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Abstract— Random access has been studied for decades to

achieve simple wireless medium access control (MAC). Somé o
the distributed scheduling algorithms for throughput or utility
maximization also take the form of random access, although
extensive message passing among the nodes is required. Insth
paper, we would like to answer this question: is it possibled
design a MAC algorithm that can achieve the optimal network
performance without message passing? We provide the first
positive answer to this question in a simple Aloha-type randm
access wireless ad-hoc network. In particular, we propose a
distributed random medium access control algorithm based o
the framework of network utility maximization (NUM). We
prove the convergence of our algorithm for certain sufficiem
conditions on the system parameters, e.g., with a large engh
user population. If each wireless node is capable of decodin
the source MAC address of the transmitter from the interferring
signal, then our algorithm indeed converges to the global dpmal
solution of the NUM problem. If such decoding is inaccurate,
then the algorithm still converges, although optimality may not
be always guaranteed.

Index Terms— Network utility maximization, random access,
non-convex optimization, eliminating message passing.

I. INTRODUCTION

In the existing contention-based medium access control
(MAC) protocols, there is usually a tradeoff between system
performance (e.g., throughput and fairness) and the anaunt
explicit message passing required among users. One example
is the IEEE 802.11 distributed coordination function (DCF)
where users do not explicitly exchange any message related t
their transmission probabilitiésand adapt their transmission
probabilities only based on the binary implicit feedbaabnfir
the network (e.g., collision or not). This typically leads t
low throughput and unfair resource allocation [8]. On the
other hand, several MAC algorithms (e.g., [4]-[6]) haverbee
designed based on the framework of network utility maximiza
tion (NUM) which lead to the optimal system performance
without taking the signalling overhead into account. Hoarev
these algorithms require extensive frequent messagengassi
among users. Considering the fact that any message trans-
mission leads to additional contention in the network, it is
of practical importance to design a MAC algorithm that can
achieve the optimal performance without message passing.

In this paper, we propose an efficient NUM-based MAC
algorithm without message passing based on our recentsesul

For over thirty years, researchers have studied how w#lI[9]. Compared with the previous algorithms (e.g., [4h{6

simple random access protocols can work. Since 1992, softé NUM-based random access algorithms in [9] support a
of the distributed scheduling algorithms for throughputxma Wider range of utility functions, converge faster, and llo
imization take the form of random access [1]-[3], althoughlly @synchronous operations among users. However, rgessa
message passing among the nodes is required. Similatity uti€xchange is still needed in [9]. In this paper, we show that in
optimization with infinite backlog has been achieved wita ththe simple case of a fully interfered wireless network toggl
help of message passing [4]-[6]. Very recently, in [7] a CSM Awhere all users are within the interference range of eactroth
type random access algorithm without message passing(§J- @s in wireless personal and local area networks), we
developed that is proved to be utility-optimal. Howevestitt ¢an completely eliminate the need for message passing. We
remains open whether even simpler protocols, such as Aloff40V€ the convergence of our algorithm for certain sufficien
type wireless random access control without carrier sepsifonditions on the system parameters, e.g., sufficientiyelar
can also achieve utility-optimality. In this paper, we pices USer population. If each wireless node is capable of degodin

the first positive answer to this question.
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the source MAC address of the transmitter from the interfer-
ring signal, then our algorithm converges to the globalropti
solution of the NUM problem. If such decoding is inaccurate,
the algorithm still converges, although optimality may het
guaranteed. The estimation techniques we used in this paper
are related to [10], [11], although our estimation model is
more elaborate and captures more information (i.e., ea@tsus
transmission probability). Simulation results show thair o
gzllgorithm is robust to changes in user populations and aann
conditions. These encouraging results provide important i

1in this paper, we use the term “messages” to denote congohisi that
are explicitly related to wireless users’ transmissionbptalities. We notice
that IEEE 802.11 DCF does not have any explicit messagenmassihough
it has various other control signals (e.g., RTS/CTS/ACK).



IIl. ALGORITHM

1) Local Optimization: For each wireless usér consider
the following local optimization problem:

max > jen Ui (piPo)), (LOCAL-NUM)

Fig. 1. A single-hop wireless ad-hoc network with = 3 users. Each user where p_; = (pj, Vj € M\{i}) denotes the transmission
includes a wireless link and its dedicated transmitter augiver nodes. probabilities of all usersother than useri. To solve Opti—

sights to design distributed optimal random MAC algorithm@'zauqn problem (LOCAL-NUM), uset will choosep; to
without message passing for more general topologies. maximize thetotal network utility, assuminghat none of the

The rest of this paper is organized as follows. The syste(fﬂther users change their trgnsmission probabilities. .
model and problem formulation are described in Section 11, Th€orem 1:For each user € ', the unique global optimal

Our algorithm is presented in Section Ill. Convergence ars@ution of problem (LOCAL-NUM) isp; (p;) = filp—i),
optimality of the proposed algorithm are analytically pedv Where the mapping functioffi(p_;) is defined as:

in Section V. Simulation results are shown in Section V. prmax
Conclusions and future work are discussed in Section VI. fip_;) = [1/ (1 + §/vilp_) )]pimm : )
II. SYSTEM MODEL Here [z]; = max [min [z,a],b] and

Consider a single-hop wireless ad-hoc network with= a1 a1 a1
{1,...,N} as the set of wireless links. Each link, together viP—) = % Yjeangny (/)" (/e =17 @)
with its dedicated transmitter and receiver nodes, is dalle o
a user A sample network with 3 users is shown in FigThe proof of Theorem 1 is similar to that of [9, Theorem 1]

1. We assume that each user’s receiver node can hear oftf¥f iS omitted for brevity. It is clear that to compytgp_;)
user's transmissions. Thus, each user interferes withthgro I (2), the only information user needs from other users is
users. This models some important wireless networks includ (P—i)- If €ach useri canestimatethe value of
ing wireless personal area networks where wireless devices a1 a1 , .
interact with each other (e.g., in an office) as well as indoor "% = /)" ey =1, Ve N} @)
relecs loca e netuorke where e nlerac W S5l can comput (1) —1°*1 5y, gy 3 s
T ) poi 9.1 9 . itS "transmission probability; = f;(p_;). Note that for each
Time is divided into equal-length slots. At each time slageu . , : e o .
) L - . jeN\{i}, m; is bounded betweefr/™™" and M™*, which
i transmits with probabilityp; € P; = [P™™, P™?*], where . min max\o—1
min s Lo . ..._are defined as follows. If > 1, then M™" = (1/y™%¥)
0 < P < P < 1. A transmission is successful if it is (1/Pmax _ 1)e=1 and Mmax — (] /yminja—1(]/pmin _
the only transmission in the current time slot. Similar td, [4\4_1 min . min  pmax max
L : e, where P™" = min;ep P, P™ = max;epn P/,
[6], we assuménfinite-backlogat the transmitter nodes of the 1;,, " T —" Wmaxz_ maxien . If o ; 1
) . . - 1€ 7 ) - 1€ 7 ’
users. Let; denote the average rate for usewe havé [12]: then Mmin — (1 /4min)a—1(1/pmin _ 1)a=1 and Jfmax —

ri(P) = vipi[Ljeangiy (1 —p5)  VieEN, (1) (1/ymaxya=i(1/pmax —1)e=1 As shown in [9, Section IV-
' A], if each user: updates its transmission probability;

Wrrc])ir:tz))il;e(g g:éy?(j\e/r)]c')‘:’;gfh\éecggkoé:tlgl'lrzzsf;rrigsé?ésrzlOnaccording to (2), then the system will converge to the ogtima
b ’ P ' solution of problem (NUM). The question is how to obtain

we assume that either the channel is fixed or it changes V&Y. Values ofm. for all j # i. Next, we show how this can
J . ’

slowly Su.Ch .that% can assume F(.) be f|>_<ed_for al!e N. . be achieved through local observations of the shared channe
Each link: € A/ maintains autility which is an increasing

and concave function of; and indicates linki’s level of ~ 2) Learning from Contention HistoryFrom (4), we can
satisfaction on its average data rate. The utility of links See that only the values of andp; are required to calculate
denoted byu,(r;(p)) which is also a function op. We are the value of message:;. Notice thata is the same for all
interested in finding the value gf that solves the following Users. The value of the peak raje depends on the channel

network utility maximizatiofNUM) problem [13]: gain between the transmitter and receiver of usefhus, it
can only be measured by usgrand then announced to the
P ien uilri(p)); (NUM)  \yhole network once use joins the network. The remaining

task is to determine how to obtain the valuepgf

From useri’s viewpoint, any time slot falls into one of
the following possible statesdle (no user transmits)busy
(at least one other user transmitsyccesquseri transmits

2We notice that if the underlying communication channel issioand we successfully), anéhilure (useri transmits but it fails). Lep!',

knovy_exact_packet error rate, then the average rate modd])indeds to be pPUSy’ pf”cc, and pzail denote the probabilities of experiencing
modified to incorporate the impact of packet loss due to chlainmperfections ﬁ f ivelv. Al rd h K
as in (7). However, in this paper, we assume that the packet exte isnot these four states, respectively. Also ﬁétj enote thepacket

known; thus, the average data rate is estimated as the tdioremin (1). error rate of the communication channel from the transmitter

whereP? = {p:p; € P;,Vi € N}, and the utility functions
are a-fair [14]. That is, u;(r;(p)) = (1 — ) tri(p)* @ if
a € (0,1)U(1,00), andu;(r;(p)) = logri(p), if a = 1.



node of userj to the receiver node of user We have: Whereﬁ?f}c" is the mean value oig’ijd and can bdocally esti-
mated by usei through observation of the channel contention

idle __ . _
pi° = jen (1= 1)), () history. LetT} 4.4 denote the set of time slots at which user
P = (1-p)) (1 —ILjeany (1 —pj)) i decodes the transmissions of ugef i. We estimatenf®
iteratively through a low-pass filter:
=1 =pi) = [Ljen (I —pj) 6) e
— idl n; 5 (t+1) =
= (1—p;) — i, aury= . .ay
p?ucc: i (Hje/\/(l —pj)) (1 _ p?rir) (1_91',]‘ (t))ni,j (t)"'gi,j (t)ni,j d(t)l{tETj,decd}v
o % wherenf®cdt) andn®*{t) denote the estimation af?°*® and
= (pi/(1 = pi)) (HjeN(l - Pj)) (1 —pf7) the measurement of?°°“ at time slott, respectively, and{-}
= (ps/(1 = py)) P¥e (1—pS), is an indication function. Herg; ; is a diminishingstepsize.
d ' Notice that in practice, the transmitted signal by the taitter
an . node of usey can be decoded by the network interface of user
pza" =p; ((1—1%mpi.dle) +p§7 — (1 — %pipiidle) pfg) zs receiver node; however, as its destin_ation MAC address
1 . is not the same as the one in the receiver node of user
=p; ((1 — —p;dle) + (—p'idle> p?ri’> the packet is simply discarded. In our proposed scheme, the
1=pi 1=pi ®) receiver node of usef needs to obtain the sender's MAC
= p; (1 _ < 1 pime) (1 _ pgr;)> address from the packet header before discarding the packet
L—p"* v Similarly, letn'® denote the number of non-idle time slots
o Piidie) ({_er that user; observes between any two consecutive idle time
“him\T T, b (1=p%3) - slots. Useri can estimate'¥® as follows [10]:
From (5), the channel is idle if all users are silent. From (6) piid'e =1/(1+ ﬁiidle)’ (12)

the channel is busy from usés viewpoint as long as useérs e - e o
silent (so that it can sense the channel) and at least one oi§fBere; ° is the mean value of;™°. Substituting (5), (10),

userj i is transmitting packets. The former has probabilitgnd (12) into (9), for eachi € AV'\{i}, we have:

(1—p;) while the latter has probabilitit —[ ;.\~ (1 (1—p;))- Upr — 1= ((1+ ndecdy /(1 1+ pidley) (1 _ per 13
From (7), the transmission from the transmitter node of user /p_J (Lm0 +n) A —pf)). (13)
i to the receiver node of useiis successful if the transmitter  Let Ti . denote the set of time slots at which usebserves
node of useri transmits the packet, no other usgr# ¢ an idle time slot. We estimate!?'® iteratively:

transmits any packet at the same time, and the transmittedy,. B idle dle i
packet is not corrupted. The latter happens with probghbilit " (t+1) = (1=pi(8))ni™ () +pi (0™ (OI{t € T}, (14)

(1 —pg;). Finally, from (8), useri observes a failure slot if where 719¢(¢) and n'?®(t) denote the estimation af'¥® at

it transmits a packet and the transmitted packet eitheidesll time ¢+ and the measurement ofd® at time ¢, respectively.

with some other transmission(s), or gets corrupted, or.botere p; is a diminishing stepsize. Based on the asynchronous

We notice that the probability valugg™ and p*® do not stochastic approximation theory [15], we know that the erro

depend on the value of}, while p“° and p®" do. for estimating the decoding and idle probabilities deceeas
Since user knows the local transmission probability, it~ zero (i.e., accurate estimations) when users do not chaege t

can estimate/’® using either (5) or any of the expressions ifransmission probabilities (i.e., the system is statiphar

(6)-(8) However, it is clear that usérs still unable to estimate For each uset and any other user # 1, given the system
the individual transmission probability; for any j # i even parametersy;, ﬁgscd andn/d®, we define:

if it can accurately estimate all the state probabilitj,

PP, psies andp@l In fact, finding the values oidividual — m!(£) = (1/7,)° " (1 + n%%t)) /(1 + ni¥e(£)))* ™", (15)

) J 7
transmission probabilities requires gathering mim@ividual
information from other users as we will explain next.

Recall that, at a busy time slot seen by user/, at least

wherem’ (t) denotes the estimation ef; made by userf at
time slot¢. In general, we have:

one other user transmits. Since users can hear gach o_tber, us m§(t) - 5; (t) my(t), (16)
1 may successfullylecodethe transmission of user£: with .
a probability that can be obtained as: where 3;(t) > 0 is the estimation gainwhich can represent
either accurate estimation (i.e3:(t) = 1), over-estimation
decd __ . _ _merr . ) A . .
pig = Pillliean gy (1 = p))(A = pf7) (i.e., B5(t) > 1) or under-estimation (i.e3;(t) < 1). From
= (pj/(1 =) (Lt —p0)) (1 = p55). (4) and (13), if the estimations a#f**® and 7! are accurate

Let n?ffd denote the number of time slots between any tw%'e" they accurately represent the mean values of random

) : . ___variablesndecd andn!¥®, respectively) and the channel is also
consecutive successful decoding of transmissions of gser J

; i decd i ;
b?’ qser.l' R(deom Vqr!ablcjee)Zé=j has an I'I'd_' geometric 3We notice that, in general, decoding header information atkpts is
distribution with probabilityp;5™. Therefore, we indeed have:more accurate than payload information. For example, ireHiaN, header is
decd dec transmitted at lower bit rate and higher reliability. THere, decoding MAC
pig = 1/(1+n;57), (10) address from the header is less prone to error due to champetfictions.



perfect (i.e., it has zero packet error rate), theiit) = 1 Algorithm 1 Executed by each userc N.
and m’(t) = m;(t) for all j € A\{i}. Notice that if the 1: Allocate memory forp; andm’ = (mf{,--- ,mfy).
value of the existing packet error gt is known (e.g., via 2: Allocate memory fom{®*@andnecd= (nd5e, . . . ndecd).
measurements at the physical layer), then we can redefine: : Randomly choose; € [Pmin, pmax].
tec oy am : Randomly choosen’ € [M™ M™] for all j € N.
L (1 +7f54n) /(1 + (1)) : Choosen!d® = 1 andnde®= 1 for all j € N.
=

2
3
4
5
6: Broadcast the fixed data rate to all other users.
. . . . 7
and obtain a more accurate estimationmof(¢) by canceling ¢
9
r

1

mi(t) = (1/7)" .an

Transmit with probabilityp;.

. ~idle —decd i

this paper, we consider the general case where the packet eﬁo': iL:p;iaete% tﬁggni according to Egs. (14) and (11).
rates arenot known by the users. » N

For each usefe N and for all je M\ {i}, let T}, denote 1% Updatep; = [1/ (1+‘\‘/%‘0‘_1 D et M )]pm;n'
the set of all time slots at which useupdates its estimation of 12.  end if '
m; according to (17). We select SE;m such thatastime goes 13- if t¢ T:,, then
by, the minimum time difference between any two consecutivg,. Updatem according to Eq. (15).
slots in the union of set$T, ,Vj € M\{i}} increases. As 15.  end if
a result, for each usef, we updatem; less frequently to 16: until the user decides to leave the network.
collect more samples ofi"® andn{®®® Thus, the estimations 17: Broadcast termination message.
of mean values.%® and ndec" improve gradually and become
asymptotically accurate. We also reset the diminishing-ste
sizesp; andp; ; to 1 after eacht e Tl so that the errors
in previous estimations do not affect new estimations. Basgy
on these assumptions, there exists a consﬁ;mi 0 such that * _ ) )
lim, o Bi(t) = Bi. From (15) and (16), we have: Vi = (N — 1) MR (e (19)
Vmax — (N _ 1)]\/[max(,7max)a—1. (20)

. repeat
out the effect of wireless channel imperfections. Howeirer,

Let V™in andV™ax denote the lower and upper bounds on
(p_;,t) for eachi € A" and at any time. If « > 1, then:

B =1/ -pff)t,  VijeN, i#j  (18)
If « <1, then we define:
From (18), if the communication channel is perfect, then -

61 =1 and all estimations arasymptotlcally accurateFor a VIR = (N = )M (e, (21)
Iossy channel, iftv < 1, theng! < 1 andm is asymptotically VIR = (N — 1) Mmax(yminjet, (22)
under-estimatedor all j # i. On the other hand, it > 1,
then ﬁ; > 1 and mj is asymptotically over-estimated

3) Distributed MAC Algorithm:Our proposed distributed ) ol

random access algorithm without explicit message passing™*(t) (|1 —af min 1,max e

. . e U (i jmax) —T <1,
(except when each user joins or leaves the network) is showsmin(¢) @ Aymin
in Algorithm 1. In this algorithm, each usée A/ continuously ) _ (23)
updatesn® and nfed = (nfecd vj € M\{i}) based on wheres™ ™ (t) = min, jen G5 (1), 67 (t) = max; jen F5(t),
its _Iocal observations from the channel to estimaté = 1 1
(mi, ¥j€N\{i}). Then, it chooses; according to (2) with v ZmaX{Pmin(l — pm) Prae(1 = Pmax)} , (24)
Pmax(l _ Pmin)

Theorem 2:Assume that there exist§ > 0 such that for
all t > t;, and anyp € P, we have:

v =2t Zje/\/\{i} m}. HereT; , denotes the set of all time
slots at which uset updates its transmission probability.

, , = ——71——-. 25
Notice that the updates aasynchronouacross wireless users Ppmin(] — pmax) (25)
which include synchronous updates as a special case. and

(Vmax)l/a |f Vmax <1
, (1 (Vmax)l/o)p” -7
IV. CONVERGENCE ANDOPTIMALITY H(Vmin, yrmax) — (Vmin)ll/j T ——— (26)
; i (14(Vmin)/e)o? -
For eachi eV, and at any time € T; ,,, Algorithm 1 updates 0.25, otherwise
pi(t+1)= 1/ (1+ § Jt ::, en, Algorithm 1 globally and asynchronously converges to
)] Then, Algorithm 1 globally and h !

the unique fixed point of mappingf' (p, co).
wherev(p_;,t)= de/\/\{ } (vi/v5)"~ ! (1/p; — 1)~ 15% t). The proof of Theorem 2 is given in the Appendix. Notice
For anyt > 0, we definef’(p,t) = (f/(p_;,t),Vi € J\/) that, at any time > 0, 8™ (¢) and 3™#*(t) are bounded:
Here f'(p,t) is a time-varying vector mapping. Sin min /% rmax min max max /1 rmin
approache$3’;'- ast — oo for all 7,5 € NV, the sequeqr?ce of (MR JMEE) < FR(E) < B (E) < (MP/ M), (27)
mapping{ f’ (p,t)} converges to a unique mappirfg(p,occ) Therefore, all the terms in (23), except are bounded and
ast — oo. That is, for anyp € P and anye > 0, there exists independent of the number of usefé. Thus, & can be
te > 0 such that]| f'(p, t) — f'(p, 0)| < e for all t > .. arbitrarily close to 0 ifV is large enough. Therefore,
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Fig. 2. Simulation results for Algorithm 1 whem = 0.6. The number of _. . L .
usgers and the features of the conglmunication channel chdteget a= 10s. Fig. 3. Trend of the adjusted transmission probabiliiewilgorithm 1
The optimal transmission probabilities befdre= 10s (i.e., dashed lines) and is being used, the number of use¥s= 10, and we havex = 2.

aftert = 10s (i.e., dotted lines) are obtained using [9, Algorithm 1].

of non-convexity (see [9, Sections Il and IV-A]). Each slot
Corollary 1: For any choice of system parameters, theiig 20 s (as in 802.11a) and the simulation time28s. We
exists N > 0, such that Algorithm 1 converges to the uniquassume that from time= 0 to ¢t = 10s, the channel is perfect
fixed point of mappingf’ (p, o), if the number of user& > and N = 4. Then, from¢ = 10s to ¢ = 20s, the channel is
N, i.e., there are enough users competing for the channel.lossy andV = 3 (i.e., user 4 leaves the network). Packet error
As an example, assume thaf""=0.1, P™*=(.9, «=0.9, rates are randomly selected between 0 and 0.0%=at0s and
AMaX — 4min - and for allt > 1 we have:3™¥(t)/3™"(t) < 2. then become fixed until= 20s. The diminishing stepsizes are
In that case, from Theorem 2, convergence of Algorithm 1 &lected in the form of /¢ while ¢ is the number of time slots.
guaranteed as long as the number of usérs 4. Recall from Section III-.2 that for any, j € A/, the stepsizes
We notice that Theorem 2 and Corollary 1 are general aade reset after eache Tj{m. Results are shown in Fig. 2. We
do not depend on the exact values of the estimation errorssae that Algorithm 1 converges to a small neighborhood of the
t — oo; however, the performance at the asymptotic fixedptimal values fast. Itis robust to the change of user pdgula
point still depends on the accuracy of the estimations. &md channel conditions. Similar results can be obtained for
fact, as long as there are enough learning opportunities fer> 1 and N > 4. For example, the results when= 2 and
users, learning the behavior of other users can catch up wiitlere areN = 10 users are shown in Fig. 3.
the environment changes. The following key theorem can beNext, we compare the signalling overhead in our algorithm
shown for the case of perfect communication channels.  with Algorithm 1 in [9]. We assume that each message value
Theorem 3:If the channel is perfect such thdim; .., requires two bytes. Simulation results are shown in Fig. 4.
BIn() = limy_o fM*(t) = 1, then the fixed point of The total amount of messages needed depend on the number
Algorithm 1 is the global optimal solution of problem (NUM).of iterations for convergence. We refer to Algorithm 1 as the
The proof of Theorem (3) is similar to that of [9, Theorenalgorithmwithout message passing. It only requires one time
4]. Notice that sincdim, .. 3;(t) = 1, we havef’(p,oc0) = message exchange when a user joins the network. We can see
f(p) = (fi(p—i)v Vi e]\/),wherefi(p_i) isasin (2). In fact, that increasing the number of users increases the siggallin
when each learning step is accurate, then distributeditgarnoverhead in both algorithms. However, our algorithm reggiir
becomes as effective as message passing. significantly less signalling compared to Algorithm 1 in .[9]
From Theorems 2 and 3, if the channel is perfect anfhen the number of usersS = 50, our algorithm reduces the
sufficient condition (23) holds, Algorithm 1 asynchrongusisignalling overhead by more than a factor of 40.
converges to the unique global optimal solution of non-esnv It is well-known that 802.11 DCF hasshort-term fairness
problem (NUM). If the channel is not perfect, although theroblem, due to binary exponential backoff. Next, we corapar
algorithm still converges, optimality is not always guassed. 802.11 DCF with Algorithm 1 in terms of both throughput and
Jain’s fairness index [16]. The short-term fairness is ivleizh
V. SIMULATION RESULTS using sliding windows with size of 200 slots. There afe=
To evaluate the performance of our proposed distributéd users in the network and their fixed peak rates are randomly
algorithm, we develop a discrete-event simulator that @nplselected between 6 and 54 Mbps. Simulation timd@8s.
ments Algorithms 1 and the IEEE 802.11 DCF access methddhe results whery varies between 0.5 to 5 are shown in
We first consider a network witt' = 4, P™" =0.01, and Fig. 5. We see that, parametaracts as aknobto control
pPmax =0.99. We sety; = 6, v2 = 18, v3 = 36, andy, = the tradeoff between efficiency and fairness. By increasing
54, all in Mbps. Utility parametety = 0.5 < 1. Notice that we can make the system more fair but less efficient (and vice
none of the previous NUM-based MAC algorithms (e.g, [4]xersa). Ifa = 0.5, then the throughput is 29.7% higher than
[6]) supporta-fair utility functions with « € (0,1) because DCF (see Fig. 5(a)). Besides, for any choicenok (0.5, 5],



[l can be similarly used to eliminate the need for message

—=— Algorithm With Frequent Message Passing passing; thus, significantly reducing the signalling oesdh
—6— Algorithm Without Frequent Message Passing

We may also relax the need for equal-length time slots,
following the techniques in [19, Section V], where a ugit
optimal random access algorithm is proposed for logarithmi
utilities in pure (un-slotted) ALOHA systems. It is also wor
mentioning that since we limit our study to a topology
scenario, where each user can hear transmissions from every
other user, the hidden/exposed terminal is not a problem.

Last but not least, an important extension of the current
paper is studying the existence of distributed utility+oyatl
random MAC algorithms without signalling fageneral net-

%% P P 0 =0 work topologies, where each user may hear the transmissions
Number of Users N from only a subsetof other users. In this case, the proof

Fig. 4. Comparison between Algorithm 1 in [9] (i.e., the altfon with of C(_)r_wergence in Theorem 2 will still be valid after Slight
explicit message passing) and our proposed Algorithm 1, the algorithm Modifications. However, the performance may not be optimal
without explicit message passing) in term of the signalling ovethehen the in general. In fact, it has been recently shown in [20] thea in
number of users varies from 10 to 50. network with only three users, where the two side users danno
hear each other’'s transmissions and the utility parameter
a = 0, the wireless usersannot adjust their transmission
T o probabilities to achieve exact optimal network performeanc

] without message passing. Therefore, we conjecture thes the
indeed doesnot exist any algorithm that converges to the
optimal network performance without any explicit infornaeat
exchange in a general topology scenario, unless all users ca
hear each other’s transmissions as studied in this paper.
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807 A. Proof of Theorem 2
goy ] For anyp € P andt > t{, the Jacobia/(p, t) is defined
08 360708001 5 s 4 5 as anN x N matrix whose entry in rowi and columnj is
Utility Parameter a dfi(p,t)/0p;. We can show that:
Fig.5. C ison between Algorithm 1 and 802.11 DCF whér- 10. -«
[0} omparison petween Algorithm 1 an whea= HJ/(p7 t)”oo S | ~ | ] (1)7 (28)
the fairness is much better than DCF (Fig. 5(b)). and
, [1—a (1) ymex N
VI. CONCLUSION AND FUTURE WORK 1T (p, t)]|1 < G 1) Vo ((——)T . (29)
o min ,ymm

In this paper, we designed a distributed contention-based
MAC algorithm to solve a NUM problem at the link-layerbet P, P € P. From (23), (28), (29), and by Cauchy-Schwarz
without explicit message passing among users. Our algorittinéquality we have [21, pp. 635]:
is asynchror_wpus, en]qys fast convergence, an.d supportses wi 1 ®.t) — £ B2 < 17 (2,02 | — Pll2
range of utility functions compared to previously proposed o o
NUM-based MAC algorithms. Simulation results show that = VI @, Ol 7 (2, 11 1P = Bll2 < (1P = D2,
our algorithm achieves a better efficiency-fairness traffle- wherep is any convex combination g andp. Thus, for any
compared with the IEEE 802.11 DCF. It is also robust to the> ty, vector functionf’(p, t) is a contraction mapping and
changes of user population and channel conditions. has a unique fixed point [21, pp. 183], denoteddsy We also
This work represents a first step towards building practicgknote the unique fixed point ¢ff (p, o) by p*_. Thus,
and optimal random access protocols without message passin
Results can be extended in several directions. There are som 1f'(p,t) = il < mellp — Pilly <7, (30)
recent efforts to model more realistic scenarios, where t /
gueues at each node hafirite-backlog[17], [18]. In [18], Qﬁwerem A
a queue back-pressure random accesgorithm is proposed
which aims to adjust the transmission probabilities to exdi im
optimal network utility and queue stability. The proposeﬁ1ere
algorithm requires frequent message exchange among the
nodes. In this regard, our estimation techniques in Section lpf —Pill, <€ Vt>to. (31)

I, n = maxisy ne, andé = [|p — py|l, .
Note thaty < 1, and¢ is bounded. Sinc¢’ (p, t) is continuous
at p; and lim; . f’ (p,t) = f’'(p,o0), we indeed have
—oo Pj = D%.. In other words, for any choice af > 0,
exists do > t(, such that:



Together with (30), we have:

If e, = 5%1, then G%L

< };—Z% On the other hand, if;,

. . 2040 o1 or if g5 = : o, thene! < g ande. <
1 ()= Polla < IF (B D)= Pl lIpf = Phollo < me+e. T i OF T e = X(C)en—c, theneg, < &, and e, <
ﬁTL. Thus, for all three possibilities in (37), we have

Similarly, we can show that:

I (f (pt) , t+1) = pills <
1 (' (,1) t + 1) = Py ||+ [P — Pl
< (Il (p,t) = Piclly + [|Pics — PX]],) +¢
<nné+ete)Fe=nné+2) +e

For any £k > 0, we recursively definef’k(p,t)
(" Hp,t),t + k — 1) where /9 = p. From (32), and
by mathematical induction, we can show that for &ny 0,

2(1-7")
2U=n)
1—n 32
1—1—77E (32)
1—n" (2]

(3]

Hf’k(p,t) —- P .

’ <"+
2
<nk§—|—

For anye > 0, there existk. such that ifk > k., thenn*¢ <
5. By choosing:

¢ — 1__7757 (33) M

1+n2
we have: [5]
| e =] <[t w0 -pi],<st5=c @

where the first inequality comes from the fact thatnorm is
always less than or equal tpnorm. This implies that, starting [7]
from any initial pointp € P at timet > ¢, the transmission
probability of each usei € A would be as close as desired
to the i entry of p?_ after some finite number of slots. For
all time instances$>t,, we define:

(8]

El

/ *
€ = 1ax [Pk — Pl - (35)
ktt—t X
e = om0 )~ pl e, (36) 10
and [11]
2(14n) s ;
max ag,?et] , if t <to+C,
&t = / 2(1-517) / . (37) [12]
max |y, = e, x (C) st_c}, otherwise

[13]
where the function(C) = %(ﬁ—z n® + 1), integer constant (14]
C = [log(3%2)/log ()] + 1, and [-] denotes the ceiling
function. From (31) and (34){e;} and {e;} are infinite
decreasing sequences and converge to zerd as oc.
Construct a newime sequencét;} wheret; = ¢y + (C for
any integerl > 0. Sincex (C) < 1, the sequencée,} is
decreasing and in particular, we halien; ... ¢z, = 0. For
eachl > 0, defineP;, = {p: ||p — pi |l < e} Itis clear
that pl, € P, and Py, C Py, for all I > 0. Furthermore,
Pi,.,, C Py, for some finitel’. For anyp € P,

[15]

[16]
[17]
(18]

|| tlHOO ocolloco t [e'e} t t

From (34), we know that: [20]

1+n,

1 _nétl.

_ 21
1% (1) = Pl <0 (er +€) + 2

C —
1€ (0, 8) - prulloo < 1° (+

L+nl—neg
1—-nl+n2

1—17&)_}_
1+n 2

= X(C) €t < Ctigq-

Thus, for any choice op € P;,, the mappingf’c (p, 1) €
Pz,

hola, Algorithm 1 globally and asynchronously converges to
the unique fixed poinp’_ [21, pp. 431].

.- Since bottsynchronous convergenaadboxconditions
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