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Abstract— Random access has been studied for decades to
achieve simple wireless medium access control (MAC). Some of
the distributed scheduling algorithms for throughput or ut ility
maximization also take the form of random access, although
extensive message passing among the nodes is required. In this
paper, we would like to answer this question: is it possible to
design a MAC algorithm that can achieve the optimal network
performance without message passing? We provide the first
positive answer to this question in a simple Aloha-type random
access wireless ad-hoc network. In particular, we propose a
distributed random medium access control algorithm based on
the framework of network utility maximization (NUM). We
prove the convergence of our algorithm for certain sufficient
conditions on the system parameters, e.g., with a large enough
user population. If each wireless node is capable of decoding
the source MAC address of the transmitter from the interferring
signal, then our algorithm indeed converges to the global optimal
solution of the NUM problem. If such decoding is inaccurate,
then the algorithm still converges, although optimality may not
be always guaranteed.

Index Terms— Network utility maximization, random access,
non-convex optimization, eliminating message passing.

I. I NTRODUCTION

For over thirty years, researchers have studied how well
simple random access protocols can work. Since 1992, some
of the distributed scheduling algorithms for throughput max-
imization take the form of random access [1]–[3], although
message passing among the nodes is required. Similarly, utility
optimization with infinite backlog has been achieved with the
help of message passing [4]–[6]. Very recently, in [7] a CSMA-
type random access algorithm without message passing is
developed that is proved to be utility-optimal. However, itstill
remains open whether even simpler protocols, such as Aloha-
type wireless random access control without carrier sensing,
can also achieve utility-optimality. In this paper, we provide
the first positive answer to this question.
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In the existing contention-based medium access control
(MAC) protocols, there is usually a tradeoff between system
performance (e.g., throughput and fairness) and the amountof
explicit message passing required among users. One example
is the IEEE 802.11 distributed coordination function (DCF),
where users do not explicitly exchange any message related to
their transmission probabilities1 and adapt their transmission
probabilities only based on the binary implicit feedback from
the network (e.g., collision or not). This typically leads to
low throughput and unfair resource allocation [8]. On the
other hand, several MAC algorithms (e.g., [4]–[6]) have been
designed based on the framework of network utility maximiza-
tion (NUM) which lead to the optimal system performance
without taking the signalling overhead into account. However,
these algorithms require extensive frequent message passing
among users. Considering the fact that any message trans-
mission leads to additional contention in the network, it is
of practical importance to design a MAC algorithm that can
achieve the optimal performance without message passing.

In this paper, we propose an efficient NUM-based MAC
algorithm without message passing based on our recent results
in [9]. Compared with the previous algorithms (e.g., [4]–[6]),
our NUM-based random access algorithms in [9] support a
wider range of utility functions, converge faster, and allow
fully asynchronous operations among users. However, message
exchange is still needed in [9]. In this paper, we show that in
the simple case of a fully interfered wireless network topology
where all users are within the interference range of each other
(e.g., as in wireless personal and local area networks), we
can completely eliminate the need for message passing. We
prove the convergence of our algorithm for certain sufficient
conditions on the system parameters, e.g., sufficiently large
user population. If each wireless node is capable of decoding
the source MAC address of the transmitter from the interfer-
ring signal, then our algorithm converges to the global optimal
solution of the NUM problem. If such decoding is inaccurate,
the algorithm still converges, although optimality may notbe
guaranteed. The estimation techniques we used in this paper
are related to [10], [11], although our estimation model is
more elaborate and captures more information (i.e., each user’s
transmission probability). Simulation results show that our
algorithm is robust to changes in user populations and channel
conditions. These encouraging results provide important in-

1In this paper, we use the term “messages” to denote control signals that
are explicitly related to wireless users’ transmission probabilities. We notice
that IEEE 802.11 DCF does not have any explicit message passing, although
it has various other control signals (e.g., RTS/CTS/ACK).



2

User 1
User 2

User 3

Fig. 1. A single-hop wireless ad-hoc network withN = 3 users. Each user
includes a wireless link and its dedicated transmitter and receiver nodes.

sights to design distributed optimal random MAC algorithms
without message passing for more general topologies.

The rest of this paper is organized as follows. The system
model and problem formulation are described in Section II.
Our algorithm is presented in Section III. Convergence and
optimality of the proposed algorithm are analytically proved
in Section IV. Simulation results are shown in Section V.
Conclusions and future work are discussed in Section VI.

II. SYSTEM MODEL

Consider a single-hop wireless ad-hoc network withN =
{1, . . . , N} as the set of wireless links. Each link, together
with its dedicated transmitter and receiver nodes, is called
a user. A sample network with 3 users is shown in Fig.
1. We assume that each user’s receiver node can hear other
user’s transmissions. Thus, each user interferes with all other
users. This models some important wireless networks includ-
ing wireless personal area networks where wireless devices
interact with each other (e.g., in an office) as well as indoor
wireless local area networks where nodes interact with each
other and an access point (e.g., in a large conference room).
Time is divided into equal-length slots. At each time slot, user
i transmits with probabilitypi ∈ Pi = [Pmin

i , Pmax
i ], where

0 < Pmin
i < Pmax

i < 1. A transmission is successful if it is
the only transmission in the current time slot. Similar to [4],
[6], we assumeinfinite-backlogat the transmitter nodes of the
users. Letri denote the average rate for useri. We have2 [12]:

ri(p) = γipi

∏

j∈N\{i}(1 − pj), ∀ i ∈ N , (1)

wherep = (pi, ∀i ∈ N ) is the vector of all users’ transmission
probabilities andγi denotes the peak data rate for useri. Here,
we assume that either the channel is fixed or it changes very
slowly such thatγi can assume to be fixed for alli ∈ N .

Each link i ∈ N maintains autility which is an increasing
and concave function ofri and indicates linki’s level of
satisfaction on its average data rate. The utility of linki is
denoted byui(ri(p)) which is also a function ofp. We are
interested in finding the value ofp that solves the following
network utility maximization(NUM) problem [13]:

max
p∈P

∑

i∈N ui(ri(p)), (NUM)

whereP = {p : pi ∈ Pi, ∀ i ∈ N}, and the utility functions
are α-fair [14]. That is, ui(ri(p)) = (1 − α)−1ri(p)1−α if
α ∈ (0, 1) ∪ (1,∞), andui(ri(p)) = log ri(p), if α = 1.

2We notice that if the underlying communication channel is lossy and we
know exact packet error rate, then the average rate model in (1) needs to be
modified to incorporate the impact of packet loss due to channel imperfections
as in (7). However, in this paper, we assume that the packet error rate isnot
known; thus, the average data rate is estimated as the current form in (1).

III. A LGORITHM

1) Local Optimization:For each wireless useri, consider
the following local optimization problem:

max
pi ∈Pi

∑

j∈N uj(rj(pi, p−i)), (LOCAL-NUM)

where p
−i = (pj, ∀j ∈ N\{i}) denotes the transmission

probabilities of all usersother than user i. To solve opti-
mization problem (LOCAL-NUM), useri will choosepi to
maximize thetotal network utility, assumingthat none of the
other users change their transmission probabilities.

Theorem 1:For each useri ∈ N , the unique global optimal
solution of problem (LOCAL-NUM) isp∗i (pi) = fi(p−i),
where the mapping functionfi(p−i) is defined as:

fi(p−i) =
[

1/
(

1 + α
√

vi(p−i)
)]Pmax

i

Pmin
i

. (2)

Here [x]ab = max [min [x, a] , b] and

vi(p−i) = γi
α−1 ∑

j∈N\{i} (1/γj)
α−1 (1/pj − 1)α−1 . (3)

The proof of Theorem 1 is similar to that of [9, Theorem 1]
and is omitted for brevity. It is clear that to computefi(p−i)
in (2), the only information useri needs from other users is
vi(p−i). If each useri canestimatethe value of

mj = (1/γj)
α−1

(1/pj − 1)
α−1

, ∀ j ∈ N\{i}, (4)

then it can computevi(p−i) = γi
α−1

∑

j∈N\{i} mj and set
its transmission probabilitypi = fi(p−i). Note that for each
j∈N\{i}, mj is bounded betweenMmin andMmax, which
are defined as follows. Ifα ≥ 1, thenMmin = (1/γmax)α−1

(1/Pmax − 1)α−1 and Mmax = (1/γmin)α−1(1/Pmin −
1)α−1, wherePmin = mini∈N Pmin

i , Pmax = maxi∈N Pmax
i ,

γmin = mini∈N γi, and γmax = maxi∈N γi. If α < 1,
then Mmin = (1/γmin)α−1(1/Pmin − 1)α−1 and Mmax =
(1/γmax)α−1(1/Pmax − 1)α−1. As shown in [9, Section IV-
A], if each user i updates its transmission probabilitypi

according to (2), then the system will converge to the optimal
solution of problem (NUM). The question is how to obtain
the values ofmj for all j 6= i. Next, we show how this can
be achieved through local observations of the shared channel.

2) Learning from Contention History:From (4), we can
see that only the values ofγj andpj are required to calculate
the value of messagemj . Notice thatα is the same for all
users. The value of the peak rateγj depends on the channel
gain between the transmitter and receiver of userj. Thus, it
can only be measured by userj and then announced to the
whole network once userj joins the network. The remaining
task is to determine how to obtain the value ofpj .

From useri’s viewpoint, any time slot falls into one of
the following possible states:idle (no user transmits),busy
(at least one other user transmits),success(user i transmits
successfully), andfailure (useri transmits but it fails). Letpidle

i ,
pbusy

i , psucc
i , and pfail

i denote the probabilities of experiencing
these four states, respectively. Also letperr

i,j denote thepacket
error rate of the communication channel from the transmitter
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node of userj to the receiver node of useri. We have:

pidle
i =

∏

j∈N (1 − pj) , (5)

pbusy
i = (1 − pi)

(

1 −
∏

j∈N\{i}(1 − pj)
)

= (1 − pi) −
∏

j∈N (1 − pj)

= (1 − pi) − pidle
i ,

(6)

psucc
i = pi

(

∏

j∈N (1 − pj)
)

(

1 − perr
i,i

)

= (pi/(1 − pi))
(

∏

j∈N (1 − pj)
)

(

1 − perr
i,i

)

= (pi/(1 − pi)) pidle
i (1−perr

i,i),

(7)

and

pfail
i = pi

((

1− 1
1−pi

pidle
i

)

+perr
i,i −

(

1 − 1
1−pi

pidle
i

)

perr
i,i

)

= pi

((

1 −
1

1 − pi

pidle
i

)

+

(

1

1 − pi

pidle
i

)

perr
i,i

)

= pi

(

1 −

(

1

1 − pi

pidle
i

)

(

1 − perr
i,i

)

)

= pi−

(

pi

1 − pi

pidle
i

)

(

1−perr
i,i

)

.

(8)

From (5), the channel is idle if all users are silent. From (6),
the channel is busy from useri’s viewpoint as long as useri is
silent (so that it can sense the channel) and at least one other
userj 6= i is transmitting packets. The former has probability
(1−pi) while the latter has probability(1−

∏

j∈N\{i}(1−pj)).
From (7), the transmission from the transmitter node of user
i to the receiver node of useri is successful if the transmitter
node of useri transmits the packet, no other userj 6= i
transmits any packet at the same time, and the transmitted
packet is not corrupted. The latter happens with probability
(1 − perr

i,i). Finally, from (8), useri observes a failure slot if
it transmits a packet and the transmitted packet either collides
with some other transmission(s), or gets corrupted, or both.
We notice that the probability valuespidle

i and pbusy
i do not

depend on the value ofperr
i,i, while psucc

i andpfail
i do.

Since useri knows the local transmission probabilitypi, it
can estimatepidle

i using either (5) or any of the expressions in
(6)-(8). However, it is clear that useri is still unable to estimate
the individual transmission probabilitypj for any j 6= i even
if it can accurately estimate all the state probabilitiespidle

i ,
pbusy

i , psucc
i , andpfail

i . In fact, finding the values ofindividual
transmission probabilities requires gathering moreindividual
information from other users as we will explain next.

Recall that, at a busy time slot seen by useri ∈ N , at least
one other user transmits. Since users can hear each other, user
i may successfullydecodethe transmission of userj 6= i with
a probability that can be obtained as:

pdecd
i,j = pj(

∏

l∈N\{j}(1 − pl))(1 − perr
i,j)

= (pj/(1 − pj))
(
∏

l∈N (1 − pl)
)

(1 − perr
i,j).

(9)

Let ndecd
i,j denote the number of time slots between any two

consecutive successful decoding of transmissions of userj
by user i. Random variablendecd

i,j has an i.i.d. geometric
distribution with probabilitypdecd

i,j . Therefore, we indeed have:

pdecd
i,j = 1/(1 + n̄decd

i,j ), (10)

wheren̄decd
i,j is the mean value ofndecd

i,j and can belocally esti-
mated by useri through observation of the channel contention
history. LetT i

j,decd denote the set of time slots at which user
i decodes the transmissions of userj 6= i. We estimatēndecd

i,j

iteratively through a low-pass filter:

n̄decd
i,j (t +1) =

(1−̺i,j(t))n̄
decd
i,j (t)+̺i,j(t)n

decd
i,j (t)I{t∈T i

j,decd},
(11)

wheren̄decd
i,j (t) andndecd

i,j (t) denote the estimation of̄ndecd
i,j and

the measurement ofndecd
i,j at time slott, respectively, andI{·}

is an indication function. Here̺i,j is a diminishingstepsize.
Notice that in practice, the transmitted signal by the transmitter
node of userj can be decoded by the network interface of user
i’s receiver node; however, as its destination MAC address
is not the same as the one in the receiver node of useri,
the packet is simply discarded. In our proposed scheme, the
receiver node of useri needs to obtain the sender’s MAC
address from the packet header before discarding the packet3.

Similarly, let nidle
i denote the number of non-idle time slots

that useri observes between any two consecutive idle time
slots. Useri can estimatepidle

i as follows [10]:

pidle
i = 1/(1 + n̄idle

i ), (12)

where n̄idle
i is the mean value ofnidle

i . Substituting (5), (10),
and (12) into (9), for eachj ∈ N\{i}, we have:

1/pj − 1 =
(

(1 + n̄decd
i,j )/(1 + n̄idle

i )
)

(1 − perr
i,j). (13)

Let T i
idle denote the set of time slots at which useri observes

an idle time slot. We estimatēnidle
i iteratively:

n̄idle
i (t+1) = (1−ρi(t))n̄

idle
i (t)+ρi(t)n

idle
i (t)I{t∈T i

idle}, (14)

where n̄idle
i (t) and nidle

i (t) denote the estimation of̄nidle at
time t and the measurement ofnidle

i at time t, respectively.
Hereρi is a diminishing stepsize. Based on the asynchronous
stochastic approximation theory [15], we know that the error
for estimating the decoding and idle probabilities decrease to
zero (i.e., accurate estimations) when users do not change their
transmission probabilities (i.e., the system is stationary).

For each useri and any other userj 6= i, given the system
parametersγj , n̄decd

i,j and n̄idle
i , we define:

mi
j(t) = (1/γj)

α−1
(

(1 + n̄decd
i,j (t))/(1 + n̄idle

i (t))
)α−1

, (15)

wheremi
j(t) denotes the estimation ofmj made by useri at

time slot t. In general, we have:

mi
j(t) = βi

j(t) mj(t), (16)

whereβi
j(t) > 0 is the estimation gain, which can represent

either accurate estimation (i.e.,βi
j(t) = 1), over-estimation

(i.e., βi
j(t) > 1) or under-estimation (i.e.,βi

j(t) < 1). From
(4) and (13), if the estimations on̄ndecd

i,j and n̄idle
i are accurate

(i.e., they accurately represent the mean values of random
variablesndecd

i,j andnidle
i , respectively) and the channel is also

3We notice that, in general, decoding header information of packets is
more accurate than payload information. For example, in HiperLAN, header is
transmitted at lower bit rate and higher reliability. Therefore, decoding MAC
address from the header is less prone to error due to channel imperfections.
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perfect (i.e., it has zero packet error rate), thenβi
j(t) = 1

and mi
j(t) = mj(t) for all j ∈ N\{i}. Notice that if the

value of the existing packet error rateperr
i,j is known (e.g., via

measurements at the physical layer), then we can redefine:

mi
j(t) = (1/γj)

α−1

(

(1 + n̄decd
i,j (t))/(1 + n̄idle

i (t))
)α−1

(1 − perr
i,j)

α−1
, (17)

and obtain a more accurate estimation ofmj(t) by canceling
out the effect of wireless channel imperfections. However,in
this paper, we consider the general case where the packet error
rates arenot known by the users.

For each useri∈N and for allj∈N\{i}, let T i
j,m denote

the set of all time slots at which useri updates its estimation of
mi

j according to (17). We select setT i
j,m such that as time goes

by, the minimum time difference between any two consecutive
slots in the union of sets{T i

j,m, ∀j ∈ N\{i}} increases. As
a result, for each userj, we updatemi

j less frequently to
collect more samples ofnidle

i andndecd
i,j . Thus, the estimations

of mean values̄nidle
i and n̄decd

i,j improve gradually and become
asymptotically accurate. We also reset the diminishing step-
sizesρi and ̺i,j to 1 after eacht ∈ T i

j,m so that the errors
in previous estimations do not affect new estimations. Based
on these assumptions, there exists a constantβi

j > 0 such that
limt→∞ βi

j(t) = βi
j . From (15) and (16), we have:

βi
j = 1/(1 − perr

i,j)
α−1, ∀ i, j ∈ N , i 6= j. (18)

From (18), if the communication channel is perfect, then
βi

j = 1 and all estimations areasymptotically accurate. For a
lossy channel, ifα < 1, thenβi

j < 1 andmi
j is asymptotically

under-estimatedfor all j 6= i. On the other hand, ifα > 1,
thenβi

j > 1 andmi
j is asymptotically over-estimated.

3) Distributed MAC Algorithm:Our proposed distributed
random access algorithm without explicit message passing
(except when each user joins or leaves the network) is shown
in Algorithm 1. In this algorithm, each useri∈N continuously
updatesn̄idle

i and n̄
decd
i = (n̄decd

i,j , ∀j ∈ N\{i}) based on
its local observations from the channel to estimatem

i =
(mi

j , ∀j∈N\{i}). Then, it choosespi according to (2) with
vi = γα−1

i

∑

j∈N\{i} mi
j . HereTi,p denotes the set of all time

slots at which useri updates its transmission probabilitypi.
Notice that the updates areasynchronousacross wireless users
which include synchronous updates as a special case.

IV. CONVERGENCE ANDOPTIMALITY

For eachi∈N, and at any timet∈Ti,p, Algorithm 1 updates

pi(t + 1) = f ′
i(p−i, t) =

[

1/
(

1 + α
√

v′i(p−i, t)
)]Pmax

i

Pmin
i

,

wherev′i(p−i, t)=
∑

j∈N\{i} (γi/γj)
α−1 (1/pj − 1)α−1βi

j(t).
For any t ≥ 0, we definef ′(p, t) = (f ′

i(p−i, t), ∀ i ∈ N ).
Here f ′(p, t) is a time-varying vector mapping. Sinceβi

j(t)
approachesβi

j as t → ∞ for all i, j ∈ N , the sequence of
mapping{f ′ (p, t)} converges to a unique mappingf ′ (p,∞)
as t → ∞. That is, for anyp ∈ P and anyǫ > 0, there exists
tǫ ≥ 0 such that‖f ′(p, t) − f ′(p,∞)‖ < ǫ for all t ≥ tǫ.

Algorithm 1 Executed by each useri ∈ N .

1: Allocate memory forpi andm
i = (mi

1, · · · , mi
N ).

2: Allocate memory for̄ndecd
i andn̄

decd
i = (n̄decd

i,1 , · · · , n̄decd
i,N ).

3: Randomly choosepi ∈
[

Pmin
i , Pmax

i

]

.
4: Randomly choosemi

j ∈
[

Mmin, Mmax
]

for all j ∈ N .
5: Choosen̄idle

i = 1 andn̄decd
i,j = 1 for all j ∈ N .

6: Broadcast the fixed data rateγi to all other users.
7: repeat
8: Transmit with probabilitypi.
9: Updaten̄idle

i andn̄
decd
i according to Eqs. (14) and (11).

10: if t ∈ Ti,p then

11: Updatepi =
[

1/
(

1+ α

√

γi
α−1

∑

j∈N\{i} mi
j

)]Pmax
i

Pmin
i

.

12: end if
13: if t ∈ T i

j,m then
14: Updatemi

j according to Eq. (15).
15: end if
16: until the user decides to leave the network.
17: Broadcast termination message.

Let V min andV max denote the lower and upper bounds on
v′i(p−i, t) for eachi ∈ N and at any timet. If α ≥ 1, then:

V min = (N − 1)Mmin(γmin)α−1, (19)

V max = (N − 1)Mmax(γmax)α−1. (20)

If α < 1, then we define:

V min = (N − 1)Mmin(γmax)α−1, (21)

V max = (N − 1)Mmax(γmin)α−1. (22)

Theorem 2:Assume that there existst′0 ≥ 0 such that for
all t ≥ t′0 and anyp ∈ P , we have:

βmax(t)

βmin(t)

(

|1 − α|

α
Ψ Φ(V min, V max)

)2 (

γmax

γmin
Γ

)|1−α|

< 1,

(23)
whereβmin(t) = mini,j∈N βi

j(t), βmax(t) = maxi,j∈N βi
j(t),

Ψ =max

{

1

Pmin(1 − Pmin)
,

1

Pmax(1 − Pmax)

}

, (24)

Γ =
Pmax(1 − Pmin)

Pmin(1 − Pmax)
, (25)

and

Φ(V min, V max)=















(V max)1/α

(1+(V max)1/α)2
, if V max ≤ 1,

(V min)
1/α

(1+(V min)1/α)2
, if V min ≥ 1,

0.25, otherwise.

(26)

Then, Algorithm 1 globally and asynchronously converges to
the unique fixed point of mappingf ′ (p,∞).

The proof of Theorem 2 is given in the Appendix. Notice
that, at any timet ≥ 0, βmin(t) andβmax(t) are bounded:

(Mmin/Mmax) ≤ βmin(t) ≤ βmax(t) ≤(Mmax/Mmin). (27)

Therefore, all the terms in (23), exceptΦ, are bounded and
independent of the number of usersN . Thus, Φ can be
arbitrarily close to 0 ifN is large enough. Therefore,
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Fig. 2. Simulation results for Algorithm 1 whenα = 0.6. The number of
users and the features of the communication channel change after t = 10s.
The optimal transmission probabilities beforet = 10s (i.e., dashed lines) and
after t = 10s (i.e., dotted lines) are obtained using [9, Algorithm 1].

Corollary 1: For any choice of system parameters, there
existsN̂ > 0, such that Algorithm 1 converges to the unique
fixed point of mappingf ′ (p,∞), if the number of usersN >
N̂ , i.e., there are enough users competing for the channel.

As an example, assume thatP min=0.1, P max=0.9, α=0.9,
γmax = γmin, and for allt > 1 we have:βmax(t)/βmin(t) ≤ 2.
In that case, from Theorem 2, convergence of Algorithm 1 is
guaranteed as long as the number of usersN ≥ 4.

We notice that Theorem 2 and Corollary 1 are general and
do not depend on the exact values of the estimation errors as
t → ∞; however, the performance at the asymptotic fixed
point still depends on the accuracy of the estimations. In
fact, as long as there are enough learning opportunities for
users, learning the behavior of other users can catch up with
the environment changes. The following key theorem can be
shown for the case of perfect communication channels.

Theorem 3:If the channel is perfect such thatlimt→∞

βmin(t) = limt→∞ βmax(t) = 1, then the fixed point of
Algorithm 1 is the global optimal solution of problem (NUM).

The proof of Theorem (3) is similar to that of [9, Theorem
4]. Notice that sincelimt→∞ βi

j(t) = 1, we havef ′(p,∞) =
f(p) =

(

fi(p−i), ∀i ∈ N
)

, wherefi(p−i) is as in (2). In fact,
when each learning step is accurate, then distributed learning
becomes as effective as message passing.

From Theorems 2 and 3, if the channel is perfect and
sufficient condition (23) holds, Algorithm 1 asynchronously
converges to the unique global optimal solution of non-convex
problem (NUM). If the channel is not perfect, although the
algorithm still converges, optimality is not always guaranteed.

V. SIMULATION RESULTS

To evaluate the performance of our proposed distributed
algorithm, we develop a discrete-event simulator that imple-
ments Algorithms 1 and the IEEE 802.11 DCF access method.
We first consider a network withN = 4, Pmin = 0.01, and
Pmax = 0.99. We setγ1 = 6, γ2 = 18, γ3 = 36, andγ4 =
54, all in Mbps. Utility parameterα = 0.5 < 1. Notice that
none of the previous NUM-based MAC algorithms (e.g, [4]–
[6]) supportα-fair utility functions with α ∈ (0, 1) because
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Fig. 3. Trend of the adjusted transmission probabilities when Algorithm 1
is being used, the number of usersN = 10, and we have:α = 2.

of non-convexity (see [9, Sections II and IV-A]). Each slot
is 20 µs (as in 802.11a) and the simulation time is20s. We
assume that from timet = 0 to t = 10s, the channel is perfect
and N = 4. Then, fromt = 10s to t = 20s, the channel is
lossy andN = 3 (i.e., user 4 leaves the network). Packet error
rates are randomly selected between 0 and 0.01 att = 10s and
then become fixed untilt = 20s. The diminishing stepsizes are
selected in the form of1/t while t is the number of time slots.
Recall from Section III-.2 that for anyi, j ∈ N , the stepsizes
are reset after eacht ∈ T i

j,m. Results are shown in Fig. 2. We
see that Algorithm 1 converges to a small neighborhood of the
optimal values fast. It is robust to the change of user population
and channel conditions. Similar results can be obtained for
α ≥ 1 andN > 4. For example, the results whenα = 2 and
there areN = 10 users are shown in Fig. 3.

Next, we compare the signalling overhead in our algorithm
with Algorithm 1 in [9]. We assume that each message value
requires two bytes. Simulation results are shown in Fig. 4.
The total amount of messages needed depend on the number
of iterations for convergence. We refer to Algorithm 1 as the
algorithmwithout message passing. It only requires one time
message exchange when a user joins the network. We can see
that increasing the number of users increases the signalling
overhead in both algorithms. However, our algorithm requires
significantly less signalling compared to Algorithm 1 in [9].
When the number of usersN = 50, our algorithm reduces the
signalling overhead by more than a factor of 40.

It is well-known that 802.11 DCF has ashort-term fairness
problem, due to binary exponential backoff. Next, we compare
802.11 DCF with Algorithm 1 in terms of both throughput and
Jain’s fairness index [16]. The short-term fairness is obtained
using sliding windows with size of 200 slots. There areN =
10 users in the network and their fixed peak rates are randomly
selected between 6 and 54 Mbps. Simulation time is100s.
The results whenα varies between 0.5 to 5 are shown in
Fig. 5. We see that, parameterα acts as aknob to control
the tradeoff between efficiency and fairness. By increasingα
we can make the system more fair but less efficient (and vice
versa). Ifα = 0.5, then the throughput is 29.7% higher than
DCF (see Fig. 5(a)). Besides, for any choice ofα ∈ [0.5, 5],
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Fig. 4. Comparison between Algorithm 1 in [9] (i.e., the algorithm with
explicit message passing) and our proposed Algorithm 1 (i.e., the algorithm
without explicit message passing) in term of the signalling overhead when the
number of users varies from 10 to 50.
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Fig. 5. Comparison between Algorithm 1 and 802.11 DCF whenN = 10.

the fairness is much better than DCF (Fig. 5(b)).

VI. CONCLUSION AND FUTURE WORK

In this paper, we designed a distributed contention-based
MAC algorithm to solve a NUM problem at the link-layer
without explicit message passing among users. Our algorithm
is asynchronous, enjoys fast convergence, and supports a wider
range of utility functions compared to previously proposed
NUM-based MAC algorithms. Simulation results show that
our algorithm achieves a better efficiency-fairness trade-off
compared with the IEEE 802.11 DCF. It is also robust to the
changes of user population and channel conditions.

This work represents a first step towards building practical
and optimal random access protocols without message passing.
Results can be extended in several directions. There are some
recent efforts to model more realistic scenarios, where the
queues at each node havefinite-backlog[17], [18]. In [18],
a queue back-pressure random accessalgorithm is proposed
which aims to adjust the transmission probabilities to achieve
optimal network utility and queue stability. The proposed
algorithm requires frequent message exchange among the
nodes. In this regard, our estimation techniques in Section

III can be similarly used to eliminate the need for message
passing; thus, significantly reducing the signalling overhead.

We may also relax the need for equal-length time slots,
following the techniques in [19, Section IV], where a utility-
optimal random access algorithm is proposed for logarithmic
utilities in pure (un-slotted) ALOHA systems. It is also worth
mentioning that since we limit our study to a topology
scenario, where each user can hear transmissions from every
other user, the hidden/exposed terminal is not a problem.

Last but not least, an important extension of the current
paper is studying the existence of distributed utility-optimal
random MAC algorithms without signalling forgeneralnet-
work topologies, where each user may hear the transmissions
from only a subsetof other users. In this case, the proof
of convergence in Theorem 2 will still be valid after slight
modifications. However, the performance may not be optimal
in general. In fact, it has been recently shown in [20] that ina
network with only three users, where the two side users cannot
hear each other’s transmissions and the utility parameter
α = 0, the wireless userscannot adjust their transmission
probabilities to achieve exact optimal network performance
without message passing. Therefore, we conjecture that there
indeed doesnot exist any algorithm that converges to the
optimal network performance without any explicit information
exchange in a general topology scenario, unless all users can
hear each other’s transmissions as studied in this paper.

APPENDIX

A. Proof of Theorem 2

For anyp ∈ P and t ≥ t′0, the JacobianJ(p, t) is defined
as anN × N matrix whose entry in rowi and columnj is
∂fi(p, t)/∂pj. We can show that:

‖J ′(p, t)‖∞ ≤
|1 − α|

α
Ψ Φ, (28)

and

‖J ′(p, t)‖1 ≤
|1 − α|

α

βmax(t)

βmin(t)
Ψ Φ

(

(
γmax

γmin
) Γ

)1−α

. (29)

Let p̃, p̂ ∈ P . From (23), (28), (29), and by Cauchy-Schwarz
inequality we have [21, pp. 635]:

‖f ′(p̃, t) − f ′(p̂, t)‖2 ≤ ‖J ′(p, t)‖2 ‖p̃ − p̂‖2

≤
√

‖J ′(p, t)‖∞‖J ′(p, t)‖1 ‖p̃ − p̂‖2 < ‖p̃− p̂‖2,

wherep is any convex combination of̃p andp̂. Thus, for any
t ≥ t′0, vector functionf ′(p, t) is a contraction mapping and
has a unique fixed point [21, pp. 183], denoted byp

∗
t . We also

denote the unique fixed point off ′ (p,∞) by p
∗
∞. Thus,

‖f ′(p, t) − p
∗
t ‖2 ≤ ηt ‖p − p

∗
t ‖2 ≤ η ξ, (30)

whereηt = ‖J ′(p, t)‖, η = maxt>t′
0
ηt, andξ = ‖p − p

∗
t ‖2 .

Note thatη < 1, andξ is bounded. Sincef ′ (p, t) is continuous
at p

∗
t and limt→∞ f ′ (p, t) = f ′ (p,∞), we indeed have

limt→∞ p
∗
t = p

∗
∞. In other words, for any choice ofǫ > 0,

there exists at0 ≥ t′0, such that:

‖p∗
t − p

∗
∞‖2 ≤ ǫ, ∀t ≥ t0. (31)
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Together with (30), we have:

‖f ′ (p, t)− p
∗
∞‖2≤ ‖f ′ (p, t)− p

∗
t ‖2+‖p∗

t − p
∗
∞‖2≤ η ξ + ǫ.

Similarly, we can show that:

‖f ′ (f ′ (p, t) , t + 1) − p
∗
∞‖2 ≤

∥

∥f ′ (f ′ (p, t) , t + 1) − p
∗
t+1

∥

∥

2
+

∥

∥p
∗
t+1 − p

∗
∞

∥

∥

2

≤ η
(

‖f ′ (p, t) − p
∗
∞‖2 +

∥

∥p
∗
t+1 − p

∗
∞

∥

∥

2

)

+ ǫ

≤ η (η ξ + ǫ + ǫ) + ǫ = η (η ξ + 2ǫ) + ǫ.

For any k ≥ 0, we recursively definef ′k(p, t) =
f ′(f ′k−1

(p, t), t + k − 1) where f ′0 = p. From (32), and
by mathematical induction, we can show that for anyk ≥ 0,

∥

∥

∥
f ′k(p, t) − p

∗
∞

∥

∥

∥

2
≤ ηkξ +

2
(

1 − ηk
)

1 − η
ǫ − ǫ

< ηkξ +
1 + η

1 − η
ǫ.

(32)

For anyε > 0, there existkε such that ifk ≥ kε, thenηk ξ ≤
ε
2 . By choosing:

ǫ =
1 − η

1 + η

ε

2
, (33)

we have:
∥

∥

∥
f ′k(p, t) − p

∗
∞

∥

∥

∥

∞
≤

∥

∥

∥
f ′k(p, t) − p

∗
∞

∥

∥

∥

2
< ε

2 + ε
2 = ε, (34)

where the first inequality comes from the fact thatl∞ norm is
always less than or equal tol2 norm. This implies that, starting
from any initial pointp ∈ P at time t ≥ t0, the transmission
probability of each useri ∈ N would be as close as desired
to the ith entry of p

∗
∞ after some finite number of slots. For

all time instancest≥ t0, we define:

ǫ′t =max
k≥0

∥

∥p
∗
k+t − p

∗
∞

∥

∥

∞
, (35)

ε′t = max
k≥0,p′∈P

‖f ′k+t−t0 (p′, t0) − p
∗
∞‖∞, (36)

and

εt =







max
[

ε′t,
2(1+η)
1−η

ǫ′t

]

, if t < t0+C,

max
[

ε′t,
2(1+η)
1−η

ǫ′t, χ (C) εt−C

]

, otherwise,
(37)

where the functionχ(C) = 1
2 (3+η

1+η
ηC + 1), integer constant

C = ⌈log(1+η
3+η

)/ log (η)⌉ + 1, and ⌈·⌉ denotes the ceiling
function. From (31) and (34),{ǫ′t} and {εt} are infinite
decreasing sequences and converge to zero ast → ∞.
Construct a newtime sequence{t̄l} where t̄l = t0 + lC for
any integerl ≥ 0. Sinceχ (C) < 1, the sequence{εt} is
decreasing and in particular, we haveliml→∞ εt̄l

= 0. For
eachl ≥ 0, definePt̄l

= {p : ‖p − p
∗
∞‖∞ ≤ εt̄l

}. It is clear
that p

∗
∞ ∈ Pt̄l

andPt̄l+1
⊆ Pt̄l

for all l ≥ 0. Furthermore,
Pt̄l+l′

⊂ Pt̄l
for some finitel′. For anyp ∈ Pt̄l

,
∥

∥p − p
∗
t̄l

∥

∥

∞
≤ ‖p − p

∗
∞‖∞ +

∥

∥p
∗
t̄l
− p

∗
∞

∥

∥

∞
≤ εt̄l

+ ǫ′t.

From (34), we know that:

∥

∥f ′k (p, t̄l) − p
∗
∞

∥

∥

∞
< ηk

(

εt̄l
+ ǫ′t̄l

)

+
1 + η

1 − η
ǫ′t̄l

.

If εt̄l
= ε′

t̄l
, then ǫ′

t̄l
≤ 1−η

1+η

εt̄l

2 . On the other hand, ifεt̄l
=

2(1+η)
1−η

ǫ′
t̄l

, or if εt̄l
= χ(C)εt̄l−C , then ε′

t̄l
≤ εt̄l

and ǫ′
t̄l

≤
1−η
1+η

εt̄l

2 . Thus, for all three possibilities in (37), we have

‖f ′C(p, t̄l) − p
∗
∞‖∞ < ηC

(

εt̄l
+

1−η

1+η

εt̄l

2

)

+
1 + η

1 − η

1 − η

1 + η

εt̄l

2

= χ(C) εt̄l
≤ εt̄l+1

.

Thus, for any choice ofp ∈ Pt̄l
, the mappingf ′C (p, t̄l) ∈

Pt̄l+1
. Since bothsynchronous convergenceandboxconditions

hold, Algorithm 1 globally and asynchronously converges to
the unique fixed pointp∗

∞ [21, pp. 431].

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling for maximum throughput in multi-
hop radio networks,”IEEE Transactions on Automatic Control, vol. 37,
pp. 1936–1949, Dec. 1992.

[2] P. Gupta and A. Stolyar, “Optimal throughput allocationin general
random-access networks,” inProc. of CISS, Princeton, NJ, Mar. 2006.

[3] C. Joo and N. B. Shroff, “Performance of random access scheduling
schemes in multi-hop wireless networks,” inProc. of IEEE INFOCOM,
Anchorage, Alaska, May 2007.

[4] J. Lee, M. Chiang, and R. Calderbank, “Utility-optimal random-access
control,” IEEE Trans. on Wireless Communications, vol. 25, pp. 1135–
1147, Aug. 2007.

[5] X. Wang and K. Kar, “Cross-layer rate control for end-to-end propor-
tional fairness in wireless networks with random access,”IEEE J. on
Selected Areas in Communications, vol. 24, pp. 1548–1559, Aug. 2006.

[6] L. Chen, S. Low, and J. Doyle, “Joint congestion control and media
access control design for ad hoc wireless networks,” inProc. of IEEE
INFOCOM, Miami, FL, Mar. 2005.

[7] J. Liu, Y. Yi, A. Proutiere, M. Chiang, and H. V. Poor, “Maximizing
utility via random access without message passing,”Microsoft Research
Technical Report, 2008-128, 2008.

[8] J. Lee, A. Tang, J. Huang, M. Chiang, and A. Calderbank, “Reverse
engineering MAC: A game-theoretic model,”IEEE J. on Selected Areas
in Communications, vol. 6, pp. 2741–2751, Jul. 2007.

[9] A. H. Mohsenian-Rad, J. Huang, M. Chiang, and V. W. S. Wong,
“Utility-optimal random access: Reduced complexity, fastconvergence,
and robust performance,”to appear in IEEE Trans. Wireless Communi-
cations, 2008.

[10] L. Chen, S. H. Low, and J. C. Doyle, “Random access game and medium
access control design,” Submitted toIEEE/ACM Trans. on Networking,
Dec. 2006.

[11] F. Cal̀ı, M. Conti, and E. Gregori, “Dynamic tuning of the IEEE 802.11
protocol to achieve a theoretical throughput limit,”IEEE/ACM Trans. on
Networking, vol. 8, no. 6, pp. 785–799, 2000.

[12] D. P. Bertsekas and R. Gallager,Data Networks, 2nd ed. Prentice Hall,
1992.

[13] F. Kelly, “Charging and rate control for elastic traffic,” European
Trans. on Telecommunication, vol. 8, pp. 33–37, 1997.

[14] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. on Net., vol. 8, pp. 556–567, Oct. 2000.

[15] V. S. Borkar, “Asynchronous Stochastic Approximation,” SIAM J. on
Control and Optim., vol. 36, pp. 840–851, May 1998.

[16] R. Jain, W. Hawe, and D. Chiu, “A quantitative measure offairness
and discrimination for resource allocation in shared computer systems,”
Tech. Rep. DEC-TR-301, Sept. 1984.

[17] C. Bordenave and D. M. A. Proutiere, “Performance of random medium
access control an asymptotic approach,” inProc. of ACM Sigmetrics,
Annapolis, MD, June 2008.

[18] J. Liu, A. Stolyar, M. Chiang, and H. V. Poor, “Queue back-pressure
random access in multi-hop wireless networks: Optimality and stability,”
IEEE Transactions on Information Theory (submitted), May 2008.

[19] K. Kar, S. Sarkar, and L. Tassiulas, “Achieving proportionally fair
rates using local information in aloha networks,”IEEE Transactions
on Automatic Control, vol. 49, no. 10, pp. 1858 – 1862, Oct. 2004.

[20] A. Proutiere, Y. Yi, and M. Chiang, “Throughput of random access
without message passing,” inProc. of CISS, Princeton, NJ, Mar. 2008.

[21] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and Distributed Computa-
tion: Numerical Methods. Prentice Hall, 1989.


