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Abstract— With the rise of Internet-scale systems and cloud
computing services, there is an increasing trend towards building
massive, energy-hungry, and geographically distributed data cen-
ters. Due to their enormous energy consumption, data centers are
expected to have major impact on the electric grid and potentially
the amount of greenhouse gas emissions and carbon footprint. In
this regard, the locations that are selected to build future data
centers as well as the service load to be routed to each data
center after it is built need to be carefully studied given various
environmental, cost, and quality-of-service considerations. To
gain insights into these problems, we develop an optimization-
based framework, where the objective functions range from
minimizing the energy cost to minimizing the carbon footprint
subject to essential quality-of-service constraints. We show that
in multiple scenarios, these objectives can be conflicting leading
to an energy-information tradeoff in green cloud computing.

Index Terms— Green cloud computing, data centers, routing
algorithms, electric grid, carbon footprint, price of electricity,
price of bandwidth, carbon tax, renewable power, optimization.

I. INTRODUCTION AND MOTIVATION

Cloud computing has been envisioned as the next-generation
computing paradigm for its major advantages in on-demand
self-service, ubiquitous network access, location independent
resource pooling, and transference of risk [1]. The main
element in cloud computing is a shift in the geography of
computation from the network edges to the Internet, i.e.,
the cloud. The cloud providers own large data centers with
massive computation and storage capacities. They sell these
capacities on-demand to the cloud users who can be software,
service, or content providers for the users over the web [2].

The major cloud providers such as Google, Microsoft, and
Amazon have built and are working on building the world’s
largest and most advanced data centers across the Unites
States and elsewhere. Each data center includes hundreds
of thousands of computer servers, cooling equipments, and
one or more substation power transformers. For example,
consider Microsoft’s data center in Quincy, Washington. It
has 43,600 square meters of space and uses 4.8 kilometers of
chiller piping, 965 kilometers of electric wire, 92,900 square
meters of drywall, and 1.5 metric tons of batteries for backup
power. The company does not release the number of servers
at this site; however it says that the data center consumes 48
megawatts which is enough to power 40,000 homes [3].

One of the key questions that a cloud provider needs to
answer is: At which locations its data centers should be built?
Traditionally, it is argued that since the cost of wide-area net-
working is higher than all other IT hardware costs, economic
necessity mandates putting the data near the users to minimize
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Fig. 1. The problem of selecting the best location to build a large data center
for Los Angeles among ten candidate locations in ten different states.

the cost of deploying long data links with high bandwidth [4].
However, as the data centers grow in size and become major
energy consumers, the cost of electricity is now dominating
all other costs including the cost of bandwidth [2]. As a result,
most future data centers are expected to be built in locations
where the electricity is inexpensive. For example, the National
Security Agency is planning to build a massive data center at
Fort Williams in Utah which is expected to consume over
70 megawatts electricity in its two phases [5]. There is also
an increasing interest in devising routing algorithms that take
into account the changes in electricity prices during the day
at different regions with different time-zones to dynamically
shift the high computation load towards data centers which are
located in regions with cheaper electricity [6]–[8].

While there is a growing attention to the cost of electricity
associated with cloud computing, the environmental impacts
of energy-hungry data centers are less addressed. In fact,
cheap electricity can sometimes be at the cost of harm to
the environment. Currently, six out of ten states with the
lowest electricity prices in the United States have significantly
higher carbon footprint1 associated with their power sectors
compared to the nation’s average amount. For example, while
Utah and Wyoming are ranked as the second and the third
states with the lowest electricity prices [10], they are also
ranked as the fourth and third states in terms of the normalized
amount of carbon dioxide emissions per each kilowatt hour
(kWh) electricity generation at their power plants [11], [12].

1Carbon footprint denotes the amount of the poisoning carbon dioxide
(CO2) gas emissions during the normal operation of electricity generation
and consumption systems. It is usually higher for coal-fired and natural gas
generators and lower for nuclear and hydroelectric power plants [9].
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Fig. 2. Different factors that can help us compare the four candidate data
center locations along the line from California to Washington in Fig. 1.

To better understand the trade-offs among cost, environ-
mental, and quality-of-service design aspects in green cloud
computing, consider the problem of selecting the best location
to build a large data center for Los Angeles. This problem is
illustrated in Fig. 1, where ten candidate locations are being
examined. Considering the four candidate locations along the
line from California to Washington, the corresponding latency,
electricity price, bandwidth price, and carbon footprint are
shown in Fig. 2, based on various data collected from [2],
[10]–[12]. We can see that as we move away from Los
Angeles, both latency and bandwidth price increase. Instead,
we can see significant decrease in the price of electricity
especially in Washington. We can also see that carbon footprint
corresponding to the operation of the data center may vary
independent of the price of electricity. For example, while
moving the data center from California to Nevada will save
24% on energy cost it will also increase carbon footprint
associated with the operation of this data center by 68%.

In this paper, we systematically study the energy-
information transmission tradeoff in selecting the best loca-
tions to build data centers for green cloud computing. Our
work is based on formulating various optimization problems,
where the objective functions range from minimizing the
energy and bandwidth cost to minimizing the total carbon foot-
print subject to quality-of-service constraints. The solutions of
the formulated optimization problems determine: 1) whether
or not we should build a data center at each candidate location,
2) how many computer servers we would need to deploy in
each data center, and 3) how the service requests from users
in different places need to be routed towards each data center.

Our work in this paper is closely related to various studies
in the literature. One thread of existing work addresses green
data center design [13]. The focus is on efficiently utilizing the
servers and improving the power management schemes used
in data centers to reduce carbon footprint. Another thread of

research focuses on energy-cost aware request routing among
data centers by considering the geographically dependent
electricity cost [6], [7]. While we also consider the cost of
electricity, our design here is more general as we decide on
not only the request routing, but also the data center locations
and the number of servers in each data center. Moreover, we
consider the cost associated with carbon tax which is not taken
into account in any prior work in the literature. Finally, some
design aspects that we discuss here, such as building a data
center close to renewable energy sources, have been mentioned
in various panel discussions and magazine articles, e.g., in
[14]. However, here we address these environmental aspects
within a more systematic and analytical framework.

Paper Organization: We introduce the system model in
Section II. Three optimization problems to select data center
locations are formulated in Section III. Simulation results are
given in Section VI. The paper is concluded in Section V.

II. SYSTEM MODEL

In this section, we introduce the system model which
we will later use to formulate various design optimization
problems to select data center locations in section III.

A. Candidate and User Locations

Consider a single cloud provider and let S, with size S =
|S|, denote the set of all candidate locations for building data
centers. For each candidate location s ∈ S, we define xs = 1 if
a data center is actually built in location s. Otherwise, xs = 0.
Assuming that the total number of data centers that are planned
to be built is X ≪ S, then it is required that we have∑

s∈S
xs = X. (1)

On the other hand, let U , with size U = |U|, denote the set
of all user locations. They represent cities and towns. We
may also aggregate the users in close-by regions into a single
representative user location. For each user location u ∈ U
and for each hour of the day h ∈ H , [1, . . . , 24], the total
expected number of web service requests per hour is denoted
by Lh

u. Note that the number of requests can drastically change
during the day. For example the measurements by Akamai
Technologies show that its content distribution servers receive
around four times more hits per second at high-peak hours in
the evening compared to off-peak hours in early morning [6].

B. Service Request Routing

Let λh
su denote the portion of load Lh

u which is planned
to be routed towards data center location s∈S at each hour
h∈H. To assure responding to all requests, it is required that2∑

s∈S

λh
su = Lh

u, ∀ h ∈ H. (2)

For each s ∈ S, any u ∈ U , and each h ∈ H, we further
define yhsu = 1 if the data center which is built in candidate
location s is planned to handle any request from user location

2Here we assume that the data centers are fully replicated [6], [7].



u at hour h. Otherwise, yhsu = 0. Therefore, we need to have

0 ≤ λh
su ≤ yhsu Lh

u, ∀ s ∈ S, u ∈ U , h ∈ H, (3)

and

yhsu ≤ xs, ∀ s ∈ S, u ∈ U , h ∈ H. (4)

From (3), if no service request from user location u is routed
at a certain hour h to the potential data center in candidate
location s, then we would automatically have λh

su = 0. On
the other hand, from (4), if no data center is built in candidate
location s, then no request from any user location can be
routed to this candidate location resulting in λh

su = 0 for all
user locations u ∈ U at all hours of the day h ∈ H.

C. Number of Computer Servers

Let ms denote the number of computer servers in a candi-
date location s ∈ S . We assume that if candidate location s is
selected to host a data center, ms should be lower and upper
bounded by Mmin and Mmax, respectively. That is,

xs M
min ≤ ms ≤ xs M

max, ∀ s ∈ S. (5)

From (5), if xs = 0, then 0 ≤ ms ≤ 0, i.e., ms = 0. That is,
if no data center is planned to be built in candidate location s,
essentially no computer server will be deployed in that location
either. On the other hand, if xs = 1, then the corresponding
constraint in (5) simply becomes Mmin ≤ ms ≤ Mmax.

D. Power Consumption and Availability

Let Pidle denote the average idle power draw of a single
server and Ppeak denote the average peak power when the
server is handling a service request. In addition, we denote
power usage effectiveness (PUE)3 by Eusage [15]. The ratio
Ppeak/Pidle denotes the power elasticity of the servers. The
higher the value of this ratio indicates more elasticity, leading
to less power consumption when the server is idle. We can
obtain the total power consumption at each candidate location
s ∈ S and at each hour of the day h ∈ H as [16]:

Ph
s = ms (Pidle + (Eusage − 1)× Ppeak)

+ms (Ppeak − Pidle)× γh
s + xs ϵ,

(6)

where ϵ is an empirically derived constant and γh
s denotes the

average server utilization at hour h which is obtained as

γh
s =

(∑
u∈U

λh
su

)
/ (ms µ) . (7)

Here, µ denotes the total number of service requests that
a computer server can handle in one hour. We note that if
Ppeak = Pidle, then Ph

s = ms Eusage Ppeak + ϵ and power
consumption would depend solely on the number of servers,
not the number of routed requests or the hour of the operation.
We also note that if xs = 0 and no data center is actually built
in candidate location n, then Ph

s = 0 for all h ∈ H.

3A measure of data center energy efficiency. Currently, the typical value
for most enterprise data centers is 2.0 or more. However, the studies have
suggested that by the year of 2011 most data centers could reach a PUE of
1.7. A few state-of-the art facilities could reach a PUE of 1.2 [15].

Depending on the number of power plants in a region and
their capacities as well as the existing residential, commercial,
and industrial load, there is a limited power available to run
data centers at each candidate location. As an example, the
total annual electricity generation capacity in California is 54
million megawatt-hours less than the total annual load in this
state. In contrast, total annual electricity generation capacity
in Wyoming is 30 million megawatt-hours more than the total
annual load in this state [12]. Therefore, Wyoming has more
power available for large data centers. This can be taken into
account by introducing maximum available power Ph,max

s at
each user location and at each hour h ∈ H such that

Ph
s ≤ Ph,max

s , ∀ s ∈ S, h ∈ H. (8)

Note that the power available at a candidate location may vary
during the day due to two reasons. First, some power plants,
e.g., those with renewable energy sources such as wind and
sun light, have time-varying generation capacity. Second, most
power plants are not used exclusively by data centers and they
need to provide electricity for various other load subscribers as
well. However, the electricity consumption by both residential
and commercial users is time-varying which leads to changes
in available power to run data centers at different hours.

E. Cost of Electricity and Bandwidth

The electric grid in North America is operated on a regional
basis. In a few regions with deregulated electricity market,
prices may differ at different hours of the day as they reflect
the wholesale electricity market in the region. The prices are
usually higher at peak hours in the evenings and lower at night.
On the other hand, in most areas electricity market is regulated
and prices are fixed and do not change during the day. In our
system model, we consider the general case where in each
candidate location s ∈ S and at each hour h ∈ H, the price
of electricity is denoted by θhs . As a result, the corresponding
hourly cost of electricity can be obtained as θhs Ph

s .
The cost of bandwidth depends on the distance between

user location and candidate location and the amount of data
to be transmitted. In our model, we define σsu as the hourly-
equivalent cost of transmitting a unit of bandwidth between
user location u and candidate location s. This represents the
total cost of bandwidth amortized over several years.

Besides the cost of electricity and bandwidth, other major
costs for data centers are the costs of cooling and property and
equipment purchase [2]. The cost of equipment is independent
of the location of the data center. One can also find inexpensive
land outside cities and next to rivers to reduce the property
purchase and cooling costs almost in all states. From this and
since our focus is on energy and environmental aspects of
cloud computing, we do not take these costs into consideration.

F. Power Generation and Carbon Footprint

Let ρs ∈ [0, 1] denote the power transmission loss rate at
each candidate location s ∈ S . In general, loss rate is higher
for longer transmission lines when the load is located far from
major power plants in the region. The loss rate also depends
on the electric grid topology. Given the loss rates, we can



obtain the total power generation needed to run a data center
at candidate location s and at each hour h ∈ H as (1+ρs)P

h
s .

Depending on the location of the load, the required elec-
tricity can come from different types of power plants with
different emission levels. Recall that carbon footprint is higher
for coal-fired and natural-gas generators and lower for nuclear
and hydroelectric generators [9]. By considering the major
power plants around each candidate location s ∈ S, we
can obtain the average carbon dioxide emission level ϕs

corresponding to the generation of 1 kWh electricity in this
candidate region. Clearly, if a data center is located in an area
such as Wyoming or Utah where electricity is almost entirely
generated by coal-fired power plants, then although electricity
cost would be low, it is at the cost of harm to the environment.

G. Carbon Tax
In order to enforce environmental considerations, carbon tax

is currently used in a few states in the United States, such as
Colorado, and multiple provinces in Canada, such as Quebec
and British Columbia [17], [18]. In most instances, carbon tax
is applied to power plants, which they in turn pass the cost
of the carbon price onto consumers by increasing the price of
electricity. In that case, environmental enforcements would be
taken into consideration in our system model within the cost of
electricity. However, since carbon taxes are not popular yet, we
introduce them as separate parameters in our studies in order
to understand their impacts. In this regard, for each candidate
location s ∈ S, we denote the carbon tax by δs which leads
to an additional payment of δs (1 + ρs) P

h
s . As an example,

consider a 70 megawatts data center near the city of Boulder
in Colorado where the highest carbon tax rate is 0.49 cents
per kWh [18]. Even if we assume no loss, a daily operation of
this data center under full utilization would lead to more than
8000 dollars for carbon tax each day, which is noticeable.

H. Quality-of-Service Requirements
Let Dsu denote the propagation delay between a data center

in candidate location s ∈ S and a user location u ∈ S . In order
to avoid long response delays in handling service requests,
we assume that the round trip propagation delay is always
required to be upper bounded by Dmax. That is, we have

2Dsu yhsu ≤ Dmax, ∀ s ∈ S, u ∈ U , h ∈ H. (9)

Note that if yhsu = 0, i.e., no service request is routed from user
location s to candidate location u at hour h, the corresponding
inequality in (9) would hold regardless of the value for Dsu.

n the other hand, to limit the queuing delay, i.e., the waiting
time for a service request at data center before it is handled
by a server, we limit average server utilization at each data
center by a constant γmax ∈ (0, 1]. That is, we have

γh
s ≤ γmax, ∀ s ∈ S, h ∈ H. (10)

The choice of parameter γmax depends on service request
traffic pattern and the quality-of-service requirements, e.g., see
[7]. In general, if γmax is small enough, then the waiting time
at servers would be negligible and mostly the propagation
delay, which is already bounded by Dmax, would form the
overall latency in responding to service requests.

III. OPTIMAL DATA CENTER LOCATION SELECTION
AND SERVICE REQUEST ROUTING

In this section, we formulate three different optimization
problems in order to decide on the right location to build each
data center. For notational simplicity, we define x , [xs,∀ s ∈
S], y , [ysu,∀ s ∈ S, u ∈ U ], m , [ms,∀ s ∈ S], and
λ , [λsu∀ s ∈ S, u ∈ U ]. Thus, the optimization variables in
our designs would be x, y, m, and λ. They determine whether
or not we should build a data center in each candidate location,
how many servers we need in each data center, and how the
service requests would need to be routed towards data centers.

A. Design I: Minimizing Total Carbon Footprint

In order to minimize the total carbon dioxide emissions
associated with the operation of all data centers, we would
need to solve the following optimization problem:

minimize
x,y,m,λ

∑
s∈S

∑
h∈H

ϕs (1 + ρs) P
h
s

subject to Eqs. (1)− (8).

(11)

We note that minimizing the objective function in problem (11)
can be done by not only reducing power consumption in data
centers but also by building them in areas with clean electricity
generation such as in regions with large hydroelectric dams.

B. Design II: Minimizing Total Cost With Carbon Tax

While reducing the carbon footprint would benefit the
society, it is natural to expect that what cloud providers are
interested in is to reduce their operation cost not necessarily
the environmental overhead. Nevertheless, we can still enforce
environmental considerations by applying carbon tax which
is directly related to the carbon footprint associated with
operation of each data center. In this regard and in order to
minimize the total daily cost of running the data centers, we
would need to solve the following optimization problem:

minimize
x,y,m,λ

∑
s∈S

∑
h∈H

(
θs P

h
s + δs (1 + ρs) P

h
s

+
∑
u∈U

λh
su σsu

)
subject to Eqs. (1)− (8).

(12)

As we discussed in Section II-F, the major cost of carbon tax
can potentially lead to reconsideration with respect to where
data centers should be built and how service requests at various
user locations should be routed towards different data centers.

C. Design III: Minimizing Average Service Latency

Considering the energy-information transmission trade-off,
an alternative design objective can be minimizing the average
latency in responding to service requests which is obtained as(∑

s∈S

∑
u∈U

∑
h∈H

λh
suDsu

)
/

(∑
s∈S

∑
u∈U

∑
h∈H

λh
su

)
.



Since the denominator equals
∑

u∈U
∑

h∈H Lh
u which is con-

stant, we can formulate the problem of minimizing the average
service latency as the following optimization problem:

minimize
x,y,m,λ

∑
s∈S

∑
u∈U

∑
h∈H

λh
suDsu

subject to Eqs. (1)− (8).

(13)

We can expect that the optimal solution of problem (13)
encourages building the data centers closer to the users.

D. Solution Approaches

The optimization problems in (11)-(13) are linear mixed
integer programming problems which can be solved using var-
ious optimization software such as CPLEX [19] and MOSEK
[20]. They usually work based on variations of the branch-
and-bound algorithm for integer programming [21]. There
also exist multiple heuristic such as the iterated local search
and other metaheuristic methods [22] which can be used to
obtain efficient sub-optimal solutions by relaxing the integer
constraints. Nonetheless, we believe that computational com-
plexity is not a major concern in our design as deciding on the
location of data centers can be done over offline computations.

IV. SIMULATION RESULTS

A. Simulation Setting

Consider the contiguous United States with 48 states and
District of Columbia. We first note that the states of California,
Nevada, Idaho, South Dakota, Minnesota, Wisconsin, Ohio,
Tennessee, Florida, North Carolina, Virginia, Maryland, New
York, Delaware, New Jersey, Connecticut, Rhode Island, Ver-
mont, Massachusetts, and District of Columbia have shortage
in their local electricity generation compared to their local
consumptions [12]. Thus, we exclude them from the list of
candidate locations. On the other hand, considering the dif-
ference between total local generation and total consumption,
we assume that available power for any data center in states
of Colorado, Iowa, Mississippi, Kentucky, and Georgia is 60
megawatts while all the other 23 states can host large data
centers with total consumption up to 100 megawatts, if needed.

The rest of the simulation parameters are selected as fol-
lows. We set Ppeak = 140 watts, Pidle = 84 watts [16], and
Eusage = 2 [15]. Each server can handle one request per
second, which implies that µ = 3600. We also set γmax = 0.8
[23]. The price of electricity is based on the average price
for industrial load at each state as listed in [10]. As in [2],
we assume that $1 buys 2.7 GByte of bandwidth over 100
kilometers. The size of service request and response files are
10 KByte. Since carbon tax is not common in most states, we
use the current 0.49 cents per kWh carbon tax in Colorado as a
basis to obtain equivalent carbon taxes in all other states. For
example, knowing that the average carbon dioxide emission
for 1 kWh electricity generation in Wyoming is about 1.8
more than that in Colorado [11], the equivalent carbon tax in
Wyoming is assumed to be 0.48× 1.8 = 0.88 cent per 1 kWh
consumption. For each candidate location and user location,
the propagation delay is obtained proportional to the distance
between the two locations. The propagation delay increases by
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Fig. 3. Performance comparison among three design approaches introduced
in Section III to select four data centers across United States.

10 ms every thousand kilometers (at each direction from and
to the data center) when fiber optic links are used. Without
loss of generality, we assume that Dmax = 70 ms.

For the purpose of our study, we assume that there are
100 different service types. The total number of hits for each
service type is set according to the reported 293 million
Google’s domestic queries per day in [24]. For each state,
the total number of daily service requests is adjusted to be
proportional to the total state’s population. Moreover, we
assume that the distribution of the hits at each hour follows
the daily trend of the number of hits to the content distribution
servers reported by Akamai Technologies [6]. Finally, we take
into account all four time zones in the contiguous United States
to localize the daily hit rate distributions at each region.

B. Comparing Different Design Approaches

In this section, we compare Designs I, II, and III when they
are used to find the best locations to build four data centers
across the United States. The results are shown in Fig. 3 in
terms of the carbon footprint, total cost which includes cost
of electricity, cost of bandwidth, and carbon tax, and average
latency. When Design I is used, the data centers would be built
in Washington (100 megawatts), Mississippi (55 megawatts),
New Hampshire (35 megawatts), and Oregon (35 megawatts).
In this case, the total carbon footprint for all four data centers
would become 29 tonnes per hour. The total cost in this
case would be 12 thousand dollars per hour. On the other
hand, when Design II is used, the data centers would be built
in Washington (100 megawatts), Oklahoma (50 megawatts),
Kentucky (20 megawatts), and Iowa (15 megawatts). The price
of electricity is relatively low in all these states. Interestingly,
we can see that due to carbon tax, states of Utah and Wyoming
are not selected to build the data centers even though they are
currently ranked as the second and the third states with the
lowest electricity prices in the United States [10]. In this case,
the carbon footprint would be 35 tonnes per hour which is 20%
higher than the optimal case in Design I. Instead, the total cost
can significantly reduce to 8 thousand dollars per hour. Finally,
when Design III is used, the data centers would be built in
Illinois (60 megawatts), Arizona (40 megawatts), Pennsylvania
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Fig. 4. Performance comparison among three design approaches introduced
in Section III to select four data centers across United States.

(40 megawatts), and South Carolina (35 megawatts). In this
case, the carbon footprint would be at the highest level among
the three design approaches, i.e., 49 tonnes per hour; however,
the average latency would become as low as only 10 ms.

C. Impact of Renewable Energy Generation

To obtain insights into the possibility of running data centers
by renewable energy sources, we assume that besides the four
data centers selected in Design I in Section IV-B, there is
another data center next to a solar farm in Texas, which is not
connected to the electric grid. The solar farm is assumed to
be used exclusively by the data center and to have the peak
capacity of 15 megawatts. The key challenge here is the fact
that solar power is only available during the day, typically
between 6:00 AM in the morning until 6:00 PM in the evening.
The simulation results are shown in Fig. 4. In this figure, we
plotted the total number of service requests routed towards
each data center. We can see that the solar-powered data center
can be used as long as it is available and the service requests
would simply be routed to the other data centers when the
solar power is not available. In this case, the carbon footprint
reduces to 26 tonnes per hour which is 12% less than the
case when all data centers are connected to the electric grid.
These preliminary results suggest that it could be beneficial to
build data centers close to renewable energy sources as cloud
computing can easily handle variations in available power by
rerouting the service requests towards different regions.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we systematically investigated the energy-
information transmission tradeoff in green cloud computing.
We provided an optimization-based framework, where the
objective functions range from minimizing the energy and
bandwidth cost to minimizing the total carbon footprint sub-
ject to quality-of-service constraints. We also provided initial
results based on actual price and carbon footprint data in the
United States and showed examples about how different design
objectives can potentially lead to different and sometimes
conflicting results in terms of deciding on where the data

centers need to be built and how the service requests need to be
forwarded towards different data centers. We also studied the
impact of carbon tax on cloud computing and the possibility
to run data centers by renewable power generation.

The results in this paper can be extended in various direc-
tions. First, it is interesting to extend the planning scope from
day to multiple years to incorporate the impact of seasonal
changes in electricity generation capacity and consumption as
well as the predicted changes in various price aspects. Second,
one can include the costs of cooling and property purchase
and also the cost of renewable energy generation. Third, we
can also take into account more elaborate quality-of-service
requirements besides limiting the propagation delay.
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