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Abstract— A common assumption in the network coding lit-
erature is that the users are cooperativeand will not pursue
their own interests. However, this assumption can be violated in
practice. In this paper, we analyzeinter-session network coding
in a wired network, assuming that the users areselfish and act
as strategic players to maximize their own utility. We prove
the existence of Nash equilibria for a wide range of utility
functions. The number of Nash equilibria can be large (even
infinite) under certain conditions, which is in sharp contrast to a
similar game setting with traditional packet forwarding. We then
characterize the worst-case efficiency bounds, i.e., theprice-of-
anarchy (PoA), compared to anoptimal and cooperativenetwork
design. We show that by using a noveldiscriminatory pricing
scheme that charges encoded and forwarded packets differently,
we can improve PoA in comparison with the case where asingle
pricing scheme is being used. However, PoA is still worse than the
case when network coding is not applied. This implies that inter-
session network coding is more sensitive to strategic behavior. For
example, for the case where only two network coding flows share
a single bottleneck link, the efficiency at certain Nash equilibria
can be as low as 48%. These results generalize the well-known
result of guaranteed 67% efficiency bounds shown by Johari and
Tsitsiklis for traditional packet forwarding networks.

I. I NTRODUCTION

Since the seminal paper by Ahlswedeet al. [1], a rich body
of work has been reported on how network coding can improve
performance in both wired and wireless networks [2]–[4].
Network coding can be performed byjointly encoding multiple
packets either from thesameuser or fromdifferentusers. The
former is calledintra-sessionnetwork coding [1], [3] while
the latter is calledinter-sessionnetwork coding [2], [4]. A
common assumption in most network coding schemes in the
literature is that the users arecooperativeand will not pursue
their own interests. However, this assumption can be violated
in practice. Therefore, assuming that the users areselfishand
strategic, in this paper we ask the following key questions:
(a) What is the impact of users’ strategic behavior on network
performance? (b) How does this impact change with different
pricing schemes that a link can potentially choose?

It is widely accepted thatpricing is an effective approach
in terms of improving the efficiency of network resource
allocation, especially indistributed settings. In [5], Kelly
et al. showed that if users areprice takers(i.e., they treat
network price as fixed), then efficient resource allocation can
be achieved by properly settingcongestion priceson each
of the shared links. Recent work by Johari and Tsitsiklis
focused on studying how the results on efficiency change in
both capacity-constrained [6] and capacity-unconstrained [7]
networks if users areprice anticipatorswho realize that the
price is directly impacted by each individual user’s behavior. In
this case, users play agamewith each other, and the resource

allocation is characterized by the Nash equilibrium. A key
performance metric is calledPrice of Anarchy (PoA), i.e.,
the worst caseefficiency loss at any Nash equilibrium due
to users’ strategic behavior. PoA is equal to 1 if there is no
efficiency loss. A smaller PoA denotes a higher efficiency loss.
Other recent work on resource allocation games include [8]
and [9]. To the best of our knowledge, none of the previous
work along this line took network coding into consideration.

Game theoretic analysis of network coding has received
limited attention only recently, e.g., [10]–[13]. All results in
[10]–[13] focus on the case ofintra-sessionnetwork coding,
whereas here we considerinter-sessionnetwork coding. In
[14], a game theoretic analysis forinter-sessionnetwork cod-
ing of unicastflows on a single bottleneck link is considered.
It is shown that in some classes oftwo-usernetworks, it is
possible to use a link capacity allocation mechanism to achieve
cooperative behavior from selfish users. In this paper, we also
consider a similar network setting. However, we assume that
there areN ≥ 2 users, two of which use network coding while
the rest only use routing. This helps us to better understand
the interaction between network coding and routing flows. The
details of our results are different from those in [14] since
we consider the capacity-unconstrained case instead of the
capacity-constrained case in [14]. Due to the focus on the
capacity region, [14] did not consider the impact of users’
utility functionsand issues of price anticipation and PoA.

In summary, the key contributions of this paper are:

• New problem formulation: We formulate the problem of
maximizing thenetwork aggregate surplus, i.e., the total
utility of all users minus the total network cost, under
inter-session network coding. As far as we know, such a
problem has not been studied in the literature.

• Innovative pricing schemes: We consider two pricing
schemes:non-discriminatory pricingand discriminatory
pricing. The first one is the traditional approach with
routing-only users, where all packets are charged with
the same price. The second scheme is a novel general-
ization of the first one. We show that due to the special
properties of network coding, discriminatory pricing is
more reasonable in terms of reflecting the actualload
generated by each user.

• Characterization of Nash equilibria: We show that a
Nash equilibrium always exists; however, there might be
manyNash equilibria in the resource allocation game with
network coding. The latter is in sharp contrast to the case
of the unique Nash equilibrium for the game with routing.

• Calculation of PoA: Among the two aforementioned
pricing schemes, a properly chosen discriminatory pric-



2

Fig. 1. A single wireline bottleneck link shared byN routing flows [7].

ing leads to a better PoA compared with the non-
discriminatory approach. We also show that the PoA is al-
ways smaller (i.e., worse) compared with the case without
network coding. This implies that inter-session network
coding is more sensitive to users’ strategic behavior.

The rest of the paper is organized as follows. In Section II,
we summarize the recent results on resource allocation games
with routing. In Section III, we extend the results to the case
when users can jointly perform inter-session network coding.
Conclusions and the future work are discussed in Section IV.
Due to space limitation, most of the proofs are omitted.

II. RESOURCEALLOCATION GAME WITH ROUTING FLOWS

In this section, we consider a resource allocation game
in which multiple end-to-end users compete to send their
packets through a single shared bottleneck link as in Fig. 1.
By construction, no inter-session network coding is performed
in this case. This problem has been widely studied in [5]–[8].
Here we summarize the key results in [7], which presents the
proper terminology, and also serves as a benchmark for our
later discussions of the case with network coding.

In Fig. 1, the shared link is denoted by(u, v) and the set of
users is denoted byN = {1, . . . , N}. All packets arriving at
nodeu are simplyforwardedto nodev through link(u, v). For
each usern ∈ N , we denote the transmitter and receiver nodes
by sn andtn, respectively. Letxn denote the transmission rate
by usern ∈ N . We assume that each usern ∈ N has autility
function Un, representing its degree of satisfaction based on
its achievable data ratexn. From the link’s point of view, the
total rate (i.e.,

∑

n∈N xn) leads to a cost characterized by a
cost functionC (e.g., the delay caused by the traffic). As in
[7], we make the following assumptions throughout this paper.
They are satisfied by many realistic utility and delay functions
such asα-fair utilities [15] and queuing delay models.

Assumption 1:For eachn∈N , utility function Un(xn) is
concave, non-negative, strictly increasing, anddifferentiable.

Assumption 2:There is adifferentiable, convex, and non-
decreasingfunctionp(q) overq≥0, with p(0)≥0 andp(q)→
∞ asq→∞, such that for eachq≥0, the cost is modeled as
C(q)=

∫ q

0
p(z) dz. HereC(q) is convexandnon-decreasing.

Given complete knowledge and centralized control of the
network, an efficient rate allocation can be characterized as
an optimal solution of the following optimization problem:

Problem 1 (Surplus Maximization with Routing):

maximize
x

∑N

n=1 Un (xn) − C
(

∑N

n=1 xn

)

subject to xn ≥ 0, n = 1, . . . , N.

Notice that Problem 1 is a convex optimization problem. The
objective function in Problem 1 is thenetwork aggregate
surplus [16]. In general, since the utility functions are local
to the users and are not known at each link, efficient resource
allocation needs to be done viapricing. Given the rate vector
x = (x1, . . . , xN ) from the users, the shared bottleneck link
(u, v) sets a single price:

µ(x) = p
(

∑N
n=1 xn

)

(1)

for each unit of data rate it carries. Each usern ∈ N then
paysxnµ(x) for its transmission ratexn.

We now analyze how the users determine their rates based
on the price. First assume that the users areprice takers, i.e.,
they donot anticipate the effect of a change of their rates on
the resulting price. Thus, each usern ∈ N selects its ratexn

to maximize itsown surplus, i.e., utility minus payment, by
solving the following local optimization problem [5]:

max
xn≥0

(Un(xn) − xnµ) ⇒ xn = U ′
n

−1
(µ), (2)

where U ′
n
−1 denotes the inverse of the derivative of utility

function Un and priceµ is as in (1). From the first funda-
mental theorem of welfare economics [16, pp. 326] if each
usern∈N selects its rate as in (2), then at the equilibrium,
the network aggregate surplus (i.e., the objective function of
Problem 1) is indeed maximized (cf. [7, Proposition 1]).

Next, we consider theprice anticipatingusers where each
user can anticipate the effect of its selected transmissionrate
on the resulting price. In this case, each usern ∈ N no longer
selects its rate as in (2). Instead, itstrategicallyselectsxn to
maximize its surplus, given the knowledge that the priceµ(x)
is set according to (1) and isnot constant. Clearly, the decision
made by usern also depends on the rates selected by other
users, leading to aresource allocation gameamong all users:

Game 1: (Resource allocation game among routing flows)
• Players: Users in setN .
• Strategies: Transmission ratesx for all users.
• Payoffs: Pn(xn, x−n) for each usern∈N , where

Pn(xn, x−n) = Un(xn) − xn p
(

∑N
n=1 xn

)

,

andx−n denotes the vector of selected rates for all users
other thanusern.

In Game 1, each usern ∈ N strategically selects its rate
xn ≥ 0 to maximizeits payoff functionPn(xn, x−n). A Nash
equilibriumof Game 1 can be defined as a rate vectorx

∗ � 0

such that for all usersn ∈ N , we have

Pn(x∗
n, x∗

−n) ≥ Pn(x̄n, x∗
−n), ∀ x̄n ≥ 0. (3)

In Nash equilibriumx
∗, no usern ∈ N can increase its payoff

by unilaterally changing its strategyxn. The following key
result is from the recent work in [7]:

Theorem 1: [7, Theorem 3] Suppose that the price func-
tions arelinear, i.e., p(q) = aq for somea > 0.
(a) Game 1 always has auniqueNash equilibrum.
(b) If x

S is an optimal solution for Problem 1 andx∗ is a
Nash equilibrium for Game 1, then
N
∑

n=1

Un (x∗
n)−C

(

N
∑

n=1

x∗
n

)

≥
2

3

(

N
∑

n=1

Un

(

xS
n

)

−C

(

N
∑

n=1

xS
n

))

.
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(c) The lower bound in Part (b) is tight.

From Theorem 1, for any choice of system parameters, the
network aggregate surplus obtained at the Nash equilibriumof
Game 1 isat least 2

3 ≈ 0.67 of theoptimalaggregate surplus.
In the rest of this paper, we generalize Theorem 1 to the case

where some of the users can perform inter-session network
coding. We show that such a generalization is non-trivial and
the results are indeed drastically different.

III. R ESOURCEALLOCATION GAME WITH INTER-SESSION

NETWORK CODING AND ROUTING FLOWS

A. Problem Formulation

Consider the modified network model in Fig. 2. It is similar
to the network in Fig. 1, except that we included two direct
side links: (s1, tN ) from source nodes1 to destination node
tN , and (sN , t1) from source nodesN to destination node
t1. In this scenario, the first and the last users (i.e., users 1
andN ) can perform inter-session network coding. LetX1 and
XN denote the packets sent from source nodess1 and sN ,
respectively. The intermediate nodeu can encode packetsX1

andXN together, and then send the encoded packet, denoted
by X1 ⊕XN , towards nodev (and from there towardst1 and
tN ). Given theremedydata X1 from the side link(s1, tN )
and theremedydataXN from the side link(sN , t1), nodes
tN and t1 can decodethe encoded packets that they receive.
In fact, nodestN andt1 can both decodeX1 andXN . Clearly,
the benefit of the network coding is to reduce the traffic load
on the shared link(u, v) (thus reducing the link cost) while
achieving the same rates. Besides Assumptions 1 and 2, here
we assume that:

Assumption 3:The side links(s1, tN) and(sN , t1) in Fig. 2
always havezerocost and imposezeroprices.

For example, if the link cost is used to model the linkdelay
and the side links have much larger capacity than the shared
link, then the costs of the side links are small and negligible.

From now on, we refer to users1 andN in Fig. 2 ascoding
users, and to users2, . . . , N − 1 as routing users. For the
network in Fig. 2, the aggregate surplus maximization problem
becomes:

Problem 2 (Surplus Maximization with Network Coding):

maximize
x

N
∑

n=1

Un (xn)− C

(

N−1
∑

n=2

xn+max(x1, xN )

)

subject to xn ≥ 0, n = 1, . . . , N.

Now let us explain the intuition behind the objective function
in Problem 2. Sincex1 andxN are selectedindependentlyby
users 1 andN , in general, we may havex1 6= xN . Thus, the
intermediate nodeu can perform network coding only at rate
min(x1, xN ). Those packets which arenot encoded (e.g., with
ratex1−min(x1, xN ) if x1 ≥ xN , and ratexN −min(x1, xN )
if x1 ≤ xN ) are simply forwarded, leading to an aggregate
data rate ofmax(x1, xN ) over link (u, v). Note that ifx1 =
xN , thenall packets from users 1 andN are jointly encoded.

Theorem 2:Let x
S = (xS

1 , . . . , xS
N ) denote anyoptimal

solution for Problem 2. We have:xS
1 = xS

N .

Fig. 2. A single link shared byN flows. Users 1 andN perform inter-session
network coding. The side links(s1, tN ) and(sN , t1) are free of charge. Here
x1 and xN denote the data rates of source nodess1 and sN , respectively.
On the other hand,X1 andXN denote the actual packets/symbols emanated
from nodess1 andsN , respectively. NotationX1 ⊕XN indicates a network
coded packet/symbol obtained by jointly encoding packetsX1 andXN .

From Theorem 2, users1 andN should haveequalrates at
optimality. Now let us look at the network surplus achieved
at an arbitrary feasible solution. We can show the following:

Theorem 3:Let x̄ = (x̄1, . . . , x̄N ) denote anyfeasible(not
necessarily optimal) solution for Problem 2. We have:

∑N

n=1 Un(x̄n) − C
(

∑N−1
n=2 x̄n + max(x̄1, x̄N )

)

∑N
n=1 Un(xS

n) − C
(

∑N−1
n=2 xS

n + max(xS
1 , xS

N )
)

≥

∑N

n=1 U ′
n(x̄n) x̄n−C

(

∑N−1
n=2 x̄n+max(x̄1, x̄N )

)

maxq̃≥0 [ β q̃ − C(q̃) ]
,

(4)

whereU ′
n(x̄n) is the derivative of utility functionUn(x̄n) and

β = max

{

max
n=2,...,N−1

U ′
n(x̄n), U ′

1(x̄1) + U ′
N (x̄N )

}

. (5)

From Theorem 3, efficiency at any feasible pointx̄ (com-
pared to optimal pointxS) is lower boundedby the term on
the right hand side of (4). This result is critical in terms of
generalizing the result of Theorem 1(b).

Following the same pricing scheme as in Section II, the
shared link may allocate the resource through asingle price
for all packets (i.e., either routed or network-coded):

µ(x) = p
(

∑N−1
n=2 xn + max(x1, xN )

)

. (6)

Each usern ∈ N paysxnµ(x). However, this leads todouble
chargingfor encodedpackets. Notice that each encoded packet
includes the data fromboth users 1 andN . Therefore, we
considerprice discrimination, i.e., charging the routed and
network-coded packets withdifferentprices as explained next.

Let µ(x) in (6) denote the price to charge routed packets.
Under the discriminatory pricing scheme, we define another
price valueδ(x) for network coded packets. In general,

δ(x) = α µ(x), (7)

where0 < α≤ 1 is a pricing parameter. Ifα = 1, then there
is only a single price. Ifα < 1, then the encoded packets
are charged less than the routed packets as they carry more
information compared to routing packets of the same size. In
this paper, we mostly assume thatα = 1

2 . This is indeed the
only choice ofα which avoidsover or undercharging.
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Based on our price discrimination model, user 1 pays

min(x1, xN )δ(x) + (x1 − min(x1, xN )) µ(x). (8)

From (7), the payment is(x1 − (1 − α)min(x1, xN ))µ(x). A
similar payment model can be obtained for userN . Notice that
each usern = 2, . . . , N − 1 still paysxnµ(x).

We are now ready to define a resource allocation game for
the network setting in Fig. 2, when users can anticipate prices
µ andδ according to (6) and (7), respectively.

Game 2: (Resource allocation game among inter-session
network coding and routing flows)

• Players: Users in setN .
• Strategies: Transmission ratesx for all users.
• Payoffs: Qn(xn, x−n) for each usern ∈ N . The network

coding users1 andN have:

Q1(x1, x−1) = U1(x1) − (x1 − (1 − α)min(x1, xN ))

× p
(

∑N−1
r=2 xr + max(x1, xN )

)

,

QN(xN , x−N )= UN (xN )−(xN −(1−α)min(x1, xN ))

× p
(

∑N−1
r=2 xr + max(x1, xN )

)

.

and each routing usern ∈ N\{1, N} has

Qn(xn, x−n)=Un(xn)−xnp
(

∑N−1
r=2 xr+max(x1, xN )

)

.

B. Existence and Non-uniqueness of Nash Equilibria

A Nash equilibrium of Game 2 with both routing and inter-
session network coding flows can be defined as a rate selection
vectorx∗ � 0 such that for all usersn ∈ N :

Qn(x∗
n, x∗

−n) ≥ Qn(x̄n, x∗
−n), ∀ x̄n ≥ 0. (9)

Theorem 4:Suppose that the prices arelinear, i.e., p(q) =
aq for a > 0. Let X ∗ denote the set ofall Nash equilibria
for Game 2. We have: (a) SetX ∗ is non-empty, i.e., a
Nash equilibriumalwaysexists. (b) SetX ∗ may have several
elements, i.e., a Nash equilibrium maynot be unique.

The key idea of proving Theorem 4 is to directly apply
Rosen’s existence theorem for concave n-person games[17,
Theorem 1]. In this regard, we show that forall usersn ∈ N
(including users 1 andN ), payoff functionQn(xn, x−n) is a
concavefunction with respect toxn. It is worth mentioning
that although the payoff functionsQ1 and QN are concave,
they arenot differentiable due tomax andmin functions.

From Theorem 4, the existence of Nash equilibria is still
guaranteed with the possibility of network coding, even though
the payoff functions(Q1, . . . , QN) in Game 2 are more
complicated compared to payoffs(P1, . . . , PN ) in Game 1.
However, as we will see, the non-uniqueness of the Nash
equilibria can drastically change the results on efficiencyloss.

C. Efficiency Bounds and PoA

In order to characterize the Nash equilibria of Game 2, we
first need to obtain thebest responsefor each user. That is,
for each usern ∈ N we should obtain the best strategyxB

n

which maximizes payoffQn given fixedx−n:

xB
n = argmax

xn≥0
Qn(xn, x−n), ∀n ∈ N . (10)

We notice that the optimization problems in (10) areconvex.
Thus, we can easily show the following for routing users.

Proposition 1: For each routing usern∈N\{1, N}, given
x−n, we have xB

n = 0 if U ′
n(0) ≤ a(

∑N−1
r=2,r 6=n xr +

max(x1, xN )); otherwise, the best responsexB
n is obtained

as the solution of the following equation

U ′
n(xB

n ) − a(
∑N−1

r=2,r 6=n xr + max(x1, xN )) − 2axB
n = 0.

Obtaining the best responses for network coding users1 and
N is more complicated, mostly due to non-differentiability
of the payoffs functionsQ1 and QN . In fact, user1 should
separately examine two scenarios: (a) Selecting its strategy x1

to begreater than or equal toxN :

x̃B
1 = arg max

x̃1≥xN

U1(x̃1)−(x̃1−(1−α)xN) a
(

∑N−1
n=2 xn+x̃1

)

.

In that case, the corresponding best payoff isQ1(x̃
B
1 , x−1).

(b) Selecting its strategyx1 to be lessthan or equal toxN :

x̂B
1 = arg max

0≤x̂1≤xN

U1(x̂1) − αx̂1 a
(

∑N−1
n=2 xn + xN

)

.

In that case, the corresponding best payoff isQ1(x̂
B
1 , x−1).

If Q1(x̃
B
1 , x−1) > Q1(x̂

B
1 , x−1), then user1 selectsxB

1 =
x̃B

1 and if Q1(x̃
B
1 , x−1) < Q1(x̂

B
1 , x−1), then user1 selects

xB
1 = x̂B

1 . We notice thatQ1(x̃
B
1 , x−1) = Q1(x̂

B
1 , x−1) if

and only if x̃B
1 = x̂B

1 . In that case, user1 selectsxB
1 = x̃B

1 =
x̂B

1 . Similar statements are true for userN . We can show the
following for inter-session network coding users.

Proposition 2: Givenx−1, for user1, if U ′
1(xN )≤ αaxN+

a(
∑N−1

n=2 xn + xN ), then we havẽxB
1 = 0; otherwise,x̃B

1 is
obtained by solving the following equation

U ′
1(x̃

B
1 ) − a(

∑N−1
n=2 xn + xN ) + a(2−α)xN − 2ax̃B

1 = 0.

On the other hand,̂xB
1 depends on whether the utility function

U1 is linear or not. For linear utility functionU1(x̂1) = γ1x̂1,
if γ1 > α a(

∑N−1
n=2 xn + xN ), then x̂B

1 = xN ; otherwise,
x̂B

1 = 0. For nonlinear utilityU1(x̂1), rate x̂B
1 is obtained by

solving the following equation (bounded between 0 andxN ):

U ′
1(x̂1) − x̂1αa

(

∑N−1
n=2 xn + xN

)

= 0.

The best responsexB
N for userN is obtained similarly.

By definition, for any Nash equilibriumx∗ ∈ X ∗, whereX ∗

denotes the set of all Nash equilibria of Game 2, givenx
∗
−n,

the best response for usern ∈ N is indeed its strategy at Nash
equilibrium. That is, givenx−n = x

∗
−n, we have:xB

n = x∗
n.

Thus, all Nash equilibria of Game 2 can be characterized by
the best response models in Propositions 1 and 2. We notice
that the best responses only depend on thefirst derivatives
of the utility functions. Therefore, for each Nash equilibrium
x
∗∈X ∗, if we define a new collection oflinear utilities:

Ūn(xn) = U ′
n(x∗

n) xn, ∀n ∈ N , (11)

then x
∗ continues to be a Nash equilibrium for a new

game with modified utility functionsŪ1(x1), . . . , ŪN(xN ).
In fact, x

∗ is a Nash equilibrium for thefamily of games
with utility functions U1(x1), . . . , UN (xN ) having their first
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derivatives equal toU ′
1(x

∗
1), . . . , U

′
N (x∗

N ) at Nash equilibrium,
respectively. We now apply Theorem 3 at a Nash equilibrium
x
∗ (which is afeasiblesolution for Problem 2). We have:
∑N

n=1 Un(x∗
n) − C

(

∑N−1
n=2 x∗

n + max(x∗
1, x

∗
N )
)

∑N

n=1 Un(xS
n) − C

(

∑N−1
n=2 xS

n + max(xS
1 , xS

N )
)

≥

∑N
n=1 U ′

n(x∗
n)x∗

n−C
(

∑N−1
n=2 x∗

n+max(x∗
1, x

∗
N )
)

maxq̃≥0 [ β q̃ − C(q̃) ]

=

∑N

n=1 Ūn(x∗
n) − C

(

∑N−1
n=2 x∗

n + max(x∗
1, x

∗
N )
)

maxq̃≥0 [ β q̃ − C(q̃) ]
,

(12)

where the equality results from (11). We can also verify that
maxq̃≥0 [ β q̃ − C(q̃) ] is the optimum of Problem 2 forlinear
utility functions as in (11). Thus, the right hand side of the
inequality in (12) denotes theefficiency lossfor linear utilities.
On the other hand, the left hand side of the inequality in (12)
denotes the efficiency loss forany choice of utility functions.
These directly result in the following key result:

Theorem 5:Suppose that the prices are linear. Theworst-
caseefficiency loss at a Nash equilibrium of Game 2 occurs
when the utility functions arelinear for all users. That is,

Un(xn) = γnxn, ∀n ∈ N , (13)

where utility parameterγn > 0 for all usersn ∈ N .

From Theorem 5, to obtain the worst-case efficiency loss for
Game 2, it is enough to only analyze the case when all utilities
are linear. We notice that for the case of linear utilities, for
each usern∈N , the first derivativeU ′

n(xn) = γn. Thus, the
best-responses can be obtained using Propositions 1 and 2.

We are now ready to obtain the exact values of Nash
equilibria and PoA for Game 2. For the rest of this paper, we
limit our study to the case whereN = 2, i.e., there existsno
routing user and users 1 and 2 practice inter-session network
coding. We can show the following key result:

Theorem 6:Suppose that the prices arelinear, that is
p(q) = a q for some a > 0. Also assume that the utility
functions arelinear as in (13). Consider the case whenN = 2
and letx∗ denote a Nash equilibrium for Game 2. Without loss
of generality, assume thatγ1 ≥ γ2. We have
(a) If γ2 ≤ γ1 ≤

(

1 + 1
α

)

γ2, then

γ1

(1 + α)a
≤ x∗

1 = x∗
2 ≤

γ2

αa
. (14)

(b) If
(

1 + 1
α

)

γ2 ≤ γ1 ≤ 2
α
γ2, then

x∗
1 =

γ2

αa
, x∗

2 =
2
α
γ2 − γ1

a(1 − α)
. (15)

(c) If 2
α
γ2 ≤ γ1, then

x∗
1 =

γ1

2a
, x∗

2 = 0. (16)

From Theorem 6(a), if the slopes of linear utility functions
for users 1 and 2 (i.e.,γ1 and γ2) are close enough, then
at Nash equilibrium, users 1 and 2 choose to have the same
data rates. In that case, there are indeed infinite number of
Nash equilibria ranging from γ1

(1+α)a to γ2

αa
. However, if γ1

and γ2 are not close (e.g., as in the cases for Theorem 6(b)
and (c)), then users 1 and 2 will choose to have different rates
at the Nash equilibrium. Comparing this with the results from
Theorem 2, we shall expect drastic efficiency loss, especially
when γ1 ≥ 2

α
as it results inx∗

2 = 0. Nash equilibria when
α = 1

2 are shown in Fig. 3. We can see that ifγ1 andγ2 are
close, Game 2 has multiple Nash equilibria (see the shaded
areas). Asγ1 increases and becomes significantly larger than
γ2, the Nash equilibrium becomesunique (e.g., for γ1 ≥ 3
andγ2 =1 whenα= 1

2 ). We also see that ifγ1 = γ2 and we
indeed have a symmetric network, then optimal transmission
ratesxS

1 =xS
2 =2 are among Nash equilibria.

Theorem 7:Suppose that the prices arelinear, that is
p(q) = aq for somea > 0. Also assume thatN = 2.
(a) Let xS be any optimal solution for Problem 2 andx∗ be
any Nash equilibrium for Game 2. Ifα = 1, we have:

N
∑

n=1

Un (x∗
n) − C

(

N
∑

n=1

x∗
n

)

≥
1

3

(

N
∑

n=1

Un

(

xS
n

)

−C

(

N
∑

n=1

xS
n

))

,

If α = 1
2 , we have:

N
∑

n=1

Un (x∗
n)−C

(

N
∑

n=1

x∗
n

)

≥
12

25

(

N
∑

n=1

Un

(

xS
n

)

−C

(

N
∑

n=1

xS
n

))

,

(b) The lower bounds in Part (a) are tight.

The proof of Theorem 7 is given in the Appendix. Theorem
7 extends the results on efficiency bounds for routing flows
in Theorem 1 to the case when two inter-session network
coding users share a link. We can see that even for the simple
case with only two users, the efficiency bounds in Theorem 1
cannot be guaranteed anymore. From the results in Theorem
7, inter-session network coding with no price discrimination
can reduce the efficiency bound from 0.67 to13 = 0.33.
On the other hand, even if we use price discrimination by
settingα = 1

2 , i.e., users1 andN split the price of encoded
packets, then the efficiency bound improves only to12

25 =
0.48. This implies that inter-session network coding flows
are significantly more sensitive to the presence of selfish and
strategic users compared to routing flows. Numerical results
on efficiency bounds for 200 randomly generated scenarios are
shown in Fig. 4. We can see that by using price discrimination
with pricing parameterα = 1

2 , we can improve the guaranteed
efficiency bound from0.33 to 0.48. We can also see that the
efficiency bounds obtained in Theorem 7 are indeed tight.

IV. CONCLUSION

This paper represents a first-step towards understanding the
joint impact of network coding and strategic behavior of users
on the network resource allocation efficiency. To gain insights,
we focus on the case where there is a single bottleneck link in
the network, and two out ofN ≥ 2 users have the capability
of performing inter-session network coding. We show that the
results are dramatically different from the case where network
coding is not taken into consideration. In particular, there
can be many (even infinite) Nash equilibria in the resource
allocation game, and the PoA could be much lower than the
case without network coding. The precise value of the PoA
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depends on the pricing scheme used by the bottleneck link. We
showed that a discriminatory pricing scheme, which charges
encoded and forwarded packets differently, can improve effi-
ciency, compared to the case of using a single price.

APPENDIX

To prove Theorem 7, we first notice that the optimal
solution of Problem 2 whenN = 2 is obtained asx⋆

1 =
x⋆

2 = γ1+γ2

a
. At optimality, the network aggregate surplus

becomes(γ1 + γ2)
2
/(2a). Next, we shall examine efficiency

loss among all the three possibilities in Theorem 6. First,
assume thatγ2 ≤ γ1 ≤ (1 + 1/α)γ2. In that case, the Nash
equilibria are as in (14). The worst-case Nash equilibrium is
found by solving the following optimization problem

minimize
x∗

1

(γ1 + γN )x∗
1 −

a
2x∗

1
2

(γ1+γ2)2

2a

subject to
γ1

(1 + α)a
≤ x∗

1 ≤
γ2

αa
.

(17)

We can show that the optimal value of the above problem is
7
16 if α = 1 and 5

9 if α = 1
2 . Next, assume that(1+1/α)γ2 ≤

γ1 ≤ 2
α
γ2. This case may happen only ifα < 1. We can

show that if α = 1
2 , then the worst-case efficiency at Nash

equilibrium becomes1225 . Finally, assume that2
α
γ2 ≤ γ1. In

this case, the Nash equilibrium is as in (16) and the worst-case
efficiency is obtained by solving the following problem

minimize
γ1,γ2

γ1
γ1

2a
− a

2

(

γ1

2a

)2

(γ1+γ2)
2

2a

subject to 0 ≤
2

α
γ2 ≤ γ1.

(18)

It is clear that the above objective function isdecreasingin
γ2. Thus, at optimality we should haveγ2 = α

2 γ1. From this,
the objective function of Problem (18) becomes

1
2a

− a
2

(

1
2a

)2

(1+ α

2
)
2

2a

=
3

4

(

1

1 + α/2

)2

(19)

The above indicates the worst-case efficiency at the Nash
equilibrium of Game 2 if we select2

α
γ2 ≤ γ1. If α = 1,

then (19) becomes13 . On the other hand, ifα = 1
2 , then (19)

becomes12
25 . Comparing the three cases, ifα = 1

2 , then the
worst-case efficiency is obtained asmin{ 5

9 , 12
25 , 12

25} = 12
25 . �
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