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Abstract— A common assumption in the network coding lit-
erature is that the users are cooperativeand will not pursue
their own interests. However, this assumption can be viol&d in
practice. In this paper, we analyzeinter-session network coding
in a wired network, assuming that the users areselfishand act
as strategic players to maximize their own utility. We prove
the existence of Nash equilibria for a wide range of utility
functions. The number of Nash equilibria can be large (even
infinite) under certain conditions, which is in sharp contrast to a
similar game setting with traditional packet forwarding. We then
characterize the worst-case efficiency bounds, i.e., thgrice-of-
anarchy (PoA), compared to anoptimal and cooperativenetwork
design. We show that by using a novebiscriminatory pricing
scheme that charges encoded and forwarded packets differtiy,
we can improve PoA in comparison with the case where aingle
pricing scheme is being used. However, PoA is still worse thahe
case when network coding is not applied. This implies that iter-
session network coding is more sensitive to strategic behav. For
example, for the case where only two network coding flows shar
a single bottleneck link, the efficiency at certain Nash eqlibria
can be as low as 48%. These results generalize the well-known
result of guaranteed 67% efficiency bounds shown by Johari ah
Tsitsiklis for traditional packet forwarding networks.

|. INTRODUCTION

Since the seminal paper by Ahlsweeleal. [1], a rich body
of work has been reported on how network coding can impro
performance in both wired and wireless networks [2]-[4
Network coding can be performed mintly encoding multiple
packets either from theameuser or fromdifferentusers. The
former is calledintra-sessionnetwork coding [1], [3] while
the latter is callednter-sessionnetwork coding [2], [4]. A
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allocation is characterized by the Nash equilibrium. A key
performance metric is calletrice of Anarchy (PoA)i.e.,
the worst caseefficiency loss at any Nash equilibrium due
to users’ strategic behavior. POA is equal to 1 if there is no
efficiency loss. A smaller POA denotes a higher efficiencg.los
Other recent work on resource allocation games include [8]
and [9]. To the best of our knowledge, none of the previous
work along this line took network coding into consideration
Game theoretic analysis of network coding has received
limited attention only recently, e.g., [10]-[13]. All relésiin
[10]-[13] focus on the case dfitra-sessionmetwork coding,
whereas here we considarter-sessionnetwork coding. In
[14], a game theoretic analysis forter-sessiometwork cod-
ing of unicastflows on a single bottleneck link is considered.
It is shown that in some classes wfo-usernetworks, it is
possible to use a link capacity allocation mechanism toesehi
cooperative behavior from selfish users. In this paper, we al
consider a similar network setting. However, we assume that
there areV > 2 users, two of which use network coding while
the rest only use routing. This helps us to better understand
the interaction between network coding and routing flows Th
details of our results are different from those in [14] since
we consider the capacity-unconstrained case instead of the
Egpacity-constrained case in [14]. Due to the focus on the
apacity region, [14] did not consider the impact of users’
utility functionsand issues of price anticipation and PoA.

In summary, the key contributions of this paper are:

o New problem formulationWe formulate the problem of

common assumption in most network coding schemes in the maximizing thenetwork aggregate surpluse., the total

literature is that the users aceoperativeand will not pursue

their own interests. However, this assumption can be \gdlat

in practice. Therefore, assuming that the userssatfishand

strategiG in this paper we ask the following key questions: «
(a) What is the impact of users’ strategic behavior on networ
performance? (b) How does this impact change with different

pricing schemes that a link can potentially choose?
It is widely accepted thapricing is an effective approach

in terms of improving the efficiency of network resource

allocation, especially indistributed settings. In [5], Kelly
et al. showed that if users arprice takers(i.e., they treat
network price as fixed), then efficient resource allocatian c
be achieved by properly settingongestion priceson each
of the shared links. Recent work by Johari and Tsitsikl
focused on studying how the results on efficiency change
both capacity-constrained [6] and capacity-unconstchii7é
networks if users ar@rice anticipatorswho realize that the
price is directly impacted by each individual user’s bebavin

this case, users playgamewith each other, and the resource

utility of all users minus the total network cost, under
inter-session network coding. As far as we know, such a
problem has not been studied in the literature.
Innovative pricing schemesMe consider two pricing
schemesnon-discriminatory pricingand discriminatory
pricing. The first one is the traditional approach with
routing-only users, where all packets are charged with
the same price. The second scheme is a novel general-
ization of the first one. We show that due to the special
properties of network coding, discriminatory pricing is
more reasonable in terms of reflecting the actioald
generated by each user.

Characterization of Nash equilibriaWe show that a
Nash equilibrium always exists; however, there might be
manyNash equilibria in the resource allocation game with
network coding. The latter is in sharp contrast to the case
of the unique Nash equilibrium for the game with routing.
Calculation of PoA Among the two aforementioned
pricing schemes, a properly chosen discriminatory pric-
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N Notice that Problem 1 is a convex optimization problem. The
objective function in Problem 1 is theetwork aggregate

2 2 surplus[16]. In general, since the utility functions are local
%3 & to the users and are not known at each link, efficient resource
Price: p - allocation needs to be done vicing. Given the rate vector
) x = (z1,...,zn) from the users, the shared bottleneck link
v (u,v) sets a single price:
" p(x) =p (fo:l rcn) 1)

for each unit of data rate it carries. Each usee N then

paysz, u(x) for its transmission rate,.
ing leads to a better PoA compared with the non- We now analyze how the users determine their rates based
discriminatory approach. We also show that the PoA is abn the price. First assume that the userspaiee takersi.e.,
ways smaller (i.e., worse) compared with the case withotltey donot anticipate the effect of a change of their rates on
network coding. This implies that inter-session networthe resulting price. Thus, each usee N selects its rate:,
coding is more sensitive to users’ strategic behavior. to maximize itsown surplus, i.e., utility minus payment, by

The rest of the paper is organized as follows. In Section Bplving the following local optimization problem [5]:
we summarize the recent results on resource allocation game _ -1
with routing. In Section Ill, we extend the results to theeas 20 Onlzn) —np) = o =Un )

when users can jointly perform inter-session network c@dinyhere ;77 =1 denotes the inverse of the derivative of utility
Conclusions and the future work are discussed in Section ¥ ction U, and pricey is as in (1). From the first funda-
n .

Due to space limitation, most of the proofs are omitted.  antal theorem of welfare economics [16, pp. 326] if each

Il. RESOURCEALLOCATION GAME WITH ROUTING FLows usern e\ selects its rate as in (2), then at the equilibrium,
the network aggregate surplus (i.e., the objective functib

. In hth'i secltl_oln, Wed (t:onsm(ijer a resource taII(t)catlond gtimﬁoblem 1) is indeed maximized (cf. [7, Proposition 1]).
in which muftiple end-to-end USers compete 1o sen €IM'Next, we consider therice anticipatingusers where each

packets thro_ugh a s_ingle sha_red bottleneck I_ink as in Fig. Jser can anticipate the effect of its selected transmissiten
By construction, no inter-session network coding is perfed g;the resulting price. In this case, each user A no longer

Fig. 1. A single wireline bottleneck link shared By routing flows [7].

in this case. This _problem has been _vvidely Stl,JdiEd in [S}-[8 elects its rate as in (2). Insteadsitategicallyselectsz,, to
Here we summarize the key results in [7], which presents t ximize its surplus, given the knowledge that the priée)

:ortopedr_ termlr_mlogyf, ;nd also sir:ves“ills i beg_chmark for 45t according to (1) and it constant. Clearly, the decision
a IerF_|sc11Js?r|]0nsho del_cak\s_e (\le '?ed ork co Io??h t of made by usern also depends on the rates selected by other
n Fig. 1, the shared link is denoted by, v) and the set o users, leading to gesource allocation gamamong all users:

users is denoted by = {1,..., N}. All packets arriving at _ i )
nodeu are simplyforwardedto nodev through link(u, v). For ~ @me 1: (Resource allocation game among routing flows)

each usen €\, we denote the transmitter and receiver nodes® Players Users in setV.

by s, andt,, respectively. Let:,, denote the transmission rate * StrategiesTransmission rates for all users.

by usern € /. We assume that each usee N has autility « Payoffs P, (zn, z_,) for each usen e, where

function U,,, representing its degree of satisfaction based on Po(xp, @) =Up(xn) — Tnp (Zﬁ[:l In) )

its achievable data rate,. From the link’s point of view, the

total rate (i.e.,) ", .\ =) l€ads to a cost characterized by a other thanusern

cost functionC (e.g., the delay caused by the traffic). As in In Game 1. each .USGI € A strategically selects its rate

[7], we make the following assumptions throughout this pape - oo ma>2imizeits payoff functionP,, (n, ). A Nash

They are satisfied by many realistic utility and delay fuoics eauﬂibriumof Game 1 can be defined le ;}at_env.eatbh 0

such asa-fair utilities [15] and queuing delay models. such that for all users € A" we have -
Assumption 1:For eachn € A, utility function U,,(z,,) is '

concave non-negativestrictly increasing anddifferentiable Py(zy,x* ) > Py(Tp,x*,), VI, >0. 3
Assumption 2:There is adifferentiable convex andnon- |, nash equilibriumz*, no usem € A’ can increase its payoff

decreasingunctionp(q) overq >0, with p(0) >0 andp(q) —  py ynilaterally changing its strategy,. The following key
oo asg— oo, such that for each >0, the cost is modeled as oq it is from the recent work in [7]:

C(q):foqp(z) dz. HereC'(q) is convexand non-decreasing ) .
Given complete knowledge and centralized control of thte Theorel_m L [_7’ Theorim 3]f Suppose thgt the price func-
network, an efficient rate allocation can be characterized 3°NS arelinear, i.e., p(q) = aq for somea > 0.

an optimal solution of the following optimization problem: a) Game 1 always hasuniqueNash equilibrum.
P gop P " (b) If ° is an optimal solution for Problem 1 anet is a

Problem 1 (Surplus Maximization with Routing): Nash equilibrium for Game 1, then

maximize SN U (z,)—C (Zﬁle wn) XN: U (ﬁ)—C(XN: m*) . 2 (zN: Uy (5) —C( 3 xs))
,1n " n:ln_3 n:ln ! 1n.

subjectto =z, >0, n=1,...,N. o

andx_,, denotes the vector of selected rates for all users



(c) The lower bound in Part (b) is tight.

From Theorem 1, for any choice of system parameters, the s
network aggregate surplus obtained at the Nash equilibofum
Game 1 isat Ieast% ~ 0.67 of the optimal aggregate surplus.

In the rest of this paper, we generalize Theorem 1 to the case s, ,
where some of the users can perform inter-session network
coding. We show that such a generalization is non-trivial an i
the results are indeed drastically different. Sy

N
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IIl. RESOURCEALLOCATION GAME WITH INTER-SESSION Fig. 2. Asingle link shared byv flows. Users 1 andV perform inter-session
network coding. The side link&1, ¢y ) and (s, t1) are free of charge. Here
NETWORK CODING AND ROUTING FLOWS z1 andzy denote the data rates of source nodesand sy, respectively.

. On the other handX; and X denote the actual packets/symbols emanated
A. Problem Formulation from nodess; and s, respectively. NotationX; & X n indicates a network

. e . . . ... coded packet/symbol obtained by jointly encoding packétsand X .
Consider the modified network model in Fig. 2. It is similar P Y v jomty 9 packst N

to the network in Fig. 1, except that we included two direct
sidelinks: (s1,tx) from source node; to destination node From Theorem 2, usesand N should haveequalrates at

tn, and (sy,t;) from source nodey to destination node optimality. Now let us look at the network surplus achieved
t1. In this scenario, the first and the last users (i.e., users?gan arbitrary feasible solution. We can show the following
andN) can perform inter-session network coding. Détand ~ Theorem 3:Letz = (z,,...,Zy) denote anfeasible(not
Xy denote the packets sent from source nogesnd sy, necessarily optimal) solution for Problem 2. We have:
respectively. The intermediate nodecan encode packefs; N Uz o (5N o

and X y together, and then send the encoded packet, denoted=n=1 Un(n) = (Zn:2 Zn + max(Z1, IN))

by X1 ® Xy, towards node (and from there towards and ZN Up(z5) — C (ZN—I S 4 max(z5, 25 ))

tn). Given theremedydata X; from the side link(s;,tx) n=t n=2 ¥n 1IN (4)
and theremedydata Xy from the side link(sy,;), nodes SN UL (#,) 2, —C (Zﬁ;‘; jn—f—max(i'l,f]v))

ty andt; candecodethe encoded packets that they receive. > - s ,

In fact, nodeg 5 andt; can both decod&’; and X . Clearly, maxg>o [#¢—C(9)]

the benefit of the network coding is to reduce the traffic loaghereU’ (z,,) is the derivative of utility functiori/,, (z,,) and
on the shared linKu,v) (thus reducing the link cost) while

achieving the sa'me rates. Besides Assumptions 1 and 2, herg _ max{ max U (z,), Ul(z1) + U]’V(:EN)} . (5
we assume that: n
Assumption 3:The side linkgs1,¢x) and(sy, 1) in Fig. 2 From Theorem 3, efficiency at any feasible pain{com-
always havezerocost and imposeero prices. pared to optimal point:?) is lower boundedy the term on
For example, if the link cost is used to model the lohday the right hand side of (4). This result is critical in terms of
and the side links have much larger capacity than the shagggheralizing the result of Theorem 1(b).
link, then the costs of the side links are small and neglégibl Following the same pricing scheme as in Section I, the
From now on, we refer to usetsand N in Fig. 2 ascoding shared link may allocate the resource througsirayle price
users and to user2,...,N — 1 asrouting users For the for all packets (i.e., either routed or network-coded):
network in Fig. 2, the aggregate surplus maximization mobl
becomes: u(x) =p (Zﬁ[;zl T + max(zy, SCN)) : (6)

Problem 2 (Surplus Maximization with Network Coding): Each usen € A" paysa,

EERER}

(x). However, this leads tdouble
N N—-1 chargingfor encodecpackets. Notice that each encoded packet
maximize ZU" (zn)— C(Z a:n—i-max(a:l,a:N)) includes the data fronboth users 1 andV. Therefore, we

* n=1 n=2 considerprice discrimination i.e., charging the routed and
subjectto xz,, >0, n=1,...,N. network-coded packets wittfferentprices as explained next.

Now let us explain the intuition behind the objective fupati ~ Let u(z) in (6) denote the price to charge routed packets.
in Problem 2. Since:;; andzy are selecteihdependentlypy Under the discriminatory pricing scheme, we define another
users 1 andV, in general, we may have, # zx. Thus, the Price values(z) for network coded packets. In general,
intermediate node can perform network coding only at rate

min(x1, xy ). Those packets which ar®t encoded (e.g., with 0(x) = o p(a), )
ratex) —min(z;, ox) if 1 > 2y, and ratery —min(z1, 28)  where0 < o <1 is a pricing parameter. If = 1, then there

if 21 < zy) are simplyforwarded leading to an aggregatejs oniy a single price. Ifa < 1, then the encoded packets

data rate ofmax(x1,zx) over link (u,v). Note that ifz1 =  gre charged less than the routed packets as they carry more
zn, thenall packets from users 1 andl are jointly encoded. information compared to routing packets of the same size. In
Theorem 2:Let ° = (z7,...,z%) denote anyoptimal this paper, we mostly assume that= 1. This is indeed the

solution for Problem 2. We have:; = z%. only choice ofa which avoidsover or under charging.



Based on our price discrimination model, user 1 pays
8

From (7), the payment i6r; — (1 — o) min(x1, zn))p(x). A
similar payment model can be obtained for udemotice that
each usen = 2,..., N — 1 still paysx, u(x).

min(zy, xn)d(x) + (21 — min(zy, xn)) p(x).

We are now ready to define a resource allocation game for

We notice that the optimization problems in (10) amnvex
Thus, we can easily show the following for routing users.

Proposition 1: For each routing usetzej\/\{y\}, N}, given
x_,, we havezZ 0 if U,0) < a(X, 5,z +
max(z1,ry)); otherwise, the best responsé is obtained
as the solution of the following equation

N—-1

the network setting in Fig. 2, when users can anticipateepric Uy (27) — a(32,2, ., @ + max(z1, 2n)) — 20z = 0.

1 andé according to (6) and (7), respectively.

Game 2: (Resource allocation game among inter-sessi%p

network coding and routing flows)

« Players Users in setV.

« Strategies Transmission rateg for all users.

o Payoffs Q,,(z,,z_,) for each usen € N. The network
coding userd and N have:

Qi(x1,x_1) = Ui(x1) — (21 — (1 — @) min(z1, 2n))
X p (Zi\;l Ty + max(xl,xN)) ,
On(zy,z_N)=Un(zn)—(xny —(1—a)min(z1, zy))
X P (Zi\gl @, + max(zq, a:N)) .
and each routing user € N'\{1, N} has
Qu(@ns @) =Un ()~ wup(S05 wp + max(zy, an)).

B. Existence and Non-uniqueness of Nash Equilibria

A Nash equilibrium of Game 2 with both routing and inter&1 -

Obtaining the best responses for network coding usersd

is more complicated, mostly due to non-differentiability
of the payoffs functiong); and Q. In fact, userl should
separately examine two scenarios: (a) Selecting its glyate

to be greaterthan or equal tary:

~B__
SCl—

(Z,JLV;; xn+5:1).

In that case, the corresponding best payofflig#?,x_1).
(b) Selecting its strategy; to belessthan or equal tary:

(271:/:—21 Tn + xN) ‘

argmax Uy (Z1)—(Z1—(1—a)zn) a
T12TN

:fcfg =argmax Ui(Z1) —adi a
0<z1<zNn
In that case, the corresponding best payofflig(i?,x_1).
If Q1(ZP,z_1) > Q1(2P,z_,), then userl selectsz? =
P and if Q1 (28, x_1) < Q1(2F,z_1), then userl selects
P = 2B, We notice thatQ, (27, x_1) = Q1(2F,x_,) if
and only if zP = 2B. In that case, user selectst? = 7P =
B Similar statements are true for us®¥t We can show the

session network coding flows can be defined as a rate selectffPwing for inter-session network coding users.

vectorz* > 0 such that for all users € \V:
Qu(zy, ") > Qu(Tn,x*,), VI, >0. 9

Theorem 4:Suppose that the prices dreear, i.e.,p(q) =
aq for a > 0. Let X* denote the set odll Nash equilibria
for Game 2. We have: (a) Set* is non-empty, i.e., a
Nash equilibriumalwaysexists. (b) Sett* may have several
elements, i.e., a Nash equilibrium magt be unique

"

Proposition 2: Givenz_4, for userl, if U (zn) < aazn+
a(XN2) &, + xn), then we haverP = 0; otherwise,z? is
obtained by solving the following equation

Ui(@P) — a(,5
On the other hand;? depends on whether the utility function

U, is linear or not. For linear utility functiod/; (1) = 121,
if v >« a(Zf:’;; T, + xn), then2P = zy; otherwise,

Ty +aN) + a2—a)ry — 2a3P = 0.

The key idea of proving Theorem 4 is to directly applyijlg = 0. For nonlinear utilityl; (1), rate 1’ is obtained by
Rosen’s existence theorem for concave n-person gdifes SOlving the following equation (bounded between 0 ang:

Theorem 1]. In this regard, we show that fat usersn € N
(including users 1 andV), payoff function@,,(x,,x_,) is a
concavefunction with respect tar,,. It is worth mentioning
that although the payoff functiong; and @y are concave,
they arenot differentiable due tanax and min functions.

From Theorem 4, the existence of Nash equilibria is st

guaranteed with the possibility of network coding, everutiio
the payoff functions(Q1,...,Qx) in Game 2 are more
complicated compared to payoff#;,..., Py) in Game 1.

equilibria can drastically change the results on efficiclosg.

C. Efficiency Bounds and PoA

In order to characterize the Nash equilibria of Game 2, we

first need to obtain théest responséor each user. That is,
for each usem € N we should obtain the best strategyf
which maximizes payoft),, given fixedx_,,:

B Vn e N.

n

x

(10)

argmax Qp(Tn,T_n),
ngO

Ui(#1) — Z10a (22;_21 Ty + :vN) =0.
The best response’ for userN is obtained similarly.

By definition, for any Nash equilibriure* € X*, whereX'*
Iﬁqenotes the set of all Nash equilibria of Game 2, giwén),,
the best response for userc A is indeed its strategy at Nash
equilibrium. That is, givenc_,, = =* ,, we have:x? = z7.

—n

Thus, all Nash equilibria of Game 2 can be characterized by

However, as we will see, the non-uniqueness of the Naﬂhe best response models in Propositions 1 and 2. We notice

at the best responses only depend onfitet derivatives
of the utility functions. Therefore, for each Nash equiliton
xz* e X*, if we define a new collection dfnear utilities:

Un(zn) = Ul (z2) 2n, VYn €N, (12)

then x* continues to be a Nash equilibrium for a new
game with modified utility functiond/; (z1),...,Ux(zx).
In fact, * is a Nash equilibrium for thdamily of games
with utility functions Uy (z1),...,Un(xy) having their first



derivatives equal t&/; (z}), ..., Upn (z% ) at Nash equilibrium, and~, arenot close (e.g., as in the cases for Theorem 6(b)
respectively. We now apply Theorem 3 at a Nash equilibriuand (c)), then users 1 and 2 will choose to have differensrate
x* (which is afeasiblesolution for Problem 2). We have: at the Nash equilibrium. Comparing this with the resultsrfro

N . N1 o, . Theorem 2, we shall expect drastic efficiency loss, esggcial
2 =1 Un(ar) = C (Zn:2 Tn +max(x1’IN)) wheny; > 2 as it results inz3 = 0. Nash equilibria when
N N—-1 a = i are shown in Fig. 3. We can see thatyif and~, are
U, (z5) — C s s .8 ) 5 : > tha Y2
=1 Un@) (2"22 o+ max(ay, o) close, Game 2 has multiple Nash equilibria (see the shaded

25—1 U (a3)ak —C (25:21 o +max(z}, 557\7)) (12) areas). Asy; increases and becomes significantly larger than
—~ — p ~2, the Nash equilibrium becomesique (e.g., fory; > 3
maxg>o [ 54— C(q)] and~, =1 whena=1). We also see that if; =+, and we
SN Unlat) - C (ZZLV:_; % + max(z7, x}*\,)) indeed have a symmetric network, then optimal transmission
_ oS L
maxaso [ B3 —C(@)] ; rateszy =x5 =2 are among Nash equilibria.
where the equality results from (11). We can also verify th
maxg>o [ 3G — C(q) ] is the optimum of Problem 2 fdmear
utility functions as in (11). Thus, the right hand side of th
inequality in (12) denotes thefficiency lossor linear utilities.

On the other hand, the left hand side of the inequality in (1
Uy (z))—C

Theorem 7:Suppose that the prices afaear, that is
%tq) = aq for somea > 0. Also assume thalv = 2.
(a) Letx® be any optimal solution for Problem 2 and be

?;my Nash equilibrium for Game 2. # = 1, we have:
denotes the efficiency loss fany choice of utility functions.

N 1 N N
* S S
()25 (w3 ))
These directly result in the following key result: n=1 n=t n=t

Theorem 5:Suppose that the prices are linear. Therst- If @ = 3, We have:
caseefficiency loss at a Nash equilibrium of Game 2 occursy N
()
n=1

n=1

N N
. . . . 12
when the utility functions aréinear for all users. That is, ) = Sy S
y ;Un (z2)—C = (; Uy, (23)-C (;xn»
Un(2n) = Ynon, Vn e N, (13) - =

(b) The lower bounds in Part (a) are tight.

where utility parametery, > 0 for all usersn € V. The proof of Theorem 7 is given in the Appendix. Theorem
From Theorem 5, to obtain the worst-case efficiency loss fgrextends the results on efficiency bounds for routing flows
Game 2, it is enough to only analyze the case when all utllitigh Theorem 1 to the case when two inter-session network
are linear. We notice that for the case of linear utilities, forcoding users share a link. We can see that even for the simple
each usem € N, the first derivativel;, (x,,) = .. Thus, the case with only two users, the efficiency bounds in Theorem 1
best-responses can be obtained using Propositions 1 and 2annot be guaranteed anymore. From the results in Theorem
We are now ready to obtain the exact values of Nash inter-session network coding with no price discrimioati
equilibria and PoA for Game 2. For the rest of this paper, wean reduce the efficiency bound from 0.67 &o: 0.33.
limit our study to the case whe® = 2, i.e., there exist®io  On the other hand, even if we use price discrimination by
routing user and users 1 and 2 practice inter-session netwegtting o = % i.e., usersl and N split the price of encoded
coding. We can show the following key result: packets, then the efficiency bound improves onlyfo =
Theorem 6:Suppose that the prices alimear, that is 0.48. This implies that inter-session network coding flows
p(q) = aq for somea > 0. Also assume that the utility are significantly more sensitive to the presence of selfigh an
functions ardinear as in (13). Consider the case whah= 2 Strategic users compared to routing flows. Numerical result
and letz* denote a Nash equilibrium for Game 2. Without losen efficiency bounds for 200 randomly generated scenares ar

of generality, assume that > 2. We have shown in Fig. 4. We can see that by using price discrimination
(@) Ifv2 <y < (14 1), then with pricing parameten = £, we can improve the guaranteed
- y efficiency bound fron0).33 to 0.48. We can also see that the
———— <] =25 < —. (14) efficiency bounds obtained in Theorem 7 are indeed tight.
(I1+a)a aa
(0) If (1+ )72 <7 < 299, then IV. CONCLUSION
. P . %72 -7 This paper represents a first-step towards understanding th
1= T2 = m (15) joint impact of network coding and strategic behavior ofrase
on the network resource allocation efficiency. To gain ihtsg
(€) If 272 <71, then we focus on the case where there is a single bottleneck link in
Bt the network, and two out oV > 2 users have the capability

1= 50 73 =0. (16) of performing inter-session network coding. We show that th
From Theorem 6(a), if the slopes of linear utility functionsesults are dramatically different from the case where ogkw
for users 1 and 2 (i.e; and~2) are close enough, thencoding is not taken into consideration. In particular, ¢her
at Nash equilibrium, users 1 and 2 choose to have the saga@ be many (even infinite) Nash equilibria in the resource
data rates. In that case, there are indeed infinite numberatibcation game, and the PoA could be much lower than the
Nash equilibria ranging from.5- to 22. However, ify1  case without network coding. The precise value of the PoA



We can show that the optimal value of the above problem is
Lif o =1 and2 if a = 1. Next, assume thdfl +1/a)v, <

71 < Z4,. This case may happen only if < 1. We can
show that ifa = % then the worst-case efficiency at Nash
equilibrium becomes:2. Finally, assume thaf~y, < 1. In

this case, the Nash equilibrium is as in (16) and the worsé-ca

efficiency is obtained by solving the following problem

Transmission Rates at Nash Equilibria
w
A
A

Utility Parameter A

2
1 a (Y1
L 195, = 9 \9,4
minimize %
Y1,72 12a2 (18)

. 2
subjectto 0 < —vp < ;.
(0%

It is clear that the above objective functiondgcreasingn
2. Thus, at optimality we should have = 5. From this,

Fig. 3. Nash equilibria for the resource allocation gameim E (i.e., Game the objective function of Problem (18) becomes

2) whenN =2, a=1, a= % and~y; > ~2 = 1. If the utility parameters
~v1 and 2 are close (e.g.52 < v1 < 372), then there are multiple Nash
equilibria as shown in the shaded area, following the modé€lL4). If v, is
much larger thanys (e.g.,71 > 3~2), then there is indeed a unique Nash
equilibrium, following the models in (15) and (16).

The above indicates the worst-case efficiency at the Nash

(19)

a 2 2
20— 5(ea) _3( 1
(1+2)° 4 \1+a/2
2a

1 AR ok ”w; AP T A equilibrium of Game 2 if we selecgﬂg <m. Ifa=1,
o iSO s ®e0 @%% 2% Je then (19) becomes. On the other hand, ift = 3, then (19)
0080 C% o g0 o e Tx TGO S e becomes}2. Comparing the three cases,df= 3, then the
e g S T T, @ o® x50 worst-case efficiency is obtained agn{2 12 121 - 12 m
E ¥% 0F o % &85 D ¥ o gPe Yy Ng9>255258 = 25°
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