider the service request routing algorithms
that determine the distribution of the computation load among
data centers. Since the computation load on each data center
directly affects the data center’s energy consumption [8], [9],
we argue that we can reroute service requests towards different
data centers in order to control cloud computing’s impact
on the power grid at different locations. For example, we
can reduce the computation load and consequently the energy
consumption at a data center in an area where the grid is prone
to circuite overflow. In this regard, we formulate the service
request routing problem in cloud computing jointly with the
power flow analysis in smart grid within an optimization
framework and explain how these problems are related. Our
simulation results based on the settings in the IEEE 24-bus
Reliability Test System show that a grid-aware service request
routing design in cloud computing can significantly help for
better load balancing and more robustness in the electric grid.

The rest of this paper is organized as follows. The system
model and notations are described in Section II. Our proposed
optimal grid-aware service request routing design is developed
in Section III. Simulation results are presented in Section IV.
Conclusions and future work are discussed in Section V.



II. SYSTEM MODEL

In this section, we introduce the notation and system models
for both power as well as data networks. We will use these
models to formulate a grid-aware design optimization problem
for cloud computing systems in Section III.

A. Power Network

Consider a power grid and let N with size N = |N | denote
the set of all buses. The buses are interconnected through
branches forming the grid topology. Each bus i ∈ N may also
be connected to one or more generators or various loads. In
our system model, some loads to the power grid may include
large data centers which support cloud computing. Focusing
on the per-unit setting of power distribution networks, we can
derive DC-equivalent power flow equations1 as follows [10]:

Pi =
∑

j=1,j ̸=i

Bij (θi − θj) , ∀ i ∈ N , (1)

Here, for each bus i ∈ N , parameter Pi denotes the amount of
active power injection (i.e., total generation minus total load)
to the grid at bus i, Bij denotes the imaginary term in the
complex value at row i and column j of the Y-bus matrix of
the grid, and θi denotes the angle of the voltage phaser at bus
i. In power flow equations, the only variables are angles θi
for all buses i ∈ N . In practice, one bus is selected as slack
bus with zero phaser angle. Therefore, the phaser angles at
all other buses are selected in terms of their differences with
respect to the reference phaser angle in the slack bus [10].

Given the phaser angles θ1, . . . θN obtained by solving the
system of linear equations in (1), we can calculate the active
power flow over each branch (i, j) of the power grid as

Pij = Bij (θi − θj) . (2)

The amount of Pij directly affects the problem of circuit
overflow in a power grid. That is, overflow occurs if the active
power at branch (i, j) reaches its maximum permitted level
Pmax. Therefore, it is required to always limit Pij below the
level Pmax. We should clarify that when it comes to branches
among buses in a power distribution network, e.g., branch
(i, j), reactive power Qij is significantly less than active
power Pij . Therefore, in practice, circuite overflow problem
only involves branch active powers [10]. In summary, whether
or not circuite overflow occurs in a power grid depends on
the grid topology, the Y-bus matrix, and the amount of active
power injection or consumption at all buses in the system:

P ,

 P1

...
PN

 . (3)

We note that the power injection/consumption at each bus may
change over time due to i) changes in power generation capac-
ity of the power plants especially those which use renewable
energy sources, ii) changes in residential, commercial, and

1The currents in the grid are not direct; however due to the complexity
of AC power flow equations, the more simplified DC-equivalent power flow
equations are commonly used in power flow analysis in practice [10], [11].

industrial load, and iii) changes in power consumption at large
data centers connected to the grid. The last item is expected
to grow over the next few years. In general, we have

P = P Background + P DataCenter, (4)

where

P Background ,

 PBackground
1

...
PBackground
N

 , (5)

and

P DataCenters ,

 PDataCenters
1

...
PDataCenters
N

 . (6)

We note that for each electric bus i ∈ N , the term
PDataCenter
i denotes the power consumption at the data

centers (if any) connected to bus i; and the term PBackground
i

denotes any load other than data centers at bus i. Next, we
model the data network and obtain expressions for data centers
energy consumption as functions of their computation load.

B. Data Network

Consider several data centers connected to the Internet to
support cloud computing. Each data center is also connected
to one bus in the power grid to obtain the electricity needed for
its operation. Let S ⊆ N denote the set of buses in the grid
that feed at least one data center. Also let U ⊆ N denote
the set of user locations. They represent cities and towns.
We assume there is a bus at each user location to provide
electricity for users as well. For each user location u ∈ U and
each data center location s ∈ S, we denote λus as the total
service requests at user location u routed towards data center
bus s. Service requests may range from simple query hits to
web servers to extensive computation services for research
purposes. Let Lu denote the total number of service requests
at each user location u. We assume that the data centers are
fully replicated [6], [7]. Therefore, to assure responding to all
service requests from all users, it is required that we have∑

s∈S
λus = Lu, ∀ u ∈ U . (7)

That is, all service requests at each user location need to be
routed towards some data center. For the data center at bus
s ∈ S , the total number of service requests is obtained as∑

u∈U

λus. (8)

Let µ denote the total number of service requests that a
computer server can handle. Also let ms denote the number
of servers at the data center connected to bus s ∈ S. The
corresponding average server utilization is defined as

γs ,
(∑

u∈U
λsu

)
/ (ms µ) , ∀ s ∈ S. (9)

Clearly, server utilization always needs to be less than one to
ensure handling all service requests in a timely manner.



Let Pidle denote the average idle power draw of a single
computer server and Ppeak denote the average peak power
when the server is handling a service request. In addition, we
denote power usage effectiveness (PUE)2 by Eusage [12]. The
ratio Ppeak/Pidle denotes the power elasticity of the servers. A
higher value of this ratio indicates greater elasticity, leading
to less power consumption when the server is idle. We can
obtain the total power consumption corresponding to the data
center connected to each bus s ∈ S as [8]:

PDataCenter
s , ms (Pidle + (Eusage − 1)× Ppeak)

+ms (Ppeak − Pidle)× γs + ϵ,
(10)

where ϵ is an empirical constant. The expression in (10) has
two key terms. The first term, i.e., ms(Pidle+(Eusage− 1)×
Ppeak) represents the base usage which does not depend on the
computation load. The second term, i.e., ms(Ppeak −Pidle)×
γs, represents the added usage which indicates the extra power
consumption depending on the computation load.

The relationship between cloud computing’s service request
routing and smart grid’s circuites overflow problems are now
evident. In fact, we can change power consumption at each bus
connected to a data center by changing the distribution of the
service requests among data centers. This will directly impact
the power load on different branches in the grid following
the power flow equations. Therefore, we can control cloud
computing’s impact on the electric grid at different locations
by changing service request routing distribution in the system:

λ , (λsu, ∀ s ∈ S, u ∈ U) . (11)

Finally, for notational simplicity, we assume that

PDataCenter
i = 0, ∀ i /∈ S. (12)

That is, if an electric bus i is not feeding any data center, then
the corresponding data center load at bus i is simply zero.

III. GRID-AWARE SERVICE REQUEST ROUTING IN CLOUD
COMPUTING FOR POWER LOAD BALANCING

Given the system model and the relationships between
service request routing algorithms and the circuite overflow
problem that we explained in Section II, we are now ready to
introduce our design to have a cloud computing system which
can help load balancing and robustness in the electric grid.

Recall that for each branch (i, j) in the grid the power
transmission load Pij is obtained as in (2). Clearly, the higher
the value of Pij , particularly the closer Pi,j is to Pmax

ij ,
the electric branch (i, j) would be more prone to circuite
overflow in case of background load variations or power link
breakage. Therefore, it is usually desired to reduce the power
transmission on branches and have them significantly less than
their allowed capacity. That is, for each branch (i, j), we
would like to keep the following fraction as low as possible:

Pij

/
Pmax
ij . (13)

2A measure of data center energy efficiency. Currently, the typical value
for most enterprise data centers is 2.0 or more. However, the studies have
suggested that by the year of 2011 most data centers could reach a PUE of
1.7. A few state-of-the art facilities could reach a PUE of 1.2 [12].

In this regard, a reasonable load balancing design objective
can be formulated in terms of solving the following optimiza-
tion problem across all the branches in the electric grid:

minimize
λ

max
(i,j)

Pij

/
Pmax
ij

subject to Eqs. (1)− (12).
(14)

The optimization variables in problem (14) are the portion
of service requests to be routed towards each data center in
the cloud computing system. In contrast, the design objective
is entirely a smart grid-related concept. To better understand
how the service request routing strategies would affect load
balancing and the design objective in problem (14), let us look
at the following directional relationship expressions:

λ ⇒ P DataCenters ⇒ P ⇒ max
(i,j)

Pij

/
Pmax
ij . (15)

From (4), (9), (10), and (11) it is evident that any changes in
the service request routing vector variable λ can potentially
lead to changes in vector P DataCenters and consequently changes
vector P . On the other hand, from the power flow equations
(1) and (2), changes in bus powers P will also change branch
powers at different locations in the grid and can lead to
different values for max(i,j) Pij

/
Pmax
ij . Due to the enormous

energy consumption at data centers these changes can be major
and significantly affect load balancing in the electric grid.

We note that the optimization problem in (14) can be
transformed easily to a standard linear programming problem
(cf. [13]). To see this, let Γ ≥ 0 denote an auxiliary variable
added to the system. We can rewrite optimization problem (14)
as the following equivalent optimization problem [14]:

minimize
λ, Γ≥0

Γ

subject to Pij

/
Pmax
ij ≤ Γ, ∀ i, j ∈ N ,

Eqs. (1)− (12).

(16)

It is easy to verify that the objective function and all constraints
in optimization problem (16) are affine. Thus, problem (16) is
indeed a linear programming problem which can be solved
efficiently using techniques such as the simplex method or the
interior point method [13]. We note that the computational
complexity of solving the linear programming problem (16) is
not a concern as data centers have very advanced computation
capabilities and they can easily update the service request
routing plans on a frequent basis, whenever they obtain new
information about the background load in the grid.

As a special case, assume that all branches have the same
maximum capacity. That is, Pmax

ij = Pmax for all i, j ∈ N .
In that case, the load balancing problem (14) becomes

minimize
λ

max
(i,j)

Pij

subject to Eqs. (1)− (12).
(17)

The equivalent linear program for problem (17) can be ob-
tained accordingly. Intuitively, the optimal solutions of the load
balancing problems (14)-(17) would move the computation
load to data centers in the areas of the grid where generation
capacity is relatively higher than the background load. This
will avoid the need for major power transmission across long
distances and through multiple branches in the grid.
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Fig. 2. The IEEE 24-bus reliability test system added with six data centers.
For each data center, energy consumption depends on computation load.

IV. SIMULATION RESULTS

In this section, we assess the performance of the optimal
solutions obtained by solving the load balancing optimization
problem (14). We show that the proposed grid-aware service
request routing algorithm for cloud computing systems can
lead to significantly more balanced power load distribution
among electric branches and a more robust smart grid design.

A. Simulation Setting

Consider the power grid in Fig. 2. This is a slightly modified
version of the IEEE 24-bus reliability test system introduced in
[15]. In total, there are 24 buses and 38 branches in the system.
There are 10 buses with generation capacity and 17 buses
with background load demand. Unless we state otherwise, the
generation capacities and background loads are assumed to be
as shown in Table I. These values resemble the data provided
at the IEEE 24-bus reliability test system standard.

There are also six data centers connected to the grid at buses
1, 7, 13, 15, 18, and 20. Each data center is equipped with 600
thousands computer servers and can have up to 100 megawatts
load at its peak energy consumption level. We have Ppeak =
140 watts and Pidle = 40 watts [8]. We also have Eusage = 1.2
which is the reported state of the art power usage effectiveness
[12]. Each server can handle one request per minute, which
implies that µ = 60. For the purpose of our study and without
lack of generality, we assume that in total the data centers are
expected to handle 100 million service requests per hour. This
number is reasonable compared to the query hit rates at large
cloud providers such as Google [16]. Recall that depending
on the distribution of how service requests are routed towards
different data centers, the energy consumption level at each

TABLE I
GENERATION CAPACITY AND BACKGROUND LOAD AT EACH BUS‡

Generation Background
Capacity Load

BUS 1 172 8†
BUS 2 172 100
BUS 3 - 180
BUS 4 - 74
BUS 5 - 71
BUS 6 - 136
BUS 7 115 25†
BUS 8 - 171
BUS 9 - 175
BUS 10 - 195
BUS 11 - -
BUS 12 - -
BUS 13 286 165†
BUS 14 - 194
BUS 15 215 217†
BUS 16 155 100
BUS 17 - -
BUS 18 250 233†
BUS 19 - 181
BUS 20 - 28†
BUS 21 348 -
BUS 22 300 -
BUS 23 660 -
BUS 24 - -
‡ All amounts are in megawatts.
† To be added by load of a data center.

data center may change. Finally, for the purpose of our study,
we assume the use of underground monopole high voltage
direct current (HVDC) transmission lines, where for each
branch (i, j) we have Pmax

ij = 600 megawatts [17].

B. Impact of Grid-aware Cloud Computing

Based on the choices of parameters described in Section
IV-A, the base usage at each data center is 40 megawatts
and the total added usage to be distributed among all six
data centers is 180 megawatts. If the computation load is
evenly distributed among the data centers then the energy
consumption at each data center becomes 40 + 180 / 6 = 70
megawatts. In that case, the highest power transmission load
on a branch would be 330 megawatts which occurs on branch
(21, 15) on the direction from bus 21 to bus 15. However,
if the service requests are routed according to the solution of
problem (14), then no service request would be routed towards
the first, second, and fourth data centers. In that case, the
highest power transmission load on a branch would reduce to
300 megawatts which again occurs on branch (21, 15). We can
see that the proposed design can reduce the transmission load
on the bottleneck branch by about 10% leading to a noticeably
better load balancing across the power grid. This is because the
load from cloud computing is shifted from the lower part of the
grid in Fig. 2, where load demand is higher than the generation
capacity, to the upper part of the grid, where the generation
capacity is higher than the demand load. We note that the
performance improvement can potentially be higher in larger
networks when cloud computing load is more significant.

C. Daily Trend

Next, let us look at the results when the power network in
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Fig. 3. The daily trend of the transmission load of the bottleneck electric
branch with and without the use of the proposed grid-aware design.

Fig. 2 operates for the whole day. We assume that the daily
load profile is based on the data provided in the IEEE 24-bus
reliability test system standard [15] plus some randomness in
background load at each bus. Simulation results in terms of
the highest transmission load among the branches are shown in
Fig. 3. We can see that for different background load scenarios
and at different hours of the day, the proposed design can help
for better load balancing across the branches in the power grid.

D. Link Breakage

Finally, we investigate the impact of link breakage. We
examine the scenarios where exactly one electric branch fails
and goes out of service and then we look at the resulted
transmission load on all the other branches across the grid.
Some examples are shown in Fig. 4. We can see that in most
cases a link breakage can drastically increase the highest load
among branches compared to the results we saw in normal
operation in Fig. 3. This can put the electric grid at the risk
of circuit overflow. For example, when link breakage occurs
at branch (16, 17), the transmission power on the bottleneck
branch (21, 15) increases up to 595 megawatts which is very
close to the 600 megawatts maximum permitted load on this
branch. Nevertheless, we can see that in all the considered link
breakage scenarios, the proposed grid-aware cloud computing
design can help to reduce the transmission load spikes on the
rest of branches in the studied electric grid. This leads to a
more robust and more reliable smart grid design.

V. CONCLUSIONS

This paper represents one of the first steps towards un-
derstanding the interactions between cloud computing and
smart grid through the algorithms which involve massive data
centers. We focused on one design possibility that can improve
load balancing in the grid by carefully distributing the service
requests among data centers in a clouding computing system.
We took a systematic approach and formulated the service
request routing problem in cloud computing jointly with the
power flow analysis in the smart grid and explained how this
can lead to grid-aware cloud computing routing algorithms.
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Fig. 4. The impact of link breakage on transmission load of the bottleneck
electric branch with and without the use of the proposed grid-aware design.

Simulation results based on the setting in the IEEE 24-bus
Reliability Test System show that our design can significantly
improve robustness and load balancing in a smart grid.
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