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Abstract—In this paper, we propose two distributed
contention-based medium access control (MAC) algorithmsof
solving a network utility maximization (NUM) problem in wir e-
less ad hoc networks. Most of the previous NUM-based random
access algorithms have one or more of the following performee
bottlenecks: (1) extensive signaling among the nodes to deke
semi-distributed implementations, (2) synchronous updas of
contention probabilities, (3) small update stepsizes to ewre
convergence but with typically slow speed, and (4) supportg a
limited range of utility functions under which the NUM is shown
to be convex. Our proposed algorithms overcome the bottlerés
in all four aspects. First, only limited amount of message pssing
among nodes is required. Second, fully asynchronous update
of contention probabilities are allowed. Furthermore, our algo-
rithms are robust to arbitrary large message passing delay ad
message loss. Third, we do not utilize any stepsize during dates,
thus our algorithms can achieve faster convergence. Finall our
proposed algorithms have provable convergence, optimalit and
robustness properties under a wider range of utility functions,
even if the NUM problem is non-convex. Simulation results
show the optimality and fast convergence of our algorithms,
performance improvements compared with the subgradient-
based MAC, and better efficiency-fairness tradeoff compare
with the IEEE 802.11 distributed coordination function.

Index Terms— Network utility maximization, contention-based
medium access control, non-convex optimization, compleyi
reduction, robust design, a-fair utility functions.

|. INTRODUCTION

insufficient feedback. For example, in IEEE 802.11 distieiu
coordination function (DCF) [1], a node updates its trarssmi
sion probability based on thH@nary feedback of its data trans-
mission: success (no collision) or failure. This leads te lo
throughput and unfair resource allocation. Such mechanism
also cannot achieve a stable equilibrium [2].

In this paper, we design distributed contention-based ran-
dom MAC algorithms through the framework of network
utility maximization (NUM). Several related algorithms tre
same NUM framework have been proposed in [3]-[7]. They
have one or more of the following performance bottlenecks:
(1) extensive message passing among nodes to achieve semi-
distributed implementation, (2) synchronous updates of co
tention probabilities that require homogeneous computati
capabilities and software implementations among nodes, (3
small update stepsizes to guarantee convergence withatiypic
slow speed, and (4) supporting only a limited range of wtilit
functions due to non-convexity.

Our proposed algorithms overcome the above performance
bottlenecks in all four aspects. First, they only requineitied
message passing (i.e., signalling) among nodes. Basedeon th
messages from other nodes, each node updates its persistent
probabilities by solving alocal and myopic optimization
problem in an attempt to maximize thetal network utility.
Compared to the NUM-based random access algorithm in [3],
our algorithms can reduce the total signalling overhead by

There are two major types of wireless medium accegsfactor of ten. Second, our a|gOI‘itth allow asynchronous

control (MAC) protocols: scheduling-based (e.g., in dalfu

updates of messages and contention probabilities. They can

systems) and contention-based (e.g., in wireless loca af@lerate arbitrary large and finite asynchronism and messag
networks). In this paper, we focus on the study of contentiofi€lay and are also robust to message loss. For example, even

based MAC, where nodesndomlyand distributively access
the shared channel with certain transmission probalsilitie

when the packet loss rate of the underlying communication
channel is up to 0.5 (i.e., on average, half of the messages ar

The contention-based protocols are scalable and inhgrer@St), our algorithms can still achieve the optimal perfame
flexible, but they typically have poor performance due tyithin a short time. Third, in our algorithms, nodes update
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their contention probabilities through best response tgsda
thus no small stepsizes are needed. This enables our Algerit
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previous subgradient-based update methods (e.g., ingB3]-[
Finally, our algorithms have provable convergence prgpert
under a wider range of utility functions, even if the NUM
problem cannot be transformed into a convex optimization
problem. The techniques that we use in this paper are general
(;amd may be used to tackle other non-convex optimization
problems in communications and networking. Our results
have been recently extended in [8] to achieve utility-opdim
network performanc&ithout message passing.

Besides the NUM-based approach, another related thread of
research focuses on the analysis of random access algsrithm



vectorp = (p;, Vi € L) of all links. We have [13]:
-1
s, CREIDE ri(p) = i [en, (1 = Syec, v2) &)
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7 — where~y,; denotes the peak data rate for linki.e., the rate
[T noce
T

5 i achieved by link: if no node in setV; is active). Here, we
i N assume that either the communication channel is to be fixed
queue 2 NS

link 2

:

or it changes very slowly such that assume to be fixed for
a long period of time for alf € £. In addition, to ensure that
no link is starved, for each node and any linki € £,,, we
requirep; > P™* > ( and L,, P™* < Pmax, Thus,

. ) . > min pmin _ pmax\N—1 ;

Fig. 1. A sample wireless ad-hoc network. We hade, = {1,2}, £, = n(p) =7 P (1 P ) >0, viel, (2)
{3,4,5}, and L. = {6, 7}. In nodea, those packets which are assigned t min _ . min max __ max
be sent to nodé (over link 1) are enqueued in queue 1. Similarly, thos%NhereP_ mi: mm,"EN P" P = MaXnenN P" , and
packets that are assigned to be sent to nedever link 2) are enqueued in W& have:y™™ = min;c . ;.

queue 2. R and T boxes represent receiver and transmitte, wespectively. Each link: € £ has autility functionwhich is an increasing

and concave function of its rate and indicates link’s degree
using game theory (e.g., [9]-[12]). The focus is on noncq)ope)f satisfaction on its average data rate. The utility of link
ative interaction among wireless nodes, while here, wedocu is denoted byu(r;(p)), which is also a function of the
on global network performance optimization. Our results mapersistent probabilitiep of all links. We are interested in
also be extended to a mechanism design for selfish behavipgling the value op that solves the followingietwork utility
of nodes so as to align them the social utility-optimality. ~maximization(NUM) problem [14]:

node &

node ¢

The rest of this paper is organized as follows. The system _ . NUM
model is described in Section Il. Our proposed distributed g?% 2iec ul(ri(p)), ( )
algorithms are presented in Section Ill. The convergenggnere the feasible persistent probability region is

optimality, and robustness of our algorithms are analiftica '
proved in Section IV. Simulation results and performance P=<p : p; > P;"", Zjeﬁn p; < PR Vnej\/,ieﬁn}

assessments are reported in Section V. Conclusions as well . L _ . .
as outlines for future works are given in Section VI and the utility function isa-fair [15]. That is, for each link
' 1 € L, we have:

1—a) trlm if a e (0,1)U(1,00),
1. SYSTEM MODEL u(rs) = { l(og . ) 1o :(1' JU(L00), (g
Consider a wireless ad-hoc network. Lgt={1,..., N} . c o . .
denote the set of nodes aid={1, ..., L} denote the set of Using (3), a wide range of efficient and fair allocations can b

unidirectional wireless links. For each node A\, we denote Modeled. In particular, problem (NUM) reduces to throughpu
the set of itsoutgoinglinks by £,, C £, with size L, = |£,,|. maximization W|thq — 0, to proporhonal falr allocation with
Each noden has L, separate queues and each queue holis= 1. [0 harmonic mean fair allocation with = 2, and to
the packets for one of its outgoing links (see Fig. 1). Time [§ax-min fairmess wittx —oo. _
divided into equal-length slots. At each time slot, nedmay ~ Although the objective function in problem (NUM) is
choose to transmit on one of its outgoing links £, with ~concave in link rates: = (r;, Vi € £), it is not concave in

a persistent probabilityp;. The probabilities need to Satisfypersistent probabilitiep due to the product form of the aver-
< pmax < 1 where P™* denotes the maximum ad€ rate in (1). Thus, finding the optimal solution for than-

Zz‘eﬁn bi = L= e .
total persistent probability on node. Node n may remain convex_amdcoupl_edoptlmlz_anon problem is difficult even ina
silent in some slots. For the network in Fig. 1, nodéas Centralized fashion. In this paper, we propose two algorith
L, = 2 outgoing links whereC, = {1,2}. In nodea, those yvhlch_are_ able to fm_d the optimal _splunon of_p_roblem (l\_IL_JM)
packets which are destined to notlare enqueued in queueln & d|str|b}1ted fa\_sh|0n und.er_ verlflablg sufficient comh_B.
1. Similarly, the packets which are destined to nadare In comparison with the existing algorithms, our algorithms
enqueued in queue 2. At each time slot, a packet from qu&%not require any synchronization, converge much faster, a
1 is sent over link 1 with probability;, and a packet from More robust to message delay and message loss, and support
queue 2 is sent over link 2 with probabilitys. Notice that & Wider range ofv values in the utility function.
links 1 and 2 will not be active at the same time.

For each node: € \V, if the receivernode of linki € £,, lIl. ALGORITHMS
is within theinterference rangef another nodes € AV'\{n}, In this section, we propose two distributed algorithms to
then any transmission by noddi.e., transmission on any link solve optimization problem (NUM), one fdully interfered
j € L) interferes with transmission of link. Those nodes topologies in Section IlI-A and another one fageneral
which interfere with transmission of linkare denoted by set topologies in Section IlI-B. In both algorithms, each node
N;. Similar to [3], [6], we assumfinite-backlogn all nodes. performs amyopicand local optimization, i.e., optimizing the
For each noder € V, let r; denote the average data rate fototal network utility by choosing the persistent probabilities
link i € £,,, which is a function of the persistent probabilityof its own outgoing links, assuming others do not change



theirs. Despite the complexity of the problem, we show that 2) Closed-Form Solution of Problem (LOCAL-NUM):
the solution of this local optimization problem can be oi¢ai Next, we show how to obtain elosed-formoptimal solution
in closed-form, facilitated by limited message passing rmgnofor problem (5). Consider a node € A" and the set of its

nodes and a simple local sorting procedure. outgoing links£,,. We define a permutatioriy, - -- iy, , of
the link indices in set,, such that for any and! that satisfy
A. Fully Interfered Network Topologies 1<j <1< Ly, we have {/77" < /777" Thus, in the

case ofa > 1, we havey;, < --- < ~;, , and in the case
of a € (0,1), we havey;, > --- > ~;, . For example, let
L, =1{4,7,12}, v4 = 18 Mbps, v; = 24 Mbps, andy;> =6
Mbps. If « > 1, then we have, =12, i =4, andiz =7. On

We begin by considering fully interferedtopology, where
all links interfere with each other. That is, for eashe N
and any: € L, the interference node saf; = N'\{n}. This
models some important practical wireless networks incigdi . ) , :
wireless personal area networkghere multiple wireless de- thT_ otthedr hart'd’tr']b‘e (Oli 1)t’nthert‘)“ .:7,['h12:4(’) andzz:12i
vices interact with each other over short distances, as well ﬁt(;; tenoi es.ma estumberin the sef0, ..., L, — 1}
as indoomwireless local area networkshere several wireless SU¢" that We nave: —
devices communicate with an access point and each other.L_ ~Lp+ao <37, % (m) + /v L u(p_,)

min — = Yi fgy1 PN —n/*

1) Noden’s Local Optimization Problem:For each wire- ~ " L @)
less noden, let p, = (p;, Vi€L,) denote the persis- we can show that (see Appendix A), if condition (7) holds
tent probabilities of its outgoing links. Also lep_n = for & then it also holds forc + 1. We define the set
(pj, Vi€L\Ly) denote the persistent probabilities of ally _ {ivs1,....ir, }, with its size B, = |B,| = L, — 0.
links other thanthe outgoing links of node:. Consider the Notice that if conyaition (7) does not hold for any €

following local and myopicoptimization problem: {0,...,L, — 1}, then we sef3, = {} and B,, = 0.
Similarly, let ¢ denote thesmallest number in the set
; i(PnsP_p))s LOCAL-NUM '
Po€Pn D ( ) {0,..., L, — 1} such that we have:

where the feasible persistent probability region for nades max / pmin of a—1
P P y reg Pn /Pn - Ln +¢< Zlgzl (7i<+1 //Yil) . (8)

Po=A{Pp: Xicr, i SPYpi 2 PP Vi€Ln}, (4  again, we can show that (see Appendix A), if condition (8)

By solving problem (LOCAL-NUM), node: can selecip,, holds forg, then it also_holds fok + 1. We defineC,_L_:
such that thetotal network utility is maximizedassuming {is+1;---:iz,},andts sizeC, = |C,| = L, —s. If condition
thatp_, is fixed (i.e., none of the other nodes change the) does not hold for any € {0,..., L, — 1}, then we set
persistent probabilities). Clearly, nodes aat selfish in this Cn = {} With its sizeC;, = 0. o
case, andcooperatewith each other. This is necessary to W& now defined, = B, UC, with its size A, = [A,| =
achieve optimal network performance in a distributed fashi L»—+ Wherex = min{o,}. In fact, A, = {ixs1, ... ir, ).

Although problem (LOCAL-NUM) is difficult to solve, Depending on the value of,(p_,,), eitherA, =5, or A, =
we can convert it to an equivalent and more illuminating» (S€€ Appendix A). Usingd,,, the closed-form solution of

representation. Its objective function in the case of fulljroblem (5) can be obtained as follows. _ _
interfered network topologies can be written as: Theorem 1:For each nodeq_z € N, the unique opti-
mal solution of problem (5) ip#(p_,,) = f.(p_,) =

Y ier wri(PnP—n)) = ([eenn oy (1= 2ie ) ™ (fi(p_,), Vi€ L,), where for each link € £,,, the mapping
—a —a i(p_,,) is defined as:
(1-0) [ Sice, (it~ + (1 = Tic, 20’ fi{p-) Is defl
Z Z ( )lia/(l Z )17a:| Pyrl‘mn’ |f2€v4n7
seN\{n €L ViPj - Spl . M
SN et H er filp_n)= 1 1-A, Pmin Vi@ Twn ifie L\ A
Since the multiplicative term[ [ .o 1,y (1 = > iep, p))— Ve nt /P | pro Jie L\A,,
does not depend on the vector variaplg problem (LOCAL- " 9)
NUM) can beequivalentlywritten as: where[z], = max [min [z, a],b], and
pr,?eaﬁl Yier, w(vipi) +on(p_p) u (1- diec., i), (5) Wn =3 icr\A, a\/ (1/73')(171- (10)
where
vn(p_,) = The proof of Theorem 1 is available in Appendix A. The key

- 6) is to show thatf, (p_,,) satisfies thenecessaryand sufficient
ZsEN\{n}(l_zleﬂspl) (Zjeﬁs(yjpj)l—a). Karush-Kuhn-Tucker (KKT) optimality conditions [16, pp.

244]. Since problems (LOCAL-NUM) and (5) are equivalent,
Since) ;.. u(vipi) andu(1—), . p;) are strictly concave p;;(p_,,) is also the unique global optimal solution of problem
functions with respect tp,,, andv,(p_,,) is independent of (LOCAL-NUM). We notice that, regardless of the selected
p,,, problem (5) is strictly concave in local variable vectosystem parameters and the valuevgf for eachi € £,,\A,,,
p,,. In other words, there exists a unique optimal solution dhe upper bound P& — A, P™) /({/v;2=1w,) in (9) is
problem (5) and thus problem (LOCAL-NUM). always greater than or equal to the lower bourid.



Clearly, to compute;(p_,,) in (9), noden needs to obtain
vn(p_,,). If each nodes announces a message, where

mo=(1-Tiec, pj)a_l(zjeﬁs (3p) ™), FseN\(n},

then noden can computev,(p_,,) = > can (n}Ms- This
motivates us to propose our first algorithm
3) A Distributed MAC Algorithm:Our proposed distributed

random access algorithm is given in Algorithm 1. In thi

algorithm, each node € N/, regardless of how many outgoin
links it has, announces onlysinglemessagen,,. All wireless
nodes choose the persistent probabilities of their outgliiks
based on the messages that they receive from other nodes.

Algorithm 1 - Used by each wireless nodec N in a fully
interfered topology.
1: Allocate memory for messages = (my,--- ,my).
2: Randomly choose; > P™* > ( for each linki € £,
such thatzieﬁn p; < PMax <1,

3: Randomly choosen, > 0 for all s € V.
4: repeat
5. Transmit on outgoing link € £,, with probability p;.
6: if teT,,then
7: Set A, = getA(n,vn(P_p), L, V1, - -5 YL,)-
8: Setp; = P for all i € A,,. _
pmax_ 4, pmin
) - 1 1—A, pmin /78 twn

* Setp; = e (wnt %@wJ pmin

forall i € £,\A,. ’
10: if te T, 4m then

a—1 1 a—1
1L Setmy, = (1= ;cr, i) <Zi6£n (W) >
12: Broadcastmn,,.
13:  if a message is receiveden Updatem.
14: until noden decides to leave the network.
1: function getA(n, vn(p_,.), Loy Y1s- -5 YL,,)
2. SetB, ={} andC, = {}.
3 if a>1 then Setiy,..., iz, sothaty;, <... <7 .
4: else Setiy,...,ir,, SO thaty, >...>~;, .
5: foro=0,...,L,—1do
6: if 1/P™0 — L, 40 < S0 % (Viowr /)" +
%/’Yicﬂrlailvn(pfn) then
7: SetB,, = {izs1,...,iL, }-
8: Break.
9: end for
10. for¢=0,...,L,—1do
. a—1

11 if pmax/pmin_ 1, 4e<30 8 (%) then
12: SetC,, = {ict1,---,iL, }-
13: Break.
14:  end for
15:  SetA, = B, UC,.

16: return A,,.

1Similar way of constructing messages based on KKT condititas been
considered in [12] for distributed power control. On theesthand, we mainly
use contraction and monotone mapping to prove the propetieur proposed
algorithms here, instead of the supermodular game theag irs[12].

persistent probabilities and messages asgnchronouslyp-
dated. Letl’, , andT, ,, be two unbounded sets of time slots
at which noden updategp,, andm,,, respectively. We assume
that the asynchronism of the updates is bounded; i.e., there
exists a finiteH (calledasynchronism measuf&7]) such that:

Vit €Ty, Ita€T),, suchthatt, —t; < H, (12)
Vits € Ty , 3ta €Ty such that (t4 — t3)+D<H, (12)

Where D denotes an upper bound @ommunication delay
9 rom (11), each node updates the persistent probabilifies o

its outgoing links at least once during any time interval of
LE th H slots. From (12), the information used by each node
[ tdated by at mogt time slots. We notice thall can be
arbitrarily large as long as it is bounded. The exact value of
H is not important and needsot be known by all nodes.
Compared with the distributed MAC algorithms proposed in
the literature, Algorithm 1 has several distinct featu(@dess
explicit message passing is needed (e.g., in the subgtadien
based algorithm proposed in [3], each node needs to announce
two messages), (ii) asynchronous updates with arbitraril{efini
delay, which minimizes the coordination overhead and alow
maximum heterogeneity among nodes, and (iii) does not use
any stepsizes, which avoids the slow convergence problem du
to small stepsizes in the commonly used subgradient methods
We note that if Algorithm 1 has a fixed point, then every
noden achieves the optimal solution of problem (LOCAL-
NUM) and each node will not change its persistent proba-
bility vector. In Section IV-A, we show that this fixed point
corresponds to the global optimal solution of problem (NUM)
under proper sufficient conditions, and Algorithm 1 conesrg
to such a fixed point with fast and robust performance.

B. General Network Topologies

We now consider the general case, where each node is
within the interference range of aarbitrary subsetof the
other nodes. For each nodec N and any of its outgoing
links i € L£,,, the set of nodes that interfere with lirikis an
arbitrary subset of all nodes, i.e\; C A'\{n}. In this case,
the objective function of problem (LOCAL-NUM), i.e., the
summation . » u(r;(p,,,p_,)), can be written as:

(1—a) tx

{Zieﬂn((%HceNi (1 _Zleﬂc pz))pi) 1_Q+ (1 _Ziecnpi)l_a
D semint jec.inen; (ViPi Teen\ pny (1= 21, P))T0+
Dosen(ny e ngn; (ViPi [leen, (1= 2ies. Pl))l_a} :

Since the last term in the bracket does not dependpon
problem (LOCAL-NUM) can besquivalentlywritten as:

i, u(ViP_)pi) + v (@_y) u (1= cp pi),
(13)

where for outgoing each link € £, auxiliary term~, is

defined asy;(p_,,) = vi [T,en, (1 — X 1ez. p1) and

!/
n

max
P, EPn

v

(P_n)
ZSGN\{n}Zg’GLn [neEN; 0 PszeNj \{n} (1 —Zzeaspl e



Notice thaty/(p_,,) does not represent the peak data rate 4figorithm 2 - Used by each nodec\ in a general topology.

wireless linki. We can show that problem (13) is strictly 1: Allocate memory form = (m,...,mn,) andg =
concave in vectop,, and has a unique optimal solution. (q1y---,anN).

The closed-form solution of problem (13) can be obtained: Randomly choosg; > P2in > ( for all i € £,, such that
similarly as that of problem (5) in the case of fully inteddr dier, Pi < PR <1

network topologies. For the outgoing link s&t of noden, we  3: Randomly choosen, ,, > 0 andg, € (0,1) forall s € N.
can define a permutation of link indices in this set; - - , i, , 4: repeat
such that for anyj and! that satisfyl <;j<I<L,, we have 5  Transmit on outgoing link € £,, with probability p;.

o/ (Pt < <\></y;l (p_,)*1. In the case ofv>1, we 6 if t€T,,then
! / / /
have'yZ < <ql L I ae(0,1), we havefyZ > >/ . Let 5 getAn__Pgnefff(”’”ﬁ@—nj{/L”"ﬁ"'"'VLn)'
o' denote thesmallestvalue in {0, . .., L, — 1} such that & etp; = B forall i € Ay
9: Setpz = )
1 ; ; — Pmax—AfnP,,':““
F— Loto'< ST /00, ,ﬂ(p_n>/%l@o_ﬂ>>a - R e e S
10: n—n
n \/’Y’a 1 o ) \/w’a Lp_) wh (P /v (P_) e
iorsap) P for all ic £, \A/,. "

Similarly, let ¢’ denote thesmallestvalue in{0,...,L,—1} 11: if t €T, qm then
such that we have: 12: Setg, =1-> ", i

pmax , a-l 1 Setmn,s = X ier,sen; 1/ (i lleen () ge)™™!

P~ Lot < S { (0, ) ko) for any s # .

(15) 4 Inform m,, s to all s € Uiz, N;.
We define B, = {iyii1,....iz,}, with its size B, = 15 Inform ¢,, to all se_j\/\{n} if 3jeL, andneN;.
IB.| = L, — o. If condition (14) does not hold for any 16 if a message is receivelden Updatermn andgq.
o' € {0 — 1}, then we se®, = {} with B/, = 0. 17 until noden decides to leave the network.
’ n 1 n n .
Similarly, we defineC;, = {i¢41,...,i1,}, with its size
= |C,| = L, — <. If condition (15) does not hold for _ o _
any<’ € {0 L, — 1}, then we set, = {} with C’, =0 interfere with transmissions of at least one of the outgoing
P ’ n n . . .
Given B, and C’ we defined!, = B, UC/ with its size links of noden. It also informsg, to all nodess whose
|A’ | = L, — k' Wherex’ = mm{g g} outgoing transmissions is interfered by transmissionsnfro

Theorem 2 For each node: €\, the global optimal solu- noden. All nodes then choose the persistent probabilities of
tion of problem (13) io% (p_,,) = . (p_,)=(f!(p_,), Vi€ their outgoing links based on the received messages froer oth

n

L), where for eachi € £;, function f;(p_, ) is defined as: hodes. In Algorithm 2.7, , and T}, 4., are two unbounded
sets of time slots at which nodeupdatesp,, and announces

filp_y,) = an, andm,, s for all s # n, respectively. The assumptions on
prin, if i € A, asynchronism measure are the same as those in Algorithm 1.
_ppexoan et We show in Section IV-B that foanytopology, the fixed point
[ 1 1-A Py ]aWi(PMM%@M otherwise Of Algorithm 2 also corresponds to the global optimal sainti
[/ wip)+8/vi(p ) pmin 7 of the non-convesproblem (NUM) under proper conditions.
(16) In comparison with the prior algorithms in the literature
— (e.g., [3]), Algorithms 1 and 2 are mon®bust converge
with wy (p_,) = X jcpna (12 (pon))” faster and requireless signalling We further discuss the

The proof of Theorem 2 is similar to that of Theorem qproperties of our proposed algorithms in Sections IV and V.
Eq. (16) provides the optimal solution for problem (LOCAL-
NUM) for general topologies, which include the fully inter- V. CONVERGENCE OPTIMALITY, AND ROBUSTNESS
fered case as a special case. We can define siodessages  In this section, we prove the convergence, optimality and

gs =1— Zjeﬂ-pjv (17 robustness properties of our algorithms by using results in
distributed computation [17] and non-linear optimizat[@B8].
Mo =2 jc oo inen; 1V 0P Heens\ fny 4%

Then v/, (p_,) - A} Misin ‘f’md vp_,) = A Fully Interfered Netvyork Topolf)gies
Yi [lsen, ¢s for all i € £,,. Messageys simply denotes the  Here we study Algorithm 1 which was proposed to solve
probability that node remains silent at a time slot. Also noteproblem (LOCAL-NUM) in a fully interfered topology. We
that for each node # s, if there does not exist any € £, first show thatif Algorithm 1 has a unique fixed point, then
such that: € N, thenm,,, = 0 (i.e., noden does not cause it will globally converge to that fixed point. After that, we
interference to any outgoing link of nodg. provide the conditions under which the uniqueness of thelfixe

Our second proposed algorithm works for any generpbint of Algorithm 1 is guaranteed. We also show that such
topology and is shown in Algorithm 2. In this algorithm, eaclinique fixed point corresponds to the unique global optimal
noden € N informsm,, s to all nodess whose transmissions solution of non-convex optimization problem (NUM).



Definition 1: A vector mappingg(-) is monotone increas- where L™" = min,cn L,, L™ = max,en Ln, ' =
ing [17, pp. 191] if for anyp, p € P such thatp < p, we (P™a(1 — pmin)) / (Pmin(l — pmax)), & = [max/(] —
haveg(p) =< g(p), where the inequalities are interpreted ag™*) + 1/p™in. Q = % 1/(L/L, — 1), V™» =
coordinate-wise. A vector mapping-) is monotone decreas- (N—1) (ymax(l/pmin -1)/ Vmin)o‘*l, ymax — (N —1)
ing if for any p, p € P such thap < p, we haveyg(p) > g(p). (,ymin(l/Pmin_1)/,ymax)o‘_1’ and we have:

We definef(p) = (f, (p),VneN), wheref, (p) is as in

Theorem 1. Recall that a fixed point of mappifi¢p) is also _megle e prmax <
: : : (L (Vma)i7ayg” =5
a fixed point of Algorithm 1. We can show tRat B(Vmin ymax) — (yminyt/a o (20)
Proposition 1: f(p) is monotonencreasingif « > 1, and ’ A (vmmy /ey if V=1,
is monotonedecreasingf a < 1. 0.25, otherwise
The proof of Proposition 1 is given in Appendix B. This The proof of Theorem 5 is available in Appendix E. The
enables us to show the following: _ ~ key is to show that if (19) holds, then mappiyfigs not only a
Theorem 3:Supposef has a unique fixed point*. Starting - monotone mapping, but also &rnorm contraction mapping.
from any initial pointp P, Algorithm 1 converges t@*. In general, all the terms in (19), except are independent

The proof of Theorem 3 is available in Appendix Cof the number of noded’. The value of® can be arbitrarily
The key idea is to show that the monotone mappfi®) close to 0 if NV is large enough. Therefore,
satisfiessynchronous convergen@nd box conditions; thus, Corollary 2: For anya € (0, 1) and any choice of other pa-
asynchronous convergence theordm, pp. 431] is applicable. rameters, there exists a positive integésuch that Algorithm
Theorem 3 is general and applies to any choice of systenhas a unique fixed point if the number of nodés> N.
parameters. It only requires thf.) has a unique fixed point.  Theorem 5 provides practical bounds on system parameters
Next, we will show that not only Algorithm 1 has a uniqu&hat guarantee the uniqueness of the fixed point. For example
fixed point under mild technical conditions, the fixed pomit iconsider the IEEE 802.11a standard wheté" = 6 Mbps and
indeed the global optimal solution of problem (NUM). ~ymax = 54 Mbps. In Fig. 2, we plot the sufficient conditions on

Let 7 denote the set of fixed points of Algorithm 1. Fofypper bounds ofP™#* and lower bounds of™® for utility
eachp* € 7 and any linki € L, we havep; = fi(p~,). parameter € [0.1,0.9] and number of node®’ € [2,100],

We also letS denote the set ddtationary pointd18, pp. 194] where each node has one outgoing link. As we can see, the
of problem (NUM). Note that all local (and global) optimalgifference between the lower and upper bounds increases as

solutions of problem (NUM) belong to sét « or N increases, indicating the convergence condition is less
Theorem 4:7 = S. restrictive. In many cases, convergence of Algorithm 1 can
The proof of Theorem 4 is available in Appendix D. Fronpe obtained even when the sufficient condition (19) is not

Theorems 3 and 4, we have: satisfied. For example, it is easy to numerically verify thoat

Corollary 1: If either S or F is asingletonset (i.e., it has N = 2, problem (NUM) witha € (0.5, 1) has a unique global
one element), then Algorithm 1 asynchronously converges dgtimal solution with any choice of system parameters.
the unique global optimal solution of problem (NUM). Theorems 3 to 5 together show that Algorithm 1 asyn-
In [3], it has been shown that the set of stationary pathis  chronously converges to the unique global optimal solutibn
a singleton set for allv > 1. They used logarithmic mappingthe problem (NUM) when eithes € (0,1) (under condition
and transformed problem (NUM) to an equivalent conveq9)) or o > 1 (with any system parameters). In particular,
problem and showed that it has a unique stationary poimfigorithm 1 works properly under delayed or even occasion-
However, this transformation does not workife (0,1). That ally lost messages. To have a better understanding on how the
is the reason the algorithm proposed in [3] does not suppeyistem behaves with message loss, consideconsecutive
the a-fair utility functions with o« € (0,1). Here we are able messages announced by an arbitrary ned@he first A/ —1
to provide sufficient conditions under which the non-convaxessages are lost (e.g., due to collisions) while the last
problem (NUM) has a unique optimal solution withe (0,1). message is properly received by all other noses A"\ {n}.
To achieve this, we need to define a different mapping concepf this case, all derived results will go through with anathe
Definition 2: A mapping functiong(p) is a contraction asynchronism measure. Léf = MH. Since H and M
mapping[17, pp. 181] if there exists a constafitc (0,1), are bounded/ is also bounded. Considering as the new
such that|g(p) — g(p)|| < ¢|lp — p| for all p,p € P. Here asynchronism measure, Theorems 3 to 5 can still be applied.
|| - || is some vector norm. A contraction mapping has uniqughus, convergence and optimality of Algorithm 1 are still
fixed point [17, pp. 183]. guaranteed. Interestingly, this robust behavior is aceorgu
Theorem 5:Consider the case wherec (0,1). SetF is  with fast convergence speed as shown in Section V.
a singleton if the following holds:

11—« . O\ max NI 1 B. General Network Topologies
(7 v oy >) (Wmin F) (Q—ﬁ) <L Consider vector mapping’(p) = (f.(p_,),¥n € N,

(19) wheref, (p_,,) is defined in Theorem 2. We denote the set of
fixed points of mappingf’(p) by 7/, which is the set of fixed

2 . _ . . - ) ’
For the special case when = 1, vector mappingf(p_,) is aconstant ints of Algorithm 2. We also denote the set of stationary
mapping as its value does not dependmn,,. Thus, the convergence proof

for Algorithm 1 is trivial if o — 1. Same statement is true for Algorithm 2. POINts of problem (NUM) byS” in this case.
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g Fig. 3. A chain topology with one hop interference. Arrows- in
- dicate the direction of the corresponding unidirectionaireless links.
b Function f! only depends on(pi—s,...,Pi—1,Pi4+2,---,Pi+4). NO-

tice that v}, v/_1, Mn—2n, Mn—1,n, Mnit1n, and myi2, depend
on (Pit1, .-, Pita), (Pi=5,--.,Pi—2), (Pi—1,Pi—3,Pi—2), (Pi—2,Pi+1,
Pit2), (Pi—3,Pi—2,Pit1), and (piy1,pit2,Pi+3), respectively.

1 .
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Number of users, N The proof of Theorem 7 is similar to that of Theorem 5.

Fig. 2. Sufficient conditions on the upper boundg8¥#* and lower bounds Theprem 71is general_ and appliesany topology. _G'Ven the
of P™in for o € [0.1,0.9] and N € [2,100] when Algorithm 1 is being particular topology of interest, we can further refine (Z.y.,
usegrfj‘ﬂld e"’:jcz ”Or?edhlf"‘s one outgoing link. ?Jo"d g:fgﬁ{fﬁrmr bounds a5 in (19). Notice that condition (21) is only sufficient astie
on and dashed fines represent upper boun ‘ fully interfered case. For example,we can numerically fyeri
that for many practical topologies (e.g., chain topologies
. ! !

TEeoremfG.f}‘ h_ S’ i< simil hat of Th roblem (NUM) with « € (0.5,1) has a unique local (thus

The proof of Theorem 6 is similar to that of T eorem 4'_ Iglobal) optimal solution foany choice of system parameters.
«a > 1, then from [3, Lemma 1] we know that stationary poin Unlike mapping#, mappingf’ may not always be mono-

/o - . . L

sets ITI asm.gl?ton set. 'goglethe_rhwnh Theorem 6’_ we havg, e Therefore, the convergence results in Theorem 3 do

Corollary 3',' azlan A.gorlt m 2 converges, it conve-p, apply in general. However, we can still obtain sufficient
rges to the unique global optimal solut!on of problem (NUM)conditions under which the convergence to the unique fixed

If @€ (O_’ 1)’ WEe can use the same idea of The?'rem_ 5> afint is guaranteed. Next, we define another mapping which
obtain sufficient conditions to assure that the stationaintp helps us prove the asynchronous convergence of Algorithm 2.
setS’ is a singleton set. We first notice that since not all links Definition 3: A mapping functiorg(p) is aweighted maxi-
interfere yvith each other, for each node A/ and any linki _mum norm contraction mappiri7, pp. 434] ifg(p) is a con-
Ly, function f; may only depend on a small subset of entrieg,ction mapping with respect to a weighted maximum norm
in vector p_,,. For example, consider thehain topologyin lg(p)||, = maxic z |gi(p)| /wi, wherew = (wr,. .., wr) is a
Fig. 3, where the interferences are witline hop For each vector Ov?/ith positive coordinates

noded, N; = {n +1,n + 2}. In this figure, f; 0”'}’ depends gimilar to monotone mappings, the weighted maximum
on (pi_5,---,pi_1,pi+2,-./-,pi+4)- Notice that+; depends nom contraction mappings satisfy bolynchronous con-
on (Pz'+117 .-, Pita) @nd i, depends on(p;—s, ... pi-2)-  yergenceand box conditions [17, pp. 434-437]. Fromsyn-
T_h_USwn depends ofp;—s, ..., pi-1,Pit2; .-, Pita)- IN @G- cprongys convergence theorefh7, pp. 431], this implies
dition, my—2,n, Mn-1,n, Mnt1,n, AN Mgz, depend ON ya4 5 weighted norm contraction mapping globally and asyn-
(Pi—a,Pi-3,Pi~2), (Pi-2,Pit1,Pit2), (pi73’pi*2’pi+1)' and  chronously converges to its unique fixed point, based onfwhic
(Pit1:Pis2, Pits), respectively. Thuspy, also depends on e can show the following key results:

(Pi-5:- -, Pi1,Pit2, - - Pia). We define setti = {i —  Theqrem 8:For any general topology, Algorithm 2 globally

5"'17i__ Lit2,...,¢+ _4} as thede.pend_ency seﬂor_ link  4ng asynchronously converges to the unique global optimal
i. Similarly, we can define; for all i € £ in any arbitrary ¢ tion of problem (NUM) if

topology. That is, for anyi,j € £, we havej € &; if and 11— qf

only if p; appears in the formulation of/. Let X; = |X;| D1 VN X™maxp (zmin, zmaxy < 1, (24)
denote the size of set;. We defineX™** = max;c, X;. AS « ) .

an example, for the chain topology in Fig. ¥ = 8. If «€(0,1), thenZ™» and Z™** are as in (22) and (23).

/ min

Theorem 7:For any general topology, the fixed point setf @ > 1, Z™" = (I5s)* (L™ — 1)* and 27 =

/ max

F' is a singleton ifa € (0,1) and (%)wl((Lmin — 1)+ /(L = Lmin) pmax)e,
1— o , ) ( The proof of Theorem 8 is available in Appendix F. The
—— XUTAR(ZTT, 27 <1, (21) idea is to use the relationship betweknand /., norms to
_ ) nin in N1 obtain a sufficient condition under whicfi’ is a weighted
Whgreé is as in (20)yy =7 (1—pme) 7 ~ maximum norm contraction mapping withit weights. Thus,
7 A =1/P™ 4 1/(1 = P7), and we have: Algorithm 2 asynchronously converges to its unique fixed
min _ (’y/_min)l_a(Lmin — 1) 22) point. From Theorem 6, the convergence is indeed towards
e ’ the unique global optimal solution of problem (NUM). Notice

/max

Zmax (17)1 a((Lmin_1)+ oy (L_Lmin)pmax)a, (23) that condition (24) is a sufficient (but not necessary) ctoli
for asynchronous convergence. Simulation results in &ecti
Theorem 7 guarantees that Algorithm 2 has a unique fix&dverify that Algorithm 2 converges under a wide range of
point which is the global optimal solution of problem (NUM).system parameters. We also notice that if (24) holds for some
Notice thatZ™i® and Z™** are lower and upper bounds onx € (0, 1), then (21) also holds for the same



The exact value of asynchronism measiféas not impor-
tant for any of the proofs. Following the same argument in
Section IV-A, Algorithm 2 works properly under delayed or
lost messages. In Section V, we assess the optimality, fobus
ness, and convergence of Algorithm 2 for several randomly
selected topologies and under different channel condition

o
)

o
o

I
~

V. SIMULATION RESULTS

Persistent Probability
o [=}
N w

In this section, we assess the optimality, convergence and
robust performance of our algorithms. In particular, wevgho
the advantages of Algorithms 1 and 2 compared with the

o
o

previously proposed subgradient-based algorithm in [Bo(a 0 100 260T_ | 300 400 500
see [19]) as well as the IEEE 802.11 DCF. The simulation me Slot

environment is MATLAB. For DCF, we only implemented 08 ‘ G |

the basic features, mostly the well-knowimary exponentially ' B —— Algorithm 1
backoff (BEB) mechanism to update persistent probabilities, 0-7F ’

without any carrier sensing mechanism. The parameters of
BEB are tuned based on the results in [2, Theorem 4].

A. Convergence and Optimality

We first consider a fully interfered topology withh = 3
nodes andL = 6 links. In this network, each node has two
outgoing links, one to each of the other two nodes. For all
nodesn € N, we set the minimum persistent probability
Pmin=().01 and the maximum total probability** =0.99. o=t : : :

. 0 100 200 300 400 500

We also set asynchronism measiife=10. The peak rates of Time Slot

6 links arey; =6 Mbps, v =36 Mbps,v3=9 Mbps,y,=12

Mbps, 75 = 18 Mbps, andys = 54 Mbps. Communication Fig. 4. Simulation results for a fully interfered topologytfwthree nodes and
ix Jinks. Algorithm 1 is used. Communications delay is I@dislots, packet

delays among nodes are up to 10 slots and the pacl_<et eﬁm’r rate is 0.1, ands — 6, 72 — 36,73 = 9, 74 = 12, 75 — 18, 7 — 54 (all

rate is 0.1 (i.e., on average, 10% of the messages are |@st). in Mbps). (a) Utility parameterr = 2, (b) Utility parametera = 0.6.

4(a) shows the trajectories of adjusted persistent préibebi

and their optimal values when =2 (which is greater than 100m and1km x 1km fields for fully interfered and general

1)- In this casep” = [0'26’0'11’0'21’0'18’0'16’0'09]T' we topologies, respectively. The communication and interiee
can see that Algorithm 1 converges to the optimal solutigRPO'09I€s, Tesp y.

p* within less than 300 slots, even with communicatioff 193 a.re@m and 300m1 resp_ectwe!y. Each noclje.hqs
delay and message loss. Similar results when= 0.6 an outgoing link to any of its neighboring nodes within its

(which is lessthan 1) are shown in Fig. 4(b). In this Case?ommunlcatlon range. The peak data rates (he.for all
P = [0.06,0.21,0.07,0.09,0.1870.38]T. Again, we see that 1€ L) are selectedandomlybetween 6 to 54 Mbps. Parameter

Algorithm 1 converges t@* within 320 slots. Similar results \C;‘V'S set to Ztr\]N?'Ch drr?“odels harrr;oerllalctrr?_ean fair aIIocaU(cj)n.
can be obtained when the simulated network hashain € assume that eadmessage valyenoth in our propose

topology and Algorithm 2 is being used algorithms and the subgradient-based algorithm, reqtives

Next, we compare the convergence speed of Algorithmbé'tesc'j Wf nc?ttrllce tr;at since Algt;;onthm 2.andnt;e subgradient-
and that of the subgradient-based algorithm [3] in a netwopl?se algorithm [3] require transmission ko message

with a randomly generated general topologg— 10 nodes, values, the size of their messages is twice larger _than fee si
and L — 24 wireless links. Results are shown in Fig 5of the messages of Algorithm 1. Recall that Algorithm 1 only

Here we assume that there is no communication delay andrﬁggéfset;?”;“'fﬁéog. Ogaﬁ.:'ngleerrﬁsasgigf g:él;]eélGé\:zr?r;he
packet corruption in the underlying communication channé;‘ ge sizes, 'gnhafiing ov 9 !

We can see that Algorithm 2 converges much faster than tth%ﬁtnt?ld aT th?ﬁtal rqulrett)j fmes;tage e;cha;gge (in Kbyte ds')
subgradient-based algorithm. In fact, Algorithm 2 conesrg at the algorithm needs before 1t reaches the correspgnain

to the optimal persistent probabilities after only 11 itenas. op';:r;raall fglzfgr}ezfvfggglirl?m(gleg'\g 'n§£$::;22 f:ifrl]“;st(];or
However, it takes 182 iterations for the subgradient-basgg polog

algorithm to reach the exact optimal persistent probadslit are _shown n Fig. 6.' e see that increasing the numbgr of
nodes increases the signalling overhead. However, Algarit

_ ) 1 and 2 manage to reach the optimal solutions via much less
B. Signalling Overhead signalling. Compared to the subgradient-based algorithch a
In this section, we compare the signalling overhead in owhen N = 30, Algorithms 1 and 2 reduce the signalling
algorithms with the subgradient-based algorithm [3]. e thoverhead by 1120% (from 55.2 KByte to 4.5 KByte) and
simulation model, nodes arandomly located in100m x 810% (from 111.3 KByte to 10.8 KByte), respectively. Notice

Persistent Probabilities
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Fig. 5. Comparison between Algorithm 2 and the subgradiesed
algorithm [3] in term of convergence speed in a network with= 10 nodes, 981

L = 24 links, and a randomly generated general topology. (a) Swlgnt- S

based algorithm is being used. (b) Algorithm 2 is being used. > %1
©
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that one reason for the superiority of our proposed algarsth —&— Subgradient-based Algorithm

is their faster convergence speed. In addition, Algorithm 1 % 01 0.2 03 0.4 05

reduces the message amount by half, which also contributes Packet Error Rate

to reducing the signalling overhead. Fig. 7.  Comparison between Algorithm 2 and the subgradiesed
algorithm [3] in term of robustness with respect to messagjaydand loss.
Each point represents the average results from simulatnguidom general
topologies, each including 30 nodes. (a) Optimality in patage when

C. Robustness maximum communication delay varies from 10 to 50 time sk@}sOptimality

Since the underlying communication channels are not idéapercentage when packet error rate varies from 0.1 to 0.5.
in practice, transmitted messages by MAC protocols may be

delayed or even be lost. In this section, we show that oykg1 3641, 6472, and 9923 time slots when communication
proposed algorithms are robust with respect to both messa@fay is 10, 20, 30, 40, and 50 time slots, respectively.

delay and loss. The simulation model is the same as thajext, we assess the effect of message delay when the packet
in Section V-B. We only consider general topologies witlyror rate varies from 0.1 (i.e., 10% of the messages argttost

N = 30 nodes. Results for fully interfered topologies arg 5 Results are shown in Fig. 7(b). We see that Algorithm 2 is
similar. The simulation time is set t80, 000 time slots. For ,gpust to message loss. On average, it converges to theaptim
each algorithm, we measure the optimality of the aChieV%ﬁ‘obabilities after 312, 473, 531, 629, and 727 slots when

network utility at the end of each simulation run. packet error rate is 0.1, 0.2, 0.3, 0.4, and 0.5, respegtivel
First, we assume that the communication delay varies from

10 to 50 time slots. Results are shown in Fig. 7(a). We see that i .

by increasing delay up to 50 time slots, the subgradiengdad- Comparison with IEEE 802.11 DCF

algorithm leads to 8.4% optimality loss while Algorithm 2nca  Since our algorithms achieve the global optimal solution of

always find the exact optimal solutions. Note that althougiroblem (NUM), they establish a performance upper-bound
Algorithm 2 is robust to delay, higher delays can cause mdi@ all MAC algorithms that are designed to solve the same
iterations for the algorithm to converge. Algorithm 2 corges problem. On the other hand, they can resolve some of the
to the optimal persistent probabilities on average aftel, 42xisting problems in the current 802.11 DCF, e.g., its well-
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very challenging to even prove the uniqueness of the optimal
— solution before designing any algorithm.
——&— Algorithm 2 . . . . .
, Besides supporting a wider range of utility functions,
our proposed algorithms have several other advantages over
previously proposed NUM-based random MAC algorithms,
s e i ] including much less message passing, fully asynchronous
@ updates, robustness to message delays and message losses
and very fast convergence speed. Simulation results confirm
that our algorithms converge faster than the recently gego
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T
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20— ‘ ‘ :
05 060708091 Uity paramerara o 4 ® algorithm in [3] with significantly (e.g., a magnitude ordzr
10 times) less signaling overhead. They are robust to aritr
) delays in control message exchanges among wireless nodes,

1

and even control message losses due to channel errors in .
Moreover, our proposed algorithms achieve better effigienc
fairness trade-off compared to the IEEE 802.11 DCF.

Results in this paper can be extended in several directions.
First, we can extend optimization problem (NUM) and formu-
late the network utility maximization problem at the traodp
layer to design an optimal, fast, and robust joint congestio
Qb——— ‘ i i control and random MAC scheme. After decomposition of
0.5 0.6 0.70.80.91 2 3 4 5 ..

Utility Parameter o the joint problem (cf. [21] and [19]), the random MAC
sub-problem can be solved in closed-form similar to (9)
Fig. 8. Comparison between DCF and Algorithm 2 when utiliygmeteix and (16) for fu”y interfered and general network tOpOk.xJ'_e
varies from 0.5 to 5. Each point represents the averagetsesain simulating  respectively. We shall also extend our model to more réalist
1?(ragciir?r2| g;ﬂﬁﬁlztotgotl\g%it?gi tiaectf:aigglgf?iggﬂigefs]og%sc?ﬁwia%ﬁzs? networking scenarios, where the queues at each node have
zsno?increagses, the resource allocation becomes more fair,eybstdfficien.t Tmlte'baCklog [22], [23]. I_n_ this regard, the data r_ate miode
and vice versa. (a) Aggregate network throughput, (b) Sdaitness index. in (1) needs to be modified. Most of the techniques used
in this paper, such as myopic adjustment of the persistent
probabilities using best-response, are expected to beaptil
known short-term fairnesproblem due to binary exponentialplicable for networks with finite-backlogged queues to @lu
backoff. Next, we compare Algorithm 2 with DCF in terms othe signaling overhead and achieve more robust performance
system throughput and Jain’s fairness index [20] whea30. We may also relax the need for the existence of equal-length
Short-term fairness is obtained using a sliding window oési time slots, following the techniques used in [24, Sectiof, IV
200 slots. Results when utility parametervaries from 0.5 where a utility-optimal random access algorithm is propose
to 5 are shown in Fig. 8. Each point represents the averdge logarithmic utilities (i.e.,a = 1) in pure (un-slotted)
results from simulating 10 random general topologies. Ve sALOHA systems. It is also important to analyze how our
that, parametery acts as anobin Algorithm 2 to control algorithms perform in a highly dynamic network, where the
the tradeoff between efficiency and fairness. By increasimgdes locations and wireless channels are quickly changing
a we can make the system more fair but less efficient (aihally, we may extend our random access model by including
vice versa). Ifa = 0.5, then the throughput is 54.9% highercarrier sensing. Carrier sensing can help to avoid cofiisio
than DCF (see Fig. 8(a)). Besides, for anye [0.5,5], the among those transmissions which their transmitter nodes ar
fairness is much better than DCF (see Fig. 8(b)). We can segihin the carrier sensing range of each other. This can be
that, regardless of the network size, by proper selectioa ofmodeled by redefining the interference $€t for each link
(between 0.5 and 2), Algorithm 2 can improve both systeim= £ and modify the data rate model in (1), accordingly.
throughput and fairness. Similar results are obtained wien
increase the number of nodes. APPENDIX

0.8f

0.6

041

Fairness Index

0.2F

A. Proof of Theorem 1

V1. CONCLUSIONS AND FUTURE WORK Lemma 1:For each node. € N, we have:

In this paper, we designed two distributed contention-thase 1 — '
MAC algorithms to solve the NUM problem at the link-layerin = puin —Bn < /7 (wnt3/va(p_,)), Vi€B,, (25)
wireless ad hoc networks. Both algorithms globally coneerg P?ﬁax
to the unique global optimal solution of the NUM problem men —Cp < /7Y wy, vieC,. (26)
under mild conditions on system parameters. In particular,” "
it is true for a-fair utility functions with o € (0,1), in —— — By, > {7 (wnt/on(P_,)) , Vi€ L\Bn,(27)
which case the NUM problem cannot be transformed into Pglax
a convex optimization problem using logarithmic change of Pn___(;n > /v, Vi€ L,\Cn. (28)
variables as in the previous literature, and thus, it isaalye 5™ ’
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Proof: From (7) and knowing thatf,\A, = 1[¢€ £L,\A, such that we have:
{i1,...,1x}, for each linki € B,, we have: 1 1— 4, pmin Pf{’a" _ 4, pmin

)
af (y 1wy, + 1/’Un o ,yla—lwn

L— A PP P APy

'y ’YN a a—. n N/ Un —-n Wn,
VA H( jeeaa /G T on(pon ) RS
Multiplying both sides of this inequality by/(1/~;)*~1,
<R (wn + % vn(P—n)) : for anylink i € £ \An, we have:
1 A Pmm P’VIlndX _ Anp;;rlin
a—1
where the last inequality comes from the fact tl'@ityZ S \/ﬁ w,, + m an

1/73#1 {/yo~t for all i € B,. Recall thats = min{o, ¢}
andi, 1 <iy,y1. Proof of (26) is similar. We prove (27) by
contradiction Assume that there exisis € £,,\A4,, such that . 1 1 — A, pmin

(27) doesnot hold. It is clear that <o. We have filp_,)=max | P™", non . (38)

a/,yi(!—l wp, + /on(p_,,)

Pmm = Ly +0 < {/i (Zl 11/ G+ ”n(an)) (29) In this case, we have < ¢ andx = min{o,s} = 0. In

1 B < [ 'Y'Lw#»l a-l + a—1
Pmin TP = Zjéﬁn\-An Vipyr Un —71
n

(37)

Hence, for eachi € £,\A,,, we have:

1 other words, A, = B, and A,, = B,. We prove this by

Prmin —Ln+e—1<3770 §/(55)*  +3/vi.vn(p_,), (30) contradiction Assume that > ¢ andx = ¢. We have:
1— (L, —c)pPmin by<<37) pmax _ ([, —¢)pPmin

where the last |r_19q_ual|t_y results from the fact tﬁ%tgl for S e /(vli yo—1 4 m e (vli ya—1
all i=¢,...,6 which implies}~;__ §/(vi. /7)* ' < o—e+1. ! e !
Comparing with (7), inequality (30) implies that € A, y<() o/yoT L pmin,
which contradicts the assumption thate £,\A,,. Proof of - fett
(28) is similar and is omitted for brevity. m Thus,

Since (LOCAL-NUM) is strictly concave im, , its optimal 1 o
ce (LOC ) y © P, B8 0P Lo < e (S0 /()T o)

solution isunique[16, pp. 137] and satisfies the following P

necessanand sufficientKKT conditions [16, pp. 244]: _ (9
Comparing (39) and (7), we have,; € B,,. This implies that
p; > Pmin, Viel, (31) ¢ < ¢ which contradicts our counter assumptien> ¢. Thus,

e x = o and we have:
Zieﬂn Y23 < Pn ) (32)
e 11p. B (1—;59)7”)11)& = )‘n - 6i7 Vie ‘Cna (33) -An - Bn, An B Bn- (40)
o ey 24 We can verify that conditions (33)-(35) hold fpy, = f,.(p_,,)
An (Zieﬂn ?i - b ) =0, (34) if \,=0 and we set, =0 if i € £,,\\4,, and set:
8 (Pmin — p;) =0, VieLl,, (35) o
A >0, 8 >0, Vie L, (36) 5— Un(P_n) a_< 1 )
i o/~ a—1 Pmin
(1—AnP7§“m—Zjecn\An filp_ )) VT
where )\,, denotes the Lagrangian multiplier corresponding to (41)

constraint) S, . p; < P;*** andd; denotes the Lagrangianif i € 4,,. Next, we need to show that (36) holds. For each
multiplier correspondlng to constraipi > P2t for each nodei € A,, we have:
i € L,. Now we need to show that (9) Ieads to (31) to (36).

. . Un(p—n)
Condition (31) directly results from (9). We also have: _ @
(1 — A, P — Zjeﬂn\An I (p—n))
Yice, filP—n) by(>38) vn(pP_,,)
< AnP:Inin + Zi A Ps:fonP;:“" = . - ,71/79*1 a
€L\ A, Y twy, (1 — AnP’rILnln) 1-— ZjGﬁn\.An 7711714' o ’U»,j(p7 )

min Pyrlnax - AnP”flTlil’l “ a—1
= AnPn + ’LU— (Zleﬂn\An (%) ) = o
! by o) [ Vi (wn + % vn(p_n))

by (10) ..
=" pmax, .
" Vot (1 = A, Pin)

Thus, condition (32) also holds. Two cases are possible: by (25) /P _ 4, o X

Case 1) ;.. filp_,) < P, which only happens if = —,
Yicroa, filp_,) < PRex — A, P2 Thus, there exists ans 0 (1 — A, Py Y/yp pmin
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Thereforeg; > 0 for all i € £,, and condition (36) also holds. On the other hand, from (26) and (48) and by reordering,
Finally, for each linki € £,\ A,, we have:

Pax— A, P by (37) 1— A, Py and 1), in
= » Replacing (51) in (49), we havg, > 0. On the other hand,
@ a—1 [e4 a—1 o b (40) . .
Vi Wn Vi (wnt/on(p_)) ™ replacing (52) in (50), we hav& > 0 for all i € £,,. Thus,

) ) o (42)  condition (36) holds. Finally, for eache £,,\A,, we have:
which guarantees that the upper bound in (9) is indeed greate

wa /(PP = Ap PP > /(3477 P™0). (52)

than the lower bound. This complete; the proof for Cage l. (Pmax AnP;;“i“)/( o yf‘*lwn) andZ(ZB)Pmin’ (53)
Case II:3 ", fi(p_,) = P, which happens only if by (48)
_ ’ — pmax _ 4 pmin. 43 which guarantees that the upper bound in (9) is greater than
Lice\a, filPon) = P " (43) or equal to the lower bound. ]
We already know that
> Pmax_ 4, pmin - by (10) pmax _ A pmin_ (44 B. Proof of Proposition 1
€L \An T o e " " If « > 1, then for anyp, p € P such thatp < p, we have:
From (43) and (44) and sinck(p_,,) < (Pm»x— A, pmin)  p; < pj, forall j € L. Thus,
/()78 twy,) for all i € £,\A,, we have: L=> ier. P =1 =2 icr. D VseN, (54)
) 1/p; > 1/p;, VijeL. 55
Pyrlnax _ AnP;L‘mn ) /pJ - /pJ J ( )
filp_,)= ﬁa Vi € Ly\ Ay (45)  From (54) and (55),
[e% Ot— wn
k ma(p_) > ma(p_,) VseN, (56)
From (9) and (45) we have: vil_,) > vi(b_,), Viel, (57)
e 2 (46) wi+ {/uip,) > wit Rfuilbo,) Vil (58)
fip_,) < fib_,), VieLl. (59)

In this case, we have > ¢ andx = min{o,s} = <. In
other words, A, = C,, and A,, = C,. We prove this by
contradiction Assume thatr < ¢ andx = 0. We have:

Thus, the vector functiorf(p) is a monotone increasing
mapping. Ifa < 1, then the sign of the inequalities in (56)-
(59) is reversed angf(p) becomes monotone decreasinlL

Py — (Ln—0) Py v @9 1~ (Ly — o) Py
Yo {f Gy DY, (55)°7 '+ ¢/valp—,)  C. Proof of Theorem 3
by (1) Since H is bounded, the local memory of each node
S N Vie N is updated infinitely often as — oo. Thus, thetotal

asynchronismassumption [17, pp. 430] holds. First suppose
with o> 1. Let p™" andp™** denote twaNx1 vectors with all

pyee Ito< W A (L)a—l (a7) entries equal t@>™" and P™#%, respectively. Sincg(p*) =p*,
Pmin n = Vi =1 Vi, : p™" < p* < p™aX andf(-) is monotone increasing, we have:

Thus, we have:

Comparing (47) and (8), we havg,; € C,. This implies that p 2 (™) 2 pt 2 f(PM) = p™. (60)
o > ¢ which contradicts our counter assumptior< <. Thus, Note that, for eacl € N andi € £, f;(p™) > Pmin >
k= ¢ and we have: P™n and f;(p™®) < PR < Pmax Let f¥(p) denote

the composition off with itself & times, wheref®(p) = p.
Starting from (60) and applying for £ > 0 times, we have:
We can verify that conditions (33)-(35) hold for eqgh) = ¢k, min < phtlpminy o px o ekl omaxy o ek (pmaxy (g1
fo(p) if we set frE™) 2 M) 2t 2 (M) 2 £ (). (61)

o We also defineP* = {p|f*(p™ir) < p =< fF(pm)}.

A ($)°‘_< { vn(p_n)> (49) If p € P, then f(p) € P*+1. From (61), P! C P*

"\ pmax — A, pmin 1 — Pmax | for all & > 0. We can also show (by contradiction) that if
Pk £ {p*g, then P*+2 £ Pk That is, P**2 ¢ P*. Thus,

and limg oo £X(p™") = limp_oo f¥(p™*) = p*. Besides, if

( Wn )a_ 1 - if ic A p?f) € Pk! then (plv" ! 7pi*15ﬁiapi+17" : apL) € Pk for

0; =1 \Ppex—A, P {/~yio—1pmin |’ b= (50) anyk > 0. Therefore, bottsynchronous convergeneadbox
0, if ieL\Ap. conditions [17, pp. 431] hold. Froasynchronous convergence

theorenil 7, pp. 431], starting from any point iR°, Algorithm
9 will converge top*. Since? C PY, the proof fora > 1 is
Wy (1 — A PP™) > (w0t /vy (p_,) ) (PR — A, PR complete. Now consider the case with< 1, from Proposition
w, /onP_) 1, the mappingf(-) is monotone decreasing. We have:
>

Ppax— A, Ppin = 1 — pmoax P X f(PT) 2 pt < f(p™T) 2 p™L (62)

Next, we show that (36) holds. From (46) and by reorderin

(51)
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Comparing with (60), the orders gf(p™*) and f(p™**) is provides upper-bounds (in absolute values) on the entfies o

exchanged in (62). Applying(-) once more, we have: the Jacobian. We can show that:
max) y f2(pminy g ox o £2( max < min _ iUn 1/«
FE™) 2 7™ 2p* 2 () = F(p™). ||J||oo§1 C ax (vv(p_n))l/a "
By mathematical induction, we can show thakifs odd, then Q i€LnneN | (14 (v, (p_,)) " *)?
fk(pmax)jkarl(pmin) jp*jkarl(pmax) jfk(pmin)’ (%4_%) (70)
and if k is even then: 1_ _
(‘/’I‘ﬂlﬂ7 dex)

fk(pmin) =< fk-l—l(pmax) jp* < fk-l—l(pmin) < fk(pmax)’
For each (either odd or evenfk > 0, we rede-  Npote thatl — 4,P™" <1 and N~ Ly, > 1 forall i
fine set P* = {p|min[f*(p™), f(pm)] < p = A i -
max[f*(p™n), £¥(p™»)]}. The rest of the proof follows the
case ofa > 1 and is omitted for brevity.

L, \A,.. Functionz!/® /(1+2'/*)? is always non-negative and
less than 0.25. It has a unique maximum at 1. The function
is monotonically increasing fary < z < 1 and monotonically
decreasing for: > 1. Its value approaches zero as either-
D. Proof of Theorem 4 0 or z — oco. We can similarly show that:

For eachp* € F and each link € A, Theorem 1 states that l-a min cmax, (L)
pr is the unique global optimal solution of convex Problem 17 < (V7 V) »yminr x 71
(LOCAL-NUM), and satisfies the KKT conditions in (31)- 1 (71)
(36). We denote the corresponding Lagrang|an multipligrs b (Q - m)

A, and 5* for all i € £,. We also define\” = (A5, Vo _
N) ands” = (6*, Vi € L£). On the other hand, since any From (19), (70), and (71), we have [17, pp. 635]:
local optimump € S is a regular point [18, pp. 315] of 1T@)ll2 < VTPl [I7(P)]1 < 1. (72)
non-convex Problem (NUM), and so must satisfy the KK
necessaryconditions[18, Proposition 3.3.1], for anyc N/,

-[et p,p € P. From (72) and by Cauchy Schwarz inequality,

pr > pmin, Vn € N,i€Ln,(63) 1£@®)— @2 <[J(@)l2 |p—Dpll2 <[P— Bl
Sier, P < PR VnenN, (64) wherep is any convex combination @ andp. Thus, f is an
yn(gin)(ﬁ}lp? B (1j§;(izz;i)a):5\fz—gfv UneN . icL,. (65) lo-norm contraction mapping. |
A (Zieﬁn pi — ) =0, vnen, (66) F Proof of Theorem 8
of (Prlznin _pi) =0, Vn e N,i€L,,(67) Following the same argument as in Appendix E, condition
>0, 65 >0, VieLl,, (68) (21) implies that for eaclp € P, we have:/N||.J'(p)|2 < 1

_ ya—1 where.J'(p) denotes the Jacobian matrix $f(p). From linear
where yﬁ’Ep‘"): (ILsenygny (1 Zﬂeﬁ pj))A* > 0. We algebra, we also know that for eadh x 1 vectora we have
define, A" = (X;, ¥n e N)ando' = (5, Vi € £). |q|. < [lafs < vN|a|. Letp.p € P. Using the Cauchy-

If ( AA* (:S ) satisfies conditions (31) (36) for ail S N Schwarz inequa“ty’ we have:

ten @, (/@) ¥ n € N fun(pT). Y n € IF®) - £ Gl < 15B) — £ Dz
N, i € L)) sat|sf|es conditions (63)-(68). On the other S
hand, if (p*,A",5") satisfies conditions (63)-(68), then <T@z [P — Dl
B, Ny (P2,), Y1 € N), (57yn(P™,,),Yn € N, i € Ly)) <||p—pl2/VN

satisfies conditions (31)-(36) for alle \'. The former implies <Ilp -
that 7 C S while the later impliesS C 7. Thus,F =S. B - o
Thus, condition (21) guarantees that mapping funcfit(n)
is indeed ani,, norm contraction mapping. Thus, it asyn-
E. Proof of Theorem 5 chronously converges to itsiquefixed point. From Theorem

For anyp € P, Jacobian/(p) is defined as ai, x L matrix 6, this further implies that Algorithm 2 converges to theque

whose entry in row and columnyj is df;/dp;. Consider node global optimal solution of problem (NUM). [ |
n € N and each € L, if j € £,, then we haveJ; ;(p) = 0.
On the other hand, if ¢ £,,, wherej € L, then we have: REFERENCES
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