
Inter-Session Network Coding with Strategic Users: A
Game-Theoretic Analysis of the Butterfly Network

Hamed Mohsenian-Rad, Member, IEEE Jianwei Huang, Senior Member, IEEE Vincent W. S. Wong, Senior
Member, IEEE Sidharth Jaggi, Member, IEEE and Robert Schober, Fellow, IEEE

Abstract— We analyze inter-session network coding in a wired
network using game theory. We assume that users are selfish
and act as strategic players to maximize their own utility, which
leads to a resource allocation game among users. In particular,
we study a butterfly network, where a bottleneck link is shared
by network coding and routing flows. We assume that network
coding is performed using pairwise XOR operations. We prove
the existence of Nash equilibrium for a wide range of utility
functions. We also show that the number of Nash equilibria can
be large (even infinite) for certain choices of parameters. This is
in sharp contrast to a similar game setting with traditional packet
forwarding, where the Nash equilibrium is always unique. We
characterize the worst-case efficiency bound, i.e., the Price-of-
Anarchy (PoA), compared to an optimal and cooperative network
design. We show that by using a discriminatory pricing scheme
which charges encoded and forwarded packets differently, we
can improve the PoA in comparison with the case where a single
pricing scheme is used. However, even when a discriminatory
pricing scheme is used, the PoA is still worse than for the case
when network coding is not applied. This implies that, although
inter-session network coding can improve performance compared
to routing, it is much more sensitive to users’ strategic behavior.

Keywords: Inter-session network coding, butterfly network, game
theory, Nash equilibrium, price-of-anarchy, efficiency bound.

I. INTRODUCTION

Network coding is performed by jointly encoding multiple
packets either from the same user or from different users. The
former is intra-session network coding [1] while the latter is
inter-session network coding [2], [3]. A common assumption
in most prior network coding literature is that users are coop-
erative and do not pursue their own interests. However, this
assumption can be violated in practice. Therefore, assuming
that the users are selfish and strategic, in this paper we ask
the following key questions: (a) What is the impact of users’
strategic behavior on network performance? (b) How does this
impact change with different link pricing schemes?

It is widely accepted that pricing can improve the efficiency
of network resource allocation in distributed settings. In [4],
Kelly et al. showed that if users are price-taker (i.e., they
treat network prices as fixed), efficient resource allocation
is achieved by properly setting congestion prices on each
shared link. Recently, Johari et al. studied how the results can
change in capacity-constrained [5] and capacity-unconstrained
[6] networks if users are price-anticipator who realize that
the price is impacted by each user’s behavior. In this case,
users play a game, and the efficiency of resource allocation
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is characterized by the Nash equilibrium. A key performance
metric is the Price-of-Anarchy (PoA), which measures the
worst-case efficiency loss at a Nash equilibrium due to users’
price anticipating behavior. The PoA equals 1 if there is no
efficiency loss. A smaller PoA indicates more efficiency loss.

The game theoretic analysis of network coding has received
limited attention, e.g., in [7]–[13]. The results in [7]–[10] focus
on intra-session network coding. In [12], the authors calculated
the PoA for a class of inter-session network coding games that
use reverse carpooling. Their analysis is specific to wireless
networks while our focus is on wired networks. Moreover,
in [12], users’ strategies are their choices of unicast routes.
Here, users’ strategies are rather defined as their data rates.
Users can also decide on whether and at what rate they want
to participate in network coding. Since we take into account
the links’ cost functions and the users’ utility functions, the
PoA is evaluated with respect to the optimal solution of a
network surplus maximization problem. The authors in [13]
considered a game theoretic analysis of inter-session network
coding between two users that share a link. It is shown that
a rate allocation mechanism can enforce cooperation among
users. In this paper, we assume that there are N ≥ 2 users in
a wired network, two of which can perform network coding
via pairwise XOR operations, while the rest only use routing.
This setting helps us better understand the interaction between
network coding and routing flows. Moreover, we consider the
impact of the utility functions of users, the cost of side links,
price anticipation, price discrimination, and the PoA which are
all not addressed in [13]. Our contributions are as follows:

• New problem formulation: We formulate the problem of
maximizing the network surplus for inter-session network
coding. This problem has not been studied before.

• Innovative pricing: We introduce a two discriminatory
pricing scheme that charges network coding and routing
packets differently. This new pricing is a better choice in
reflecting the actual load generated by each user.

• Characterization of Nash equilibria: We prove that a
Nash equilibrium always exists but it may not be unique.

• PoA calculation with zero-cost side links: Even with the
new pricing method, the PoA is still smaller (i.e., worse)
than the case without network coding. In fact, the PoA
can be as low as 25%, which is less than the well-known
67% worst-case efficiency in [6] for routing networks.

• PoA Calculation with non-zero-cost side links: We show
that if the side links in the butterfly network have non-
zero cost, then the PoA can further reduce to only 20%,
where no user is willing to participate in network coding.

The key results of this paper together with a comparison
with the related state-of-the-art results for the case without



TABLE I
SUMMARY OF THE RESULTS VERSUS THE STATE-OF-THE-ART IN [6].

Network Coding and Routing
Network Setup Routing Zero-Cost Non-zero-Cost

Side Link Side Link
Optimization Problem 1 Problem 2 Problem 3

Game Game 1 Game 2 Game 3
Nash Equilibria One Can be infinite One

Price-of Anarchy 2
3

1
4

1
5

Theorem Theorem 1 Theorem 8 Theorem 10
Reference [6] This Paper

network coding in [6] are summarized in Table I.

II. BACKGROUND: RESOURCE ALLOCATION
GAME WITH ROUTING FLOWS

We first review a resource allocation game described in [4]–
[6], where multiple end-to-end users compete to send packets
through a shared link as in Fig. 1. No inter-session network
coding is performed in this case. We will briefly summarize
the results in [6], which serves as benchmark for our later
discussions. In Fig. 1, a set of users N = {1, . . . , N} shares
the bottleneck link (i, j) between nodes i and j. All packets
that arrive at node i are simply forwarded to node j through
link (i, j). For each user n ∈ N , we denote the transmitter
and receiver nodes by sn and tn, respectively. Let xn denote
the transmission rate of user n ∈ N . We assume that each user
n ∈ N has a utility function Un, representing its satisfaction
about its data rate xn. On the other hand, the shared link
has a cost function C, which depends on the total rate (i.e.,∑
n∈N xn). As in [6], we make the following assumptions:
Assumption 1: For each n ∈ N , Un(xn) is concave, non-

negative, increasing, and differentiable.
Assumption 2: The cost and price functions for link (i, j)

are chosen such that C(q) =
∫ q
0
p(z) dz. In particular, we

assume that the link cost function is quadratic, C(q) = a
2 q

2,
and the link price function is linear, p(q) = aq. Quadratic cost
functions and linear price functions are the only cost and price
functions that satisfy the four axioms of rescaling, consistency,
additivity, and positivity in cost-sharing systems [14].

Assumption 1 is used to model applications with elastic
traffic, e.g., file transfer protocol (FTP) [4]. Examples of utility
functions that satisfy Assumption 1 include the α-fair utility
functions with α ∈ (0, 1) [15]. Assumption 2 is also common
in the network resource management (cf. [16]). In practice,
cost function C may reflect the actual cost of transmitting
units of data over link (i, j) or simply an approximate of the
delay that the packets experience over link (i, j). The more
the aggregate data on the link, the higher is the average delay.

Let x = (x1, . . . , xN ). Given complete knowledge and
centralized control of the network, an efficient rate allocation
can be reached as a solution of the following problem:

Problem 1:

maximize
x

∑N
n=1 Un (xn)− C

(∑N
n=1 xn

)
subject to xn ≥ 0, n = 1, . . . , N.

The objective function in Problem 1 is the network aggregate
surplus [16], [17]. Problem 1 is a convex program. Therefore,

TABLE II
LIST OF KEY NOTATIONS

N , N Set of all users in the network and its cardinality.
sn, tn Transmitter and receiver nodes of user n ∈ N .
(i, j) Shared link between intermediate nodes i and j.
xn Data rate of user n ∈ N .
x−n Vector of data rates of all users other than user n.
x Vector of data rates of all users.
Un Utility function of user n ∈ N .
γn The slope of linear utility function of user n ∈ N .
C, p Cost and price functions of shared bottleneck link (i, j).
a Price parameter, p(q) = aq.
µ, δ Price values for routed and network coding packets.
β Price discrimination parameter.
Pn, Qn Payoff of user n ∈ N in Game 1 and Game 2.
xS Optimal solution for Problems 1 and 2.
x∗ Nash equilibrium for Games 1 and 2.
X1, XN Packets sent from source nodes s1 and sN , respectively.
X1 ⊕XN Packet obtained by joint encoding of packets X1 and XN .
C1, CN Cost functions of side links (s1, tN ) and (sN , t1).
p1, pN Price functions of side links (s1, tN ) and (sN , t1).
a1, aN Price parameters, p1(q) = a1q and pN (q) = aN q.
yn Data rate for routed packets of user n ∈ N .
z1, zN Data rate for encoded packets of users 1 and N .
v1, vN Data rate for remedy packets of users 1 and N .
y−n Data rates for routed packets of all users other than user n.
Wn Payoff function of user n ∈ N in Game 3.
yS ,zS ,vS Optimal solution for Problem 3.
y∗,z∗,v∗ Nash equilibrium for Game 3.

if link (i, j), or another network authority, has full control
over the end-users, then optimal resource management can be
achieved by forcing users to set their rates according to the
centrally obtained optimal solutions of Problem 1. However, in
practice, users may have full control over their own transmis-
sion rates. As a result, a distributed approach is more desirable.
To implement a distributed resource management, link (i, j)
can use pricing. In particular, following the price-based design
in [4], link (i, j) may introduce a single price:

µ(x) = p
(∑N

n=1 xn

)
(1)

for each unit of data rate it carries. Each user n ∈ N then pays
xnµ(x) for its data rate xn that goes into the shared link.

Next, we analyze how the users set their rates based on the
price set by link (i, j). If users are price takers, then each user
n ∈ N selects its rate xn to maximize its own surplus (utility
minus payment) by solving the following local problem [4]:

max
xn≥0

(Un(xn)− xnµ) ⇒ xn = U ′n
−1

(µ). (2)

From the first fundamental theorem of welfare economics, if
each user n ∈ N selects its rate as in (2), then the network
aggregate surplus is maximized at equilibrium [17, p. 326].

Next, we consider price anticipating users, where each user
anticipates the effect of its data rate on the price. In this case,
each user n∈N no longer selects its rate as in (2). Instead,
it strategically selects xn to maximize its surplus given the
knowledge that the price µ(x) is set according to (1) and is
not fixed; rather it depends on user n’s strategy xn, as well
as all other users’ strategies x−n. Clearly, the decision made
by user n also depends on the rates selected by other users,
leading to a resource allocation game among all users:

Game 1: • Players: Users in set N .
• Strategies: Transmission rates x for all users.



Fig. 1. A single bottleneck link shared by N routing flows [6].

• Payoffs: Pn(xn;x−n)=Un(xn)−xnp(xn+
∑N
r=1,r 6=n xr),

where x−n = x1, . . . , xn−1, xn+1, . . . , xN .
In Game 1, each user n ∈ N selects its rate xn ≥ 0

to maximize its payoff Pn(xn;x−n). At a Nash equilibrium
x∗ = (x∗1, . . . , x

∗
N ), no user n ∈ N can increase its payoff

by unilaterally changing its strategy xn. We note that, Game
1, as well as all other games that we define in this paper are
games with complete information, where users are aware of
the cost models and other users’ utility functions.

Definition 1: Let xS=(xS1 , . . . , x
S
N ) be an optimal solution

for Problem 1 and x∗ be a Nash equilibrium for Game 1 for
the same choice of system parameters. We can define:

Efficiency at x∗ =

∑N
n=1 Un (x∗n)− C

(∑N
n=1 x

∗
n

)
∑N
n=1 Un (xSn)−C

(∑N
n=1 x

S
n

) . (3)

Definition 2: The price-of-anarchy is the worst-case effi-
ciency of a Nash equilibrium of Game 1 among all possible
choices of system parameters (i.e., number of users, utility,
cost, and price functions) under Assumptions 1 and 2.

The following key result is based on [6, Theorem 3]:
Theorem 1: Game 1 has a unique Nash equilibrium and

PoA (Game 1,Problem 1) =
2

3
≈ 67%. (4)

The PoA indicates how bad the network performance can
become due to strategic behavior of end-users.

III. INTER-SESSION NETWORK CODING GAMES
WITH ZERO SIDE LINK COSTS

In this section, we reformulate Problem 1 and Game 1 for
a network with both routing and inter-session network coding
flows. We show that the new game may have multiple Nash
equilibria and the PoA will significantly reduced to 25%.

A. Problem Formulation

Consider the butterfly network in Fig. 2 [18]. Compared to
Fig. 1, it has two direct side links (s1, tN ) and (sN , t1). The
source node of user 1 is located closer to the destination node
of user N than to its own destination node (and vice versa).
Thus, users 1 and N can perform inter-session network coding.
In this regard, we must distinguish two types of users:
• Network Coding Users: Users 1 and N , who can perform

inter-session network coding.
• Routing Users: Users 2, . . . , N − 1, who cannot perform

inter-session network coding.

Fig. 2. A butterfly network with one shared two side links. The side links
(s1, tN ) and (sN , t1) are assumed to be free of charge in this setting.

Let X1 and XN denote packets sent from source nodes s1
and sN , respectively. Node i can jointly encode packets X1

and XN using pairwise XOR operations, and then send out the
resulting encoded packet, denoted by X1⊕XN , towards node
j (and from there towards t1 and tN ). Given the remedy data
X1 from the side link (s1, tN ) and the remedy data XN from
the side link (sN , t1), nodes tN and t1 can again use XOR
operation to decode the encoded packets that they receive.
In fact, nodes t1 and tN can decode both X1 and XN . The
benefit of network coding is to reduce the load on link (i, j)
(thus reducing the cost) while achieving the same data rates
compared to the case that no network coding is performed.

Assumption 3: Side links (s1, tN ) and (sN , t1) in Fig. 2
have zero cost and impose zero prices.

For example, if the link cost is used to model the link delay
and the side links (s1, tN ) and (sN , t1) have a higher capacity
than the shared link (i, j), then the costs of the side links can
be neglected. The case where the side links have non-zero cost
is studied in Section IV. For the network in Fig. 2, the network
aggregate surplus maximization problem becomes:

Problem 2:

maximize
x

N∑
n=1

Un (xn)− C

(
N−1∑
n=2

xn+max(x1, xN )

)
subject to xn ≥ 0, n = 1, . . . , N.

The intuition behind the objective in Problem 2 is as follows.
Since x1 and xN are selected independently by users 1 and
N , in general, x1 6= xN . Thus, regardless of the choice of an
efficient network coding scheme, node i can network code only
at rate min(x1, xN ). Those packets which are not encoded
(e.g., at rate x1 −min(x1, xN ) if x1 ≥ xN , and at rate xN −
min(x1, xN ) if x1 ≤ xN ) are simply forwarded, leading to a
total rate

∑N−1
n=2 xn+max(x1, xN ) on link (i, j). If x1 = xN ,

then all packets from users 1 and N are jointly encoded.

Theorem 2: Let xS =(xS1 , . . . , x
S
N ) be an optimal solution

for Problem 2. We have xS1 = xSN .

The proof is based on solving the Karush-Kuhn-Tucker
(KKT) optimality conditions. Problem 2 can be solved in
a distributed fashion again via pricing. Following the same
pricing scheme in Section II, the shared link may apply a
single price for all (i.e., coded and routed) packets:

µ(x) = p
(∑N−1

n=2 xn + max(x1, xN )
)
. (5)

Each user n pays xnµ(x). However, this causes double charg-
ing for encoded packets. Thus, the single pricing model in (5)



leads to more payment from users than the actual link cost.
This can be avoided by price discrimination, i.e., charging the
routed and network-coded packets with different prices.

Let µ(x) in (5) denote the price to be charged for routed
packets. Under the discriminatory pricing scheme, we define
another price δ(x) for network coded packets. We have

δ(x) = β µ(x), (6)
where 0<β≤1. Since encoded packets carry data from users
1 and N , they are both charged for the delivery of an encoded
packet. As a result, if β > 1

2 , then the combined payment from
users 1 and N for delivery of an encoded packet becomes
higher than the payment that each user makes for the delivery
of a routed packet. Similarly, if β < 1

2 , then the combined
payment from users 1 and N for delivery of an encoded packet
becomes lower than the payment that each user makes for
the delivery of a routed packet. Therefore, in this paper, we
focus on the case of β = 1

2 because this is the only choice
of β that avoids over- or under-charging with two network
coding flows. Based on the this pricing scheme, user 1 pays
min(x1, xN )δ(x)+(x1 −min(x1, xN ))µ(x). That is, it pays
for transmission of its encoded packets at a price of δ(x) and
for transmission of its forwarded (not coded) packets at a price
of µ(x). From (6), the total payment by user 1 is

(x1 − (1− β) min(x1, xN ))µ(x). (7)
A similar payment model applies to user N . Each routing user
n = 2, . . . , N − 1 pays xnµ(x).

We are now ready to define a resource allocation game for
the network setting in Fig. 2, when users can anticipate prices
µ and δ according to (5) and (6), respectively:

Game 2: • Players: Users in set N .
• Strategies: Transmission rates x for all users.
• Payoffs: For network coding users 1 and N , we have

Q1(x1;x−1) = U1(x1)− (x1 − (1− β) min(x1, xN ))

× p
(∑N−1

r=2 xr + max(x1, xN )
)
,

QN (xN ;x−N ) = UN (xN )− (xN−(1−β) min(x1, xN ))

× p
(∑N−1

r=2 xr + max(x1, xN )
)
,

and each routing user n ∈ N\{1, N} has

Qn(xn;x−n) = Un(xn)−xnp(
∑N−1
r=2 xr+max(x1, xN )).

In the rest of this section, we answer the following ques-
tions:

1) Does Game 2 always (i.e., for any choice of system
parameters) have a Nash equilibrium?

2) If a Nash equilibrium exists for Game 2, is it unique?
3) What is the worst-case efficiency (i.e., the PoA) at a

Nash equilibrium of Game 2?
B. Existence and Non-uniqueness of Nash Equilibria

A Nash equilibrium of Game 2 is a non-negative data rate
vector such that for all users n ∈ N , we have Qn(x∗n;x∗−n) ≥
Qn(x̄n;x∗−n) for any choice of x̄n ≥ 0.

Theorem 3: Game 2 has at least one Nash equilibrium.
The proof of Theorem 3 is the direct application of the

Rosen’s existence theorem for N -person games [19, Theorem

1] and is omitted. It is based on showing that for all users
n ∈ N , the payoff function Qn(xn;x−n) is a concave
function with respect to xn, even though Q1 and QN are not
differentiable due to the max and min functions. Regarding
the second question in Section III-A, we will see in Section
III-C that Game 2 may have multiple Nash equilibria.

C. Users’ Best Responses
The strategic behavior of users can be modeled based on

their best responses. In this regard, each user n ∈ N selects
its data rate as xBn to maximize its own payoff Qn, given x−n:

xBn (x−n) = arg max
xn≥0

Qn(xn;x−n), ∀n ∈ N . (8)

Since problem (8) is concave, for each routing user n ∈
N\{1, N}, xBn (x−n) is the solution of

U ′n(xn)− a

 N−1∑
r=2,r 6=n

xr + max(x1, xN )

− 2axn = 0. (9)

However, the best response for network coding users 1 and N
is more complex, due to the non-differentiability of the payoff
functions Q1(x1;x−1) and QN (xN ;x−N ). In fact, network
coding user 1 should separately examine two scenarios:
(a) Selecting its strategy x1 to be greater than or equal to xN :

x̃B1 (x−1) = arg max
x1≥xN

U1(x1)− (x1 − (1− β)xN )

× a

(
N−1∑
n=2

xn + x1

)
.

(10)

(b) Selecting its strategy x1 to be less than or equal to xN :

x̂B1 (x−1) = arg max
0≤x1≤xN

U1(x1)− βx1 a

(
N−1∑
n=2

xn + xN

)
.

(11)
In (10), since x1 ≥ xN , we have: min(x1, xN ) = xN
and max(x1, xN ) = x1. Thus, Q1(x1;x−1) reduces to the
objective function in (10). In (11), since x1 ≤ xN , we have:
min(x1, xN ) = x1, max(x1, xN ) = xN , and x1 − (1 −
β) min(x1, xN ) = βx1. Thus, Q1(x1;x−1) reduces to the
objective function in (11). Given x̃B1 (x−1) and x̂B1 (x−1), if
Q1(x̃B1 (x−1);x−1) ≥ Q1(x̂B1 (x−1);x−1), then user 1 selects
its best response xB1 (x−1) = x̃B1 (x−1); otherwise, it selects
xB1 (x−1)= x̂B1 (x−1). The best response for user N is obtained
similarly. For user 1, the data rate x̃B1 (x−1) is obtained as the
value of x1 ≥ xN that satisfies

U ′1(x1)− a

(
N−1∑
n=2

xn + x1

)
+ a(1− β)xN − ax1 = 0. (12)

If U1(x1) is non-linear, then x̂B1 (x−1) is obtained as the value
of x1 ∈ [0, xN ] that satisfies

U ′1(x1)− βa

(
N−1∑
n=2

xn + xN

)
= 0. (13)

When the utility function U1(x1) is linear (i.e., U ′1(x1) is
a constant for all x1 ≥ 0), we have x̂B1 (x−1) = xN , if
U ′1(x1) > βa(

∑N−1
n=2 xn+xN ); and x̂B1 (x−1)=0, if U ′1(x1) <

βa(
∑N−1
n=2 xn+xN ). If U ′1(x1) = βa(

∑N−1
n=2 xn + xN ), then

x̂B1 (x−1) can be any value between 0 and xN .



D. Nash Equilibrium and Price-of-Anarchy

Let X ∗ denote the set of all Nash equilibria of Game 2.
Recall that set X ∗ has at least one member as shown in
Theorem 3. By definition, for any Nash equilibrium x∗ ∈ X ∗,
given x∗−n, we have xBn (x∗−n) = x∗n for all n ∈ N . Thus, all
Nash equilibria of Game 2 can be obtained using (11), (12),
(13) that only depend on the first derivatives of the utility
functions. Therefore, for each Nash equilibrium x∗ ∈ X ∗, if
we define the following linear utility functions:

Ūn(xn) = U ′n(x∗n) xn, ∀n ∈ N , (14)

then x∗ continues to be a Nash equilibrium for a new game
with new utilities Ū1(x1), . . . ,ŪN (xN ). In fact, x∗ is a Nash
equilibrium for the family of games with utility functions
U1(x1), . . . ,UN (xN ) having their first derivatives equal to
U ′1(x∗1), . . . , U ′N (x∗N) at Nash equilibrium, respectively [6].

Theorem 4: Let σ = max
{
U ′2(x∗2), . . . , U ′N−1(x∗N−1),

U ′1(x∗1) + U ′N (x∗N )}. For each Nash equilibrium x∗ ∈ X ∗ of
Game 2 and any optimal solution xS of Problem 2, we have:∑N

n=1 Un(x∗n)−C
(∑N−1

n=2 x
∗
n+max(x∗1, x

∗
N )
)

∑N
n=1 Un(xSn)−C

(∑N−1
n=2 x

S
n+max(xS1 , x

S
N )
)

≥

∑N
n=1 Ūn(x∗n)−C

(∑N−1
n=2 x

∗
n+max(x∗1, x

∗
N )
)

maxq̃≥0 [ σ q̃ − C(q̃) ]
.

(15)

The proof of Theorem 4 is similar [6, Lemma 4]. Note that
maxq̃≥0 [ σ q̃ − C(q̃) ] is the optimal objective of Problem 2
when utilities are linear. Thus, the right hand side in (15) is
the efficiency for linear utility functions while the left hand
side is the efficiency for any utility function, assuming that
other parameters are fixed. We can rewrite Theorem 4 as:

Theorem 5: The worst-case efficiency at a Nash equilib-
rium of Game 2 occurs when the utility functions are linear.
That is, Un(xn) = γnxn, where γn > 0 for all users n ∈ N .

From Theorem 5, the efficiency at Nash equilibrium de-
pends on the concavity (i.e., the second derivative) of the
utility functions. Note that, a liner utility is a least concave
utility function that satisfies Assumption 1. Next, we obtain
the value(s) of the Nash equilibrium(s) and PoA for Game 2.

Theorem 6: Suppose the utility functions are linear. As-
sume that N ≥ 2 and let x∗ denote the Nash equilibrium for
Game 2. Without loss of generality, assume that γ1 ≥ γN . For
notational simplicity, we define q∗ =

∑N−1
n=2 x

∗
n.

(a) If γN ≤ γ1 ≤
(

1 + 1
β

)
γN − βaq∗, then

max

{
0,
γ1 − aq∗

a(1 + β)

}
≤ x∗1 = x∗N ≤ max

{
0,
γN − βaq∗

βa

}
.

(16)
(b) If

(
1 + 1

β

)
γN − βaq∗ ≤ γ1 ≤ 2

β γN − aq
∗, then

x∗1 =
γN
βa
− q∗, x∗N =

2
β γN − γ1
a(1− β)

− q∗

1− β
. (17)

(c) If γ1 ≥ 2
β γN − aq

∗, then

x∗1 = max

{
0,
γ1
2a
− q∗

2

}
, x∗N = 0. (18)

(d) For any choice of system parameters in (a)-(c), each routing
user n = 2, . . . , N − 14 has the following rate

x∗n =

{
0, if γn ≤ a(q∗ + x∗1),
γn
a − q

∗ − x∗1, otherwise. (19)

The proof of Theorem 6 is given in Appendix A. From
Theorem 6(a), if the slopes of the linear utility functions for
users 1 and N (i.e., γ1 and γN ) are identical or close, then
users 1 and N choose equal rates and there is an infinite
number of Nash equilibria. Theorem 6(b) and 6(c) show that
if γ1 and γN are not close, then users 1 and N choose
different rates at the Nash equilibrium. Comparing this with
the results in Theorem 2, we shall expect a drastic efficiency
loss, especially if γ1 ≥ 2

β γN−aq
∗ as it results in x∗N = 0.

To study the properties of Nash equilibria of Game 2, we
consider two different cases:

1) Two Users Case: Assume that N = 2. In this case, the
butterfly network includes two network coding users and no
routing user. We can obtain the Nash equilibria using Theorem
6 by setting q∗ = 0 and show the following:

Theorem 7: In a network as in Fig. 2 with N = 2, under
the single pricing scheme (β = 1),

PoA (Game 2,Problem 2) =
1

3
, (20)

and under the discriminatory pricing scheme with β = 1
2 ,

PoA (Game 2,Problem 2) =
12

25
. (21)

The proof of Theorem 7 is given in Appendix B. For this
simple two-user scenario, inter-session network coding with no
price discrimination can reduce the PoA from 0.67 in Theorem
1 to 1

3 ≈0.33. Even if we use price discrimination by setting
β = 1

2 , i.e., users 1 and N split the price of encoded packets,
the PoA improves only to 12

25 = 0.48. This implies that inter-
session network coding is very sensitive to strategic users.

Note that, these results do not imply superiority of routing
over network coding. For example, we can numerically verify
that at any Nash equilibrium of Game 2, the surplus is no
less than the surplus at the Nash equilibrium of Game 1 for
the same choices of system parameters. That is, the absolute
performance of non-cooperative network coding is no worse
than the absolute performance of non-cooperative routing.
However, the relative performance in non-cooperative network
coding compared to optimal cooperative network coding is
worse than the relative performance in routing case.

Numerical results on efficiency of the Nash equilibrium of
Game 2 for 200 randomly generated scenarios with different
choices of system parameters in the two-user case are shown
in Fig. 3. In particular, in each scenario, the utility functions
of the users are chosen to be α-fair (cf. [15]) with a randomly
selected utility parameter α ∈ (0, 1). We can see that by using
price discrimination with parameter β = 1

2 , the guaranteed
worst-case efficiency bound (i.e., the PoA) improves from 0.33
to 0.48. For the rest of this paper, we focus on the case with
β = 1

2 . That is, the network coding users split the charge of
transmitting their jointly encoded packets.
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Fig. 3. Efficiency at a Nash equilibrium of 200 random game scenarios when
the network topology is as in Fig. 2 and the number of users is N = 2.

2) General Case: Next, consider the case where N > 2
users in the network. The presence of both network coding and
routing users makes the analysis more complex. To see this,
consider the network in Fig. 2 and assume that N =3, a=1,
β = 1

2 , γ1 ≥ γ3, γ3 = 1, and γ2 = 3. In this case, users 1 and
3 are the network coding users and user 2 is a routing user.
From Theorem 6, the Nash equilibria are obtained as shown
in Fig. 4. We can numerically verify that in this scenario, the
worst-case efficiency at Nash equilibrium of Game 2 is 46.5%.
Comparing this with the results in Theorem 7, we can expect
that adding routing users will further reduce the PoA. This is
shown in the next theorem for a general case:

Theorem 8: Assume that N ≥ 2. (a) If the price discrimi-
nation parameter β = 1

2 , we have

PoA (Game 2,Problem 2) =
1

4
. (22)

(b) The worst-case efficiency occurs when N →∞.

The proof of Theorem 8 is given in Appendix C. Comparing
Theorems 1, 7, and 8 we can see that a resource allocation
game with both network coding and routing users has a worse
PoA than the routing only and network coding only cases.

IV. INTER-SESSION NETWORK CODING GAMES WITH
NON-ZERO SIDE LINK COSTS

In this section, we study the case where the side links have
non-zero cost and show that the network coding users are no
longer interested in participating in network coding in this
case. This can further reduce the PoA to only 20%.

A. Problem Formulation

Consider the network in Fig. 5. In this figure, the side link
(s1, tN ) has price p1 and cost C1 while the side link (sN , t1)
has price pN and cost CN . Suppose that Assumption 2 also
holds for the price and cost functions of both side links. In
addition, we make the following assumption.

Assumption 4 (Non-Zero Cost for Side Links): The side
links (s1, tN ) and (sN , t1) in Fig. 5 always have non-zero
cost and impose non-zero prices. In particular, the side link
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Fig. 4. Nash equilibria for the resource allocation game in Fig. 2 when
N = 3, a = 1, β = 1

2
, γ1 ≥ γ3, γ3 = 1, and γ2 = 3. (a) Data rates for

network coding users 1 and 3, (b) Data rates for routing user 2.

Fig. 5. A link shared by N flows. Users 1 and N perform inter-session
network coding. The side links (s1, tN ) and (sN , t1) have non-zero cost.

(s1, tN ) has price p1(v1) = a1v1 for a1 > 0 and the side link
(sN , t1) has price pN (vN ) = aNvN for aN > 0.

Clearly, by sending remedy packets over side link (s1, tN ),
user 1 is helping user N to decode the encoded packets it
may receive. However, due to non-zero cost at the side links,
user 1 will be charged for sending these remedy packets. A
similar statement is true for user N . Therefore, users 1 and N
may decide to reduce the rate at which they send the remedy
packets. Users 1 and N can inform node i about their decision
via packet marking. Let y1 and z1 denote the rate at which
source s1 sends data to node i marked for routing and network
coding. Data rates yN and zN are defined for user N similarly.
Node i may encode only those packets which are marked for



network coding, at rate min(z1, zN ). Node i simply forwards
the rest of packets1, at rate

∑N
n=1 yn + |z1 − zN |. Therefore,

the total rate on link (i, j) becomes
∑N
n=1 yn + max(z1, zN ).

At destination node t1, a packet coming from node i that is
marked for network coding is collected and assumed to carry
useful information only if it is accompanied by a remedy
packet from node sN ; otherwise, such packet is dropped.
Similarly, at destination node tN , a packet coming from node
i that is marked for network coding is collected only if it is
accompanied by a remedy packet from node s1; otherwise,
such packet is dropped. Finally, we denote v1 and vN as the
rates at which sources s1 and sN send remedy packets on side
links (s1, tN ) and (sN , t1). The routing users 2, . . . , N−1 send
routing packets at rates y2, . . . , yN−1. Let y = (y1, . . . , yN ),
z = (z1, zN ), and v = (v1, vN ). For the network in Fig. 5, the
network aggregate surplus maximization problem becomes

Problem 3:

maximize
y,z,v

N−1∑
n=2

Un (yn) + U1 (y1 + min(z1, vN ))

+ UN (yN + min(zN , v1))

− C

(
N∑
n=1

yn+max(z1, zN )

)
−C1(v1)−CN (vN )

subject to yn ≥ 0, n = 1, . . . , N, z1, zN , v1, vN ≥ 0.

Following a discriminatory pricing model as in Section III-
A, we can define a resource allocation game for the network
setting in Fig. 5, when users are price anticipators:

Game 3: • Players: Users in set N .
• Strategies: Transmission rates y, z, and v.
• Payoffs: Wn(·) for each user n ∈ N , where

W1(y1, z1, v1;y−1, zN , vN ) = U1 (y1 + min(z1, vN ))

− v1p1(v1)− (y1 + z1 − (1− β) min(z1, zN ))

p
(∑N

r=1 yr + max(z1, zN )
)
,

WN (yN , zN , vN ;y−N , z1, v1) = UN (yN + min(zN , v1))

− vNpN (vN )− (yN + zN − (1− β) min(z1, zN ))

p
(∑N

r=1 yr + max(z1, zN )
)
,

and for each n ∈ N\{1, N}, we have

Wn(yn;y−n) = Un(yn)− yn
× p

(∑N
r=1 yr + max(z1, zN )

)
.

Here, y−n = (y1, . . . , yn−1, yn+1, . . . , yN ).

B. Users’ Best Responses
For network coding user 1, the best response is denoted

by (yB1 (y−1, zN , vN ), zB1 (y−1, zN , vN ), vB1 (y−1, zN , vN )),
which is obtained as the solution of the following problem(

yB1 (y−1,zN ,vN ), zB1 (y−1,zN ,vN ), vB1 (y−1,zN ,vN )
)

=

arg max
y1≥0, z1≥0, v1≥0

W1(y1, z1, v1;y−1, zN , vN ).

1Alternatively, node i can unmark any packet that was marked for network
coding by users 1 and N but it did not participate in network coding. However,
we can show that this approach has no advantage over the scenario considered.

The best response for network coding user N , denoted by(
yBN (y−N , z1, v1), zBN (y−N , z1, v1), vBN (y−N , z1, v1)

)
can

be obtained similarly. Next, we can show the following.

Proposition 1: Users 1 and N always send zero remedy
packets at the best responses of Game 3. That is, we always
have vB1 (y−1,zN ,vN ) = 0 and vBN (y−N ,z1,v1) = 0.

Proposition 1 can be proved by noticing that the pay-
off W1(y1, z1, v1;y−1, zN , vN ) is decreasing in v1 and
WN (yN , zN , vN ;y−N , z1, v1) is decreasing in vN . Clearly,
if the network coding users do not receive the remedy data
from the side links, they cannot decode any encoded packet
they may receive through the shared link (i, j). In fact, we
can further show the following.

Proposition 2: Users 1 and N always send zero network
coding packets to node i as the best responses of Game 3.
That is, zB1 (y−1,zN ,vN ) = 0 and zBN (y−N ,z1,v1) = 0.

Notice that if vN = 0, then min(z1, vN ) = 0 and the
payoff function for user 1 reduces to U1 (y1) − v1p1(v1) −
(y1 + z1 − (1− β) min(z1, zN )) p(

∑N
r=1 yr + max(z1, zN )).

In that case, the payoff function is decreasing in z1. A similar
statement is true for network coding user N .

C. Nash Equilibrium and Price-of-Anarchy

Given the results on the users’ best responses in Propositions
1 and 2, we can conclude that at any Nash equilibrium of
Game 3, denoted by (y∗, z∗,v∗), we should indeed have

z∗1 = z∗N = v∗1 = v∗N = 0. (23)
In other words, at a Nash equilibrium of Game 3, no users
performs network coding. In that case, the Nash equilibria of
Game 3 would be closely related to the Nash equilibria of
Game 1. In fact, for any choice of parameters, if x∗ is a Nash
equilibrium of Game 1, then y∗ = x∗, z∗ = 0, and v∗ = 0
would be a Nash equilibrium of Game 3 for the same choice
of system parameters. From this, together with the results in
Theorem 1(a), we can conclude that Game 3 always has a
unique Nash equilibrium. This leads to the following theorem.

Theorem 9: The worst-case efficiency of Game 3 occurs
when the utility functions are linear.

The proof of Theorem 9 is similar to that of [6, Lemma 4].
From Theorem 9, to obtain the PoA for Game 3 for arbitrary
utility functions (as long as they satisfy Assumption 1), it is
sufficient to only analyze the case where all utility functions
are linear. Furthermore, if the side links have a very large
cost compared to the cost of the bottleneck link, the optimal
performance is achieved with no network coding. In that case,
the efficiency can be obtained by using Theorem 1 and the
optimal network aggregate surplus for Problem 3 is the same
as the optimal network aggregate surplus for Problem 1. In
addition, the network aggregate surplus is the same at the Nash
equilibrium of Game 3 and Game 1. However, for general
choices of a1 > 0 and aN > 0, obtaining the PoA requires
further investigation of the optimal solution of Problem 3.

Theorem 10: Consider the network coding system in Fig.
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Fig. 6. Efficiency at Nash equilibrium of Game 3 for the network in Fig. 5,
where N →∞, γ1 = γN = 1, γn = 4

5
for all n ∈ N\{1, N}, and a = 1.

Side link price parameters a1 = aN vary from 0 (non-inclusive) to 10.

5 with N ≥ 2 users. (a) We have

PoA (Game 3,Problem 3) =
1

5
. (24)

(b) The worst-case efficiency occurs when N →∞.
The proof of Theorem 10 is given in Appendix D. Com-

paring Theorem 10 and Theorem 8, we can see that a non-
zero cost at the side links can further reduce the PoA in a
network resource allocation game as the users do not perform
network coding in this case. If the side link price parameters
a1 and aN are significantly greater than the bottleneck link
price parameter a, then network coding is not an optimal
solution and the efficiency loss follows from the results in
Theorem 1. This is shown in Fig. 6. For the results in this
figure, the network topology is assumed to be as in Fig. 5,
where N → ∞, γ1 = γN = 1, a = 1, and γn = 4

5 for all
n ∈ N\{1, N}. The side link price parameters a1 = aN vary
from 0 (non-inclusive) to 10. If a1 > 0 and aN > 0 tend to
zero, the efficiency becomes as low as 1

5 = 0.2 as Theorem 10
suggests. As a1 = aN increase and tend to infinity, Problem
3 becomes equivalent to Problem 1 (in terms of the optimal
network aggregate surplus) and Game 3 becomes equivalent
to Game 1 (in terms of network aggregate surplus at Nash
equilibrium) which leads to an efficiency higher than 2

3 ≈ 0.67
as Theorem 1 suggests (for the choice of parameters in Fig.
6, the efficiency approaches 4

5 = 0.8). Numerical results on
the efficiency of the Nash equilibrium of Game 3 for 200
random scenarios with different choices of system parameters
in the two-user case are shown in Fig. 7. We can see that the
simulations confirm Theorem 10.

V. MORE GENERAL NETWORK TOPOLOGIES

Although the butterfly networks in Figs. 2 and 5 are
simple, they can be used as building blocks for more general
networks. In fact, as shown in [20], [21], many networks can
be modeled as superposition of multiple butterfly networks.
As an example, consider the grid topology in Fig. 8 with nine
nodes, 12 links, and six users. All links have non-zero cost and
incur non-zero prices, as in Section IV. The pricing parameter
for each link l ∈ {1, . . . , 12} is denoted by al > 0. Users 1
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Fig. 7. Efficiency at Nash equilibrium of 200 randomly generated resource
allocation game scenarios for the network in Fig. 5 with N = 2. Efficiency
of Game 3 is lower bounded by the PoA = 1

5
= 0.2 in Theorem 10.
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Fig. 8. A grid topology as a superposition of multiple butterfly networks.

and 2 can form a network coding pair over a butterfly network
with shared links 6 and 7, side links 1 and 2 between s1 and
t2, and side links 11 and 12 between s2 and t1. Node D can
act as an intermediate node to encode packets from s1 and s2.
Similarly, users 3 and 4 can form a network coding pair over
a butterfly network with shared links 4 and 9, side links 3 and
8 between s3 and t4, and side links 5 and 10 between s4 and
t3. Node B can act as an intermediate node to encode packets
from s3 and s4. Users 5 and 6 are routing users.

Following similar steps as in formulating Problem 3 and
Game 3, we can formulate the network surplus maximization
problem and the resource allocation game for the network in
Fig. 8. Although it is difficult to obtain the PoA analytically,
we can still estimate the PoA numerically. Note that, we only
need to calculate y∗n for n = 1, . . . , 6, because we already
know from Proposition 1 that at Nash equilibrium, all network
coding rates are zero. This is done as follows. First, we ran-
domly select an initial strategy yn for each user n. Then, users
take random turns and each user n individually updates yn
given the most updated y−n from other users. The successive
calculation of the best response strategies will continue until
no user changes its strategy, i.e., no user can improve its payoff
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Fig. 9. Efficiency at Nash equilibrium for the grid network in Fig. 8.

by unilaterally changing its transmission rate. Since all the best
response dynamics converged in the numerical examples that
we considered, the users’ transmission rates at convergence
are used as Nash equilibrium in our numerical results.

The numerical results are shown in Fig. 9. Here, we assume
that the price parameters on the side links a1 =a2 =a3 =a5 =
a8 =a10 =a11 =a12 vary from 0 to 10. The price parameters
on the inner links are a4 =a6 =a7 =a8 = 1. Utility functions
are linear and γ1 = γ2 = γ3 = γ4 = 3 and γ5 = γ6 = 1.
When the side links have non-zero costs, no user participates
in network coding. We can see that efficiency can be as low as
0.22, when a1 =a2 =a3 =a5 =a8 =a10 =a11 =a12 → 0 and
network coding is the optimal solution. This result is close
to the PoA = 0.2 in Theorem 10. When a1 = a2 = a3 =
a5 = a8 = a10 = a11 = a12 → ∞, network coding is no
longer an optimal solution and thus the efficiency at the Nash
equilibrium increases, approaching the results in Theorem 1.

We must emphasize that the possibility for generalizing the
results in this section is only a conjecture, as the observations
are limited to the very specific example of the topology in
Fig. 8. The special trend in Fig. 9 and its resemblance to the
trend in Fig. 6 may not apply to different inter-session network
coding topologies. Furthermore, we note that the results here
are limited to the case when network coding in a grid topology
is performed similarly as in a butterfly topology. However,
when it comes to a large network, such as the grid network in
Fig. 8, there can be other options to perform network coding,
such as the construction of grail topologies [22].

VI. CONCLUSION

In this paper, we studied the impact of strategic network
coding users on the efficiency of network resource allocation
in a butterfly network, where a bottleneck link is shared
by several users. Two of the users have the capability of
performing inter-session network coding, and the rest perform
routing. Even with this simple setup, the results are dramati-
cally different from the routing-only case. In particular, there
can be many (even infinite) Nash equilibria in the resulting
resource allocation game. This is in sharp contrast to a similar
game setting with traditional packet forwarding where the
Nash equilibrium is always unique. Furthermore, the efficiency

loss can be more severe than for the case without network
coding. In a butterfly network when the side links have zero
cost, the efficiency at Nash equilibrium can be as low as 25%.
If the side links have non-zero cost, then the efficiency at Nash
equilibrium can further reduce to only 20%. These results
generalize the well-known result of guaranteed 67% worst-
case efficiency for packet forwarding networks in [6].

APPENDIX

A. Proof of Theorem 6

Due to γ1 ≥ γN , we have x∗1 ≥ x∗N . We prove this by
contradiction. Assume x∗1 < x∗N . Since U ′1(x1) = γ1, from
(13), x∗1 < x∗N implies that γ1 ≤ βa (q∗ + x∗N ). Furthermore,
since U ′N (xN ) = γN , from (12), we have γN = aq∗+2ax∗N−
a(1− β)x∗1. Since γN ≤ γ1, it is required that

q∗ + 2ax∗N − a(1− β)x∗1 ≤ βa(q∗ + x∗N )

⇒ q∗(1− β) + x∗N (2− β)− (1− β)x∗1 ≤ 0.
(25)

If β = 1, then the inequality in (25) reduces to x∗N ≤ 0 which
contradicts the assumption that 0 ≤ x∗1 < x∗N . On the other
hand, if 0 < β < 1, then we can further show that

q∗(1− β) + x∗N (2− β)− (1− β)x∗1

≥ q∗(1− β) + (x∗N − x∗1)(1− β) > 0,
(26)

where the last inequality is because x∗1 < x∗N . It is clear that
(26) contradicts (25). Thus, for any 0 < β ≤ 1, x∗N cannot be
greater than x∗1 and we always have x∗N ≤ x∗1.

Part (a): To show x∗1 = x∗N , assume that x∗1 6= x∗N . Since
x∗1 ≥ x∗N , then x∗1 > x∗N . From (12), we have

x∗1 =
γ1−aq∗+a(1−β)x∗N

2a
> x∗N ⇒ γ1 > (1+β)ax∗N+aq∗,

(27)
and

γN ≤ βax∗1 + βaq∗. (28)

From (27) and (28), we also have

γN ≤ βaq∗ +
β

2
(γ1 − aq∗ + a(1− β)x∗N )

<
β

1 + β
(γ1 + βaq∗) .

(29)

Therefore, (1+1/β)γN−βaq∗ < γ1. However, this contradicts
the assumption that γ1 ≤ (1 + 1/β) γN − βaq∗. Thus, we
indeed have x∗1 = x∗N . From this, together with (12), we have

γ1 ≤ βax∗1 + aq∗ + ax∗1 = aq∗ + (1 + β)ax∗1

⇒ γ1 − aq∗

a(1 + β)
≤ x∗1 = x∗N ,

(30)

and

γN ≥ βaq∗ + βax∗1 ⇒ x∗N = x∗1 ≤
γN − βaq∗

βa
. (31)

Part (b): The condition in this scenario holds if and only if(
1 +

1

β

)
γN−βaq∗ ≤

2

β
γN−aq∗ ⇒ γN ≥ βaq∗. (32)

Moreover, since γ1 ≤ 2
β γN−aq

∗, we have 2
β γN−γ1−aq

∗ ≥ 0
and x∗N in (17) is non- negative. Since x∗1 ≥ x∗N , this also
implies non-negativity of x∗1. Next, we consider two cases:



Case I) Assume that x∗N > 0. Similar to Part (a), we can
show that x∗1 > x∗N . From this, together with (12), we have
x∗1 = (γ1 − aq∗ + a(1 − β)x∗N )/(2a) and γN = βaq∗ +
βax∗1. The latter further results in x∗1 = (γN − βaq∗)/(βa) =
γN/(βa)− q∗. Thus, we finally have:

γN
βa
− q∗ =

γ1 − aq∗ + a(1− β)x∗N
2a

⇒ x∗N =

2
β γN − γ1 − aq

∗

a(1− β)
.

(33)

Case II) Assume that x∗N = 0. In that case, from (12), we
have x∗1 = (γ1−aq∗)/(2a) and γN ≤ βaq∗+βax∗1. Replacing
the former in the latter, we have

γN ≤
β

2
+
βaq∗

2
⇒ γ1 ≥

2

β
γN − aq∗. (34)

From (34) and since γ1 ≤ 2
β γN − aq

∗, we have γ1 = 2
β γN −

aq∗. From (12), x∗1 = γN/(βa)− q∗.
Part (c): The proof is similar to Part (b). Two cases of x∗1 >

xN and x∗1 = x∗N are considered.
Part (d): For each node n ∈ N\{1, N}, at each Nash

equilibrium x∗ of Game 2, we have xBn (x∗−n) = x∗n. Thus,
for linear utilities, the derivative of the objective function in
(9) in xn is γn − a (q∗ + x∗1)− xna. If γn ≤ a (q∗ + x∗1), the
derivative is always non-positive and the objective function is
decreasing in xn. In that case, x∗n = 0. If γn ≥ a (q∗ + x∗1),
then since the objective is convex, we have x∗n = γn

a −q
∗−x∗1.

Together, these two cases result in (19). �

B. Proof of Theorem 7

At optimality, we have xS1 = xS2 = (γ1 + γ2)/a. Thus, the
optimal network surplus becomes

γ1x
S
1 + γ2x

S
2 −

a

2

(
max{xS1 , xS2 }

)2
=

(γ1 + γ2)
2

2a
. (35)

Next, we examine the efficiency for all the scenarios in
Theorem 6(a), (b), (c), where q∗ = 0.

Case I) If γ2 ≤ γ1 ≤ (1 + 1/β)γ2, then the Nash equilibria
are as in (16). Since there are multiple Nash equilibria, the
worst-case efficiency for Game 2 is obtained by solving

minimize
x∗
1

(
(γ1 + γN )x∗1 −

a

2
x∗1

2
)
/

(
(γ1 + γ2)

2

2a

)
subject to

γ1
(1 + β)a

≤ x∗1 ≤
γ2
βa
.

(36)

We can show that if β = 1, then the optimal objective value
of problem (36) becomes 1/2 − 1/16 = 7/16 ≈ 0.438. On
the other hand, if β = 1

2 , then the optimal objective value of
problem (36) becomes 6/9− 1/9 = 5/9 ≈ 0.556.

Case II) If (1 + 1/β) γ2 < γ1 ≤ 2
β γ2 (note: this may hold

only if β < 1), then x∗1 and x∗N are as in (17) where q∗= 0.
The worst-case efficiency is obtained by solving

minimize
γ1

γ2

(γ1 + γ2)
2

(
2(1− 2β)

β(1− β)
γ1 +

5β − 1

β2(1− β)
γ2

)
subject to (1 + 1/β) γ2 < γ1 ≤

2

β
γ2.

By applying the KKT conditions, the optimal objective of the
above optimization problem when β = 1

2 becomes 12
25 = 0.48.

Case III) We assume that 2
β γ2 < γ1. From Theorem 6(c),

the Nash equilibrium is as in (18) and the worst-case efficiency
is obtained by solving the following optimization problem

minimize
γ1,γ2

(
γ1
γ1
2a
− a

2

(γ1
2a

)2)
/

(
(γ1 + γ2)

2

2a

)
subject to 0 ≤ 2

β
γ2 < γ1.

(37)

For β = 1, the optimal objective value becomes 1
3 ≈ 0.33.

For β = 1
2 , the optimal objective value becomes 12

25 = 0.48.
From Cases I and III, if β = 1, PoA (Game 2,Problem 2) =

min
{

7
16 ,

1
3

}
= 1

3 . From Cases I, II, and III, if β = 1
2 ,

PoA (Game 2,Problem 2) = min
{

5
9 ,

12
25 ,

12
25

}
= 12

25 . �

C. Proof of Theorem 8

The optimal surplus for linear utilities is σ2/(2a).
Case I) We assume that γ1 + γN = σ. Similar to the proof

of Theorem 7, here we obtain the PoA by examining all the
scenarios in Theorem 6(a), (b), (c). First, assume that

γN ≤ γ1 ≤ (1 + 1/β) γN − βaq∗, (38)

and γ1 ≥ aq∗. To obtain the worst-case efficiency for this
scenario, we need to solve the following optimization problem:

minimize
x∗,γ,a,N,q∗

σx∗1 +
∑N−1
n=2 γnx

∗
n− a

2 (q∗ + x∗1)2

σ2/(2a)

subject to γn=a (q∗+x∗n+x∗1) , if x∗n > 0, n 6= 2, N−1,

γn ≤ a(q∗ + x∗1), if x∗n = 0, n 6= 2, N−1,∑N−1
n=2 x

∗
n = q∗,

γ1 + γN = σ,

γ1 ≥ aq∗,
0 < γn ≤ σ, n 6= 2, N − 1,

γN ≤ γ1 ≤ (1 + 1/β) γN − βaq∗,
γ1 − aq∗

a(1 + β)
≤ x∗1 = x∗N ≤

γN − βaq∗

βa
.

We can show that for any choice of β the optimal objective
value of the above optimization problem is 1

4 = 0.25. Next,
assume that (38) holds and we have

γ1 ≤ aq∗. (39)

From Theorem 6(a), the Nash equilibria are obtained as 0 ≤
x∗1 = x∗N ≤

γN−βaq∗
βa . We can show that, in this scenario, the

worst-case efficiency occurs if N → ∞ and we have x∗1 =
x∗N = 0 and aq∗ = 1+2βσ

2β2+4β+3 . Thus, the worst-case efficiency
when (38) and (39) hold is obtained as

2

2β2 + 4β + 3
. (40)

If β = 1
2 , then (40) becomes 4

11 ≈ 0.36. Finally, we assume
that

(
1 + 1

β

)
γN − βaq∗ ≤ γ1 ≤ 2

β γN − aq
∗. We can show

that the worst-case efficiency in this scenario is still as in (40).
Case II) We assume that γ1 + γN < σ. Following similar

steps as in Case I and also using [6, Theorem 3], the worst-
case efficiency in this scenario becomes 2

3 ≈ 0.67.



From Cases I and II, if β = 1, PoA (Game 2,Problem 2) =
min

{
1
4 ,

2
9 ,

2
3

}
= 2

9 . On the other hand, if β = 1
2 , then

PoA (Game 2,Problem 2) = min
{

1
4 ,

4
11 ,

2
3

}
= 1

4 . �

D. Proof of Theorem 10

Let yS = (yS1 , . . . , y
S
N ), zS = (zS1 , z

S
N ), and vS =

(vS1 , v
S
N ) be the solution for Problem 3. Define γmax =

maxn∈N γn and M = {n : γn = γmax} with size M = |M|.
We can verify that (a) If γ1 + γN ≥

(
1 + a1+aN

a

)
γmax, then

zS1 = zSN = vS1 = vSN = (γ1 + γN )/(a+ a1 + aN ), (41)

and for each n ∈ N , we have ySn = 0. (b) If γmax ≤ γ1+γN ≤
(1 + (a1 + aN )/a) γmax, then

zS1 =zSN =vS1 =vSN =
γ1 + γN − γmax

a1 + aN
, (42)

and for each n∈M, we have

ySn =
(a+ a1 + aN )γmax − a(γ1 + γN )

aM(a1 + aN )
, (43)

while for each n ∈ N\M, we have ySn = 0. (c) If γmax ≥
γ1 +γN , then zS1 =zSN =vS1 =vSN =0 and for each n∈M, we
have ySn = γmax

aM while for each n∈N\M, we have ySn = 0.
Next, from (23), for each user n ∈ N , we have

y∗n =

{
1
2a

(
γn − a

∑N
r=1,r 6=n y

∗
r

)
, if γn > a

∑N
r=1,r 6=n y

∗
r ,

0, if γn ≤ a
∑N
r=1,r 6=n y

∗
r .

Case I) If γ1+γN ≥
(
1 + a1+aN

a

)
γmax, then the maximum

network surplus is (γ1 + γN )2/(2(a+ a1 + aN )). The worst-
case efficiency is obtained by solving the following problem

minimize
y∗,γ,a,a1,aN ,N,q∗

(∑N
n=1 γny

∗
n − a

2 q
∗2
)
/
(

(γ1+γN )2

2(a+a1+aN )

)
subject to γn = aq∗+ay∗n, if y∗n > 0, n ∈ N ,

γn ≤ aq∗, if y∗n = 0, n ∈ N ,∑N
n=1 y

∗
n = q∗ ≥ 0,

0 ≤ γn ≤ γmax, n ∈ N ,

γ1 + γN ≥
(

1 +
a1 + aN

a

)
γmax,

y∗n ≥ 0, n ∈ N .

We can show the optimal objective value is 1
5 = 0.2.

Case II) If γmax ≤ γ1+γN ≤
(
1 + a1+aN

a

)
γmax or γmax ≥

γ1 + γN , then the worst-case efficiency is equal to or higher
(i.e., better) than 1

5 . In particular, if γmax ≥ γ1 +γN , then the
worst-case efficiency is 2

3 which resembles the results in [6].
Combing the results above in Cases I and II, we have

PoA (Game 3,Problem 3) = min
{

1
5 ,

2
3

}
= 1

5 . �
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