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Abstract— In this paper, we propose two distributed
contention-based medium access control (MAC) algorithms for
solving a network utility maximization (NUM) problem in wir e-
less ad hoc networks. Most of the previous NUM-based random
access algorithms have one or more of the following performance
bottlenecks: (1) extensive signaling among the nodes to achieve
semi-distributed implementations, (2) synchronous updates of
contention probabilities, (3) small update stepsizes to ensure
convergence but with typically slow speed, and (4) supporting a
limited range of utility functions under which the NUM is shown
to be convex. Our proposed algorithms overcome the bottlenecks
in all four aspects. First, only limited amount of message passing
among nodes is required. Second, fully asynchronous updates
of contention probabilities are allowed. Furthermore, our algo-
rithms are robust to arbitrary large message passing delay and
message loss. Third, we do not utilize any stepsize during updates,
thus our algorithms can achieve faster convergence. Finally, our
proposed algorithms have provable convergence, optimality, and
robustness properties under a wider range of utility functions,
even if the NUM problem is non-convex. Simulation results
show the optimality and fast convergence of our algorithms,
performance improvements compared with the subgradient-
based MAC, and better efficiency-fairness tradeoff compared
with the IEEE 802.11 distributed coordination function.

Index Terms— Network utility maximization, contention-based
medium access control, non-convex optimization, complexity
reduction, robust design,α-fair utility functions.

I. I NTRODUCTION

There are two major types of wireless medium access
control (MAC) protocols: scheduling-based (e.g., in cellular
systems) and contention-based (e.g., in wireless local area
networks). In this paper, we focus on the study of contention-
based MAC, where nodesrandomlyand distributively access
the shared channel with certain transmission probabilities.

The contention-based protocols are scalable and inherently
flexible, but they typically have poor performance due to
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insufficient feedback. For example, in IEEE 802.11 distributed
coordination function (DCF) [1], a node updates its transmis-
sion probability based on thebinary feedback of its data trans-
mission: success (no collision) or failure. This leads to low
throughput and unfair resource allocation. Such mechanism
also cannot achieve a stable equilibrium [2].

In this paper, we design distributed contention-based ran-
dom MAC algorithms through the framework of network
utility maximization (NUM). Several related algorithms onthe
same NUM framework have been proposed in [3]–[7]. They
have one or more of the following performance bottlenecks:
(1) extensive message passing among nodes to achieve semi-
distributed implementation, (2) synchronous updates of con-
tention probabilities that require homogeneous computational
capabilities and software implementations among nodes, (3)
small update stepsizes to guarantee convergence with typically
slow speed, and (4) supporting only a limited range of utility
functions due to non-convexity.

Our proposed algorithms overcome the above performance
bottlenecks in all four aspects. First, they only require limited
message passing (i.e., signalling) among nodes. Based on the
messages from other nodes, each node updates its persistent
probabilities by solving alocal and myopic optimization
problem in an attempt to maximize thetotal network utility.
Compared to the NUM-based random access algorithm in [3],
our algorithms can reduce the total signalling overhead by
a factor of ten. Second, our algorithms allow asynchronous
updates of messages and contention probabilities. They can
tolerate arbitrary large and finite asynchronism and message
delay and are also robust to message loss. For example, even
when the packet loss rate of the underlying communication
channel is up to 0.5 (i.e., on average, half of the messages are
lost), our algorithms can still achieve the optimal performance
within a short time. Third, in our algorithms, nodes update
their contention probabilities through best response updates,
thus no small stepsizes are needed. This enables our algorithms
to achieve a much faster convergence compared with the
previous subgradient-based update methods (e.g., in [3]–[6]).
Finally, our algorithms have provable convergence property
under a wider range of utility functions, even if the NUM
problem cannot be transformed into a convex optimization
problem. The techniques that we use in this paper are general
and may be used to tackle other non-convex optimization
problems in communications and networking. Our results
have been recently extended in [8] to achieve utility-optimal
network performancewithout message passing.

Besides the NUM-based approach, another related thread of
research focuses on the analysis of random access algorithms
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Fig. 1. A sample wireless ad-hoc network. We have,La = {1, 2}, Lb =
{3, 4, 5}, andLc = {6, 7}. In nodea, those packets which are assigned to
be sent to nodeb (over link 1) are enqueued in queue 1. Similarly, those
packets that are assigned to be sent to nodec (over link 2) are enqueued in
queue 2. R and T boxes represent receiver and transmitter units, respectively.

using game theory (e.g., [9]–[12]). The focus is on noncooper-
ative interaction among wireless nodes, while here, we focus
on global network performance optimization. Our results may
also be extended to a mechanism design for selfish behavior
of nodes so as to align them the social utility-optimality.

The rest of this paper is organized as follows. The system
model is described in Section II. Our proposed distributed
algorithms are presented in Section III. The convergence,
optimality, and robustness of our algorithms are analytically
proved in Section IV. Simulation results and performance
assessments are reported in Section V. Conclusions as well
as outlines for future works are given in Section VI.

II. SYSTEM MODEL

Consider a wireless ad-hoc network. LetN = {1, . . . , N}
denote the set of nodes andL={1, . . . , L} denote the set of
unidirectional wireless links. For each noden∈N , we denote
the set of itsoutgoinglinks by Ln ⊂L, with sizeLn = |Ln|.
Each noden hasLn separate queues and each queue holds
the packets for one of its outgoing links (see Fig. 1). Time is
divided into equal-length slots. At each time slot, noden may
choose to transmit on one of its outgoing linksi ∈ Ln with
a persistent probabilitypi. The probabilities need to satisfy
∑

i∈Ln
pi ≤ Pmax

n < 1, wherePmax
n denotes the maximum

total persistent probability on noden. Node n may remain
silent in some slots. For the network in Fig. 1, nodea has
La = 2 outgoing links whereLa = {1, 2}. In nodea, those
packets which are destined to nodeb are enqueued in queue
1. Similarly, the packets which are destined to nodec are
enqueued in queue 2. At each time slot, a packet from queue
1 is sent over link 1 with probabilityp1, and a packet from
queue 2 is sent over link 2 with probabilityp2. Notice that
links 1 and 2 will not be active at the same time.

For each noden ∈N , if the receivernode of link i ∈ Ln

is within the interference rangeof another nodes ∈ N\{n},
then any transmission by nodes (i.e., transmission on any link
j ∈ Ls) interferes with transmission of linki. Those nodes
which interfere with transmission of linki are denoted by set
Ni. Similar to [3], [6], we assumeinfinite-backlogin all nodes.
For each noden ∈ N , let ri denote the average data rate for
link i ∈ Ln, which is a function of the persistent probability

vectorp = (pi, ∀i ∈ L) of all links. We have [13]:

ri(p) = γipi

∏

s∈Ni
(1 −∑j∈Ls

pj), (1)

whereγi denotes the peak data rate for linki (i.e., the rate
achieved by linki if no node in setNi is active). Here, we
assume that either the communication channel is to be fixed
or it changes very slowly such thatγi assume to be fixed for
a long period of time for alli ∈ L. In addition, to ensure that
no link is starved, for each noden and any linki ∈ Ln, we
requirepi ≥ Pmin

n > 0 andLnPmin
n ≤ Pmax

n . Thus,

ri(p) ≥ γminPmin (1 − Pmax)
N−1

> 0, ∀ i ∈ L, (2)

wherePmin = minn∈N Pmin
n , Pmax = maxn∈N Pmax

n , and
we have:γmin = mini∈L γi.

Each linki∈L has autility functionwhich is an increasing
and concave function of its rateri and indicates linki’s degree
of satisfaction on its average data rate. The utility of link
i is denoted byu(ri(p)), which is also a function of the
persistent probabilitiesp of all links. We are interested in
finding the value ofp that solves the followingnetwork utility
maximization(NUM) problem [14]:

max
p∈P

∑

i∈L u(ri(p)), (NUM)

where the feasible persistent probability region is

P=
{

p : pi≥Pmin
n ,

∑

j∈Ln
pj ≤Pmax

n , ∀n∈N , i∈Ln

}

and the utility function isα-fair [15]. That is, for each link
i ∈ L, we have:

u(ri) =

{

(1 − α)−1 r1−α
i , if α ∈ (0, 1) ∪ (1,∞),

log ri, if α = 1.
(3)

Using (3), a wide range of efficient and fair allocations can be
modeled. In particular, problem (NUM) reduces to throughput
maximization withα → 0, to proportional fair allocation with
α = 1, to harmonic mean fair allocation withα = 2, and to
max-min fairness withα → ∞.

Although the objective function in problem (NUM) is
concave in link ratesr = (ri, ∀i ∈ L), it is not concave in
persistent probabilitiesp due to the product form of the aver-
age rate in (1). Thus, finding the optimal solution for thisnon-
convexandcoupledoptimization problem is difficult even in a
centralized fashion. In this paper, we propose two algorithms
which are able to find the optimal solution of problem (NUM)
in a distributed fashion under verifiable sufficient conditions.
In comparison with the existing algorithms, our algorithms
do not require any synchronization, converge much faster, are
more robust to message delay and message loss, and support
a wider range ofα values in the utility function.

III. A LGORITHMS

In this section, we propose two distributed algorithms to
solve optimization problem (NUM), one forfully interfered
topologies in Section III-A and another one forgeneral
topologies in Section III-B. In both algorithms, each noden
performs amyopicand local optimization, i.e., optimizing the
total network utility by choosing the persistent probabilities
of its own outgoing links, assuming others do not change
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theirs. Despite the complexity of the problem, we show that
the solution of this local optimization problem can be obtained
in closed-form, facilitated by limited message passing among
nodes and a simple local sorting procedure.

A. Fully Interfered Network Topologies

We begin by considering afully interferedtopology, where
all links interfere with each other. That is, for eachn ∈ N
and anyi ∈ Ln, the interference node setNi = N\{n}. This
models some important practical wireless networks including
wireless personal area networkswhere multiple wireless de-
vices interact with each other over short distances, as well
as indoorwireless local area networkswhere several wireless
devices communicate with an access point and each other.

1) Noden’s Local Optimization Problem:For each wire-
less noden, let pn = (pi, ∀ i∈Ln) denote the persis-
tent probabilities of its outgoing links. Also letp

−n =
(pj , ∀j∈L\Ln) denote the persistent probabilities of all
links other thanthe outgoing links of noden. Consider the
following local andmyopicoptimization problem:

max
pn ∈Pn

∑

i∈L u(ri(pn, p−n)), (LOCAL-NUM)

where the feasible persistent probability region for noden is

Pn =
{

pn :
∑

i∈Ln
pi≤Pmax

n , pi≥Pmin
n , ∀ i∈Ln

}

, (4)

By solving problem (LOCAL-NUM), noden can selectpn

such that thetotal network utility is maximizedassuming
that p−n is fixed (i.e., none of the other nodes change their
persistent probabilities). Clearly, nodes arenot selfish in this
case, andcooperatewith each other. This is necessary to
achieve optimal network performance in a distributed fashion.

Although problem (LOCAL-NUM) is difficult to solve,
we can convert it to an equivalent and more illuminating
representation. Its objective function in the case of fully
interfered network topologies can be written as:
∑

i∈L u(ri(pn, p−n))=(
∏

c∈N\{n}(1−
∑

l∈Lc
pl))

1−α

(1−α)
[

∑

i∈Ln
(γipi)

1−α
+ (1 −∑i∈Ln

pi)
1−α

∑

s∈N\{n}
∑

j∈Ls
(γjpj)

1−α/(1 −∑l∈Ls
pl)

1−α
]

.

Since the multiplicative term(
∏

c∈N\{n}(1 −∑l∈Lc
pl))

1−α

does not depend on the vector variablepn, problem (LOCAL-
NUM) can beequivalentlywritten as:

max
pn∈Pn

∑

i∈Ln
u (γipi) + vn(p−n) u

(

1 −∑i∈Ln
pi

)

, (5)

where

vn(p−n) =
∑

s∈N\{n}
(

1−∑l∈Ls
pl

)α−1
(

∑

j∈Ls
(γjpj)

1−α
)

.
(6)

Since
∑

i∈Ln
u(γipi) andu

(

1−∑i∈Ln
pi

)

are strictly concave
functions with respect topn, andvn(p−n) is independent of
pn, problem (5) is strictly concave in local variable vector
pn. In other words, there exists a unique optimal solution of
problem (5) and thus problem (LOCAL-NUM).

2) Closed-Form Solution of Problem (LOCAL-NUM):
Next, we show how to obtain aclosed-formoptimal solution
for problem (5). Consider a noden ∈ N and the set of its
outgoing linksLn. We define a permutation,i1, · · · , iLn, of
the link indices in setLn such that for anyj andl that satisfy

1 ≤ j ≤ l ≤ Ln, we have α

√

γα−1
ij

≤ α

√

γα−1
il

. Thus, in the
case ofα ≥ 1, we haveγi1 ≤ · · · ≤ γiLn

, and in the case
of α ∈ (0, 1), we haveγi1 ≥ · · · ≥ γiLn

. For example, let
Ln = {4, 7, 12}, γ4 = 18 Mbps, γ7 = 24 Mbps, andγ12 = 6
Mbps. If α≥ 1, then we havei1 =12, i2 =4, and i3 =7. On
the other hand, ifα∈(0, 1), theni1 =7, i2 =4, andi3 =12.

Let σ denote thesmallestnumber in the set{0, . . . , Ln − 1}
such that we have:

1

Pmin
n

− Ln + σ ≤∑σ
l=1

α

√

(

γiσ+1

γil

)α−1

+ α

√

γα−1
iσ+1

vn(p−n).

(7)
We can show that (see Appendix A), if condition (7) holds
for σ, then it also holds forσ + 1. We define the set
Bn = {iσ+1, . . . , iLn} , with its sizeBn = |Bn| = Ln − σ.
Notice that if condition (7) does not hold for anyσ ∈
{0, . . . , Ln − 1}, then we setBn = {} andBn = 0.

Similarly, let ς denote thesmallest number in the set
{0, . . . , Ln − 1} such that we have:

Pmax
n /Pmin

n − Ln + ς ≤∑ς
l=1

α

√

(

γiς+1/γil

)α−1
. (8)

Again, we can show that (see Appendix A), if condition (8)
holds for ς, then it also holds forς + 1. We defineCn =
{iς+1, . . . , iLn} , and its sizeCn = |Cn| = Ln−ς. If condition
(8) does not hold for anyς ∈ {0, . . . , Ln − 1}, then we set
Cn = {} with its sizeCn = 0.

We now defineAn = Bn ∪ Cn with its sizeAn = |An|=
Ln−κ whereκ = min{σ, ς}. In fact, An = {iκ+1, . . . , iLn}.
Depending on the value ofvn(p−n), eitherAn =Bn or An =
Cn (see Appendix A). UsingAn, the closed-form solution of
problem (5) can be obtained as follows.

Theorem 1:For each noden ∈ N , the unique opti-
mal solution of problem (5) isp∗

n(p−n) = fn(p−n) =
(fi(p−n), ∀ i ∈ Ln), where for each linki ∈ Ln, the mapping
fi(p−n) is defined as:

fi(p−n)=











Pmin
n , if i∈An,

[

1
α
√

γi
α−1

1−AnPmin
n

wn+α
√

vn(p−n)

]

Pmax
n −AnPmin

n
α
√

γi
α−1wn

Pmin
n

, if i∈Ln\An,

(9)
where[x]

a
b = max [min [x, a] , b], and

wn =
∑

j∈Ln\An

α

√

(1/γj)
α−1

. (10)

The proof of Theorem 1 is available in Appendix A. The key
is to show thatfn(p−n) satisfies thenecessaryandsufficient
Karush-Kuhn-Tucker (KKT) optimality conditions [16, pp.
244]. Since problems (LOCAL-NUM) and (5) are equivalent,
p∗

n(p−n) is also the unique global optimal solution of problem
(LOCAL-NUM). We notice that, regardless of the selected
system parameters and the value ofvn, for eachi∈Ln\An,
the upper bound(Pmax

n −AnPmin
n )/( α

√

γi
α−1wn) in (9) is

always greater than or equal to the lower boundPmin
n .
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Clearly, to computefi(p−n) in (9), noden needs to obtain
vn(p−n). If each nodes announces a messagems where

ms =
(

1−∑j∈Ls
pj

)α−1(
∑

j∈Ls
(γjpj)

1−α
)

, ∀s∈N\{n},

then noden can computevn(p−n) =
∑

s∈N\{n}ms. This
motivates us to propose our first algorithm1.

3) A Distributed MAC Algorithm:Our proposed distributed
random access algorithm is given in Algorithm 1. In this
algorithm, each noden ∈ N , regardless of how many outgoing
links it has, announces only asinglemessagemn. All wireless
nodes choose the persistent probabilities of their outgoing links
based on the messages that they receive from other nodes. The

Algorithm 1 - Used by each wireless noden ∈ N in a fully
interfered topology.

1: Allocate memory for messagesm = (m1, · · · , mN ).
2: Randomly choosepi ≥ Pmin

n > 0 for each link i ∈ Ln

such that
∑

i∈Ln
pi ≤ Pmax

n ≤ 1.
3: Randomly choosems > 0 for all s ∈ N .
4: repeat
5: Transmit on outgoing linki ∈ Ln with probability pi.
6: if t ∈ Tn,p then
7: SetAn = getA(n, vn(p−n), Ln, γ1, . . . , γLn).
8: Setpi = Pmin

n for all i ∈ An.

9: Setpi =

[

1
α
√

γα−1
i

1−AnPmin
n

(wn+ α
√

vn(p−n))

]

Pmax
−AnPmin

n
α
√

γ
α−1
i

wn

Pmin
n

for all i ∈ Ln\An.
10: if t ∈ Tn,qm then

11: Setmn =
(

1−∑i∈Ln
pi

)α−1
(

∑

i∈Ln

(

1
γipi

)α−1
)

.

12: Broadcastmn.
13: if a message is receivedthen Updatem.
14: until noden decides to leave the network.

1: function getA(n, vn(p−n), Ln, γ1, . . . , γLn)
2: SetBn = {} andCn = {}.
3: if α≥1 then Set i1, . . . , iLm so thatγi1 ≤ . . . ≤ γiLn

.
4: else Set i1, . . . , iLm so thatγi1 ≥ . . . ≥ γiLn

.
5: for σ = 0, . . . , Ln − 1 do

6: if 1/Pmin
n − Ln + σ ≤ ∑σ

l=1
α

√

(

γiσ+1/γil

)α−1
+

α
√

γiσ+1
α−1vn(p−n) then

7: SetBn = {iσ+1, . . . , iLn}.
8: Break.
9: end for

10: for ς = 0, . . . , Ln − 1 do

11: if Pmax
n /Pmin

n −Ln + ς ≤∑ς
l=1

α

√

(

γiς+1

γil

)α−1

then

12: SetCn = {iς+1, . . . , iLn}.
13: Break.
14: end for
15: SetAn = Bn ∪ Cn.
16: return An.

1Similar way of constructing messages based on KKT conditions has been
considered in [12] for distributed power control. On the other hand, we mainly
use contraction and monotone mapping to prove the properties of our proposed
algorithms here, instead of the supermodular game theory used in [12].

persistent probabilities and messages areasynchronouslyup-
dated. LetTn,p andTn,m be two unbounded sets of time slots
at which noden updatespn andmn, respectively. We assume
that the asynchronism of the updates is bounded; i.e., there
exists a finiteH (calledasynchronism measure[17]) such that:

∀t1 ∈ Tn,p , ∃t2∈Tn,p such that t2 − t1 ≤ H, (11)

∀t3 ∈ Tn,m , ∃t4∈Tn,m such that (t4 − t3)+D≤H, (12)

whereD denotes an upper bound oncommunication delay.
From (11), each node updates the persistent probabilities of
its outgoing links at least once during any time interval of
lengthH slots. From (12), the information used by each node
is outdated by at mostH time slots. We notice thatH can be
arbitrarily large as long as it is bounded. The exact value of
H is not important and needsnot be known by all nodes.

Compared with the distributed MAC algorithms proposed in
the literature, Algorithm 1 has several distinct features:(i) less
explicit message passing is needed (e.g., in the subgradient-
based algorithm proposed in [3], each node needs to announce
two messages), (ii) asynchronous updates with arbitrarily finite
delay, which minimizes the coordination overhead and allows
maximum heterogeneity among nodes, and (iii) does not use
any stepsizes, which avoids the slow convergence problem due
to small stepsizes in the commonly used subgradient methods.

We note that if Algorithm 1 has a fixed point, then every
noden achieves the optimal solution of problem (LOCAL-
NUM) and each node will not change its persistent proba-
bility vector. In Section IV-A, we show that this fixed point
corresponds to the global optimal solution of problem (NUM)
under proper sufficient conditions, and Algorithm 1 converges
to such a fixed point with fast and robust performance.

B. General Network Topologies

We now consider the general case, where each node is
within the interference range of anarbitrary subsetof the
other nodes. For each noden ∈ N and any of its outgoing
links i ∈ Ln, the set of nodes that interfere with linki is an
arbitrary subset of all nodes, i.e.,Ni ⊆ N\{n}. In this case,
the objective function of problem (LOCAL-NUM), i.e., the
summation

∑

i∈L u(ri(pn, p−n)), can be written as:

(1 − α)−1×
[

∑

i∈Ln

(

(γi

∏

c∈Ni
(1−∑l∈Lc

pl))pi

)1−α
+(1−∑i∈Ln

pi)
1−α

∑

s∈N\{n}
∑

j∈Ls|n∈Nj
(γjpj

∏

c∈Nj\{n}(1−
∑

l∈Lc
pl))

1−α+
∑

s∈N\{n}
∑

j∈Ls|n/∈Nj
(γjpj

∏

c∈Nj
(1 −∑l∈Lc

pl))
1−α

]

.

Since the last term in the bracket does not depend onpn,
problem (LOCAL-NUM) can beequivalentlywritten as:

max
pn∈Pn

∑

i∈Ln
u
(

γ′
i(p−n)pi

)

+ v′n(p−n) u
(

1 −∑i∈Ln
pi

)

,

(13)
where for outgoing each linki ∈ Ln, auxiliary term γ′

i is
defined asγ′

i(p−n) = γi

∏

s∈Ni

(

1 −∑l∈Ls
pl

)

and

v′n(p−n) =
∑

s∈N\{n}
∑

j∈Ln|n∈Nj
(γj pj

∏

s∈Nj\{n}(1−
∑

l∈Ls
pl))

1−α.
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Notice thatγ′
i(p−n) does not represent the peak data rate of

wireless link i. We can show that problem (13) is strictly
concave in vectorpn and has a unique optimal solution.

The closed-form solution of problem (13) can be obtained
similarly as that of problem (5) in the case of fully interfered
network topologies. For the outgoing link setLn of noden, we
can define a permutation of link indices in this set,i1, · · · , iLn ,
such that for anyj and l that satisfy1≤ j≤ l≤Ln, we have
α

√

γ′
ij

(p−n)α−1 ≤ α

√

γ′
il
(p−n)α−1. In the case ofα≥ 1, we

haveγ′
i1≤· · ·≤γ′

iLn
. If α∈(0, 1), we haveγ′

i1 ≥· · · ≥γ′
iLn

. Let
σ′ denote thesmallestvalue in{0, . . . , Ln−1} such that

1

Pmin
n

−Ln+σ′≤∑σ′

l=1
α

√

(γ′
iσ′+1

(p−n)/γ′
il
(p−n))

α−1

+ α

√

γ′α−1
iσ′+1(p−n)

v′n(p−n).

(14)

Similarly, let ς ′denote thesmallestvalue in {0, . . . , Ln−1}
such that we have:

Pmax
n

Pmin
n

− Ln + ς ′ ≤∑ς′

l=1
α

√

(

γ′
iς′+1

(p−n)/γ′
il
(p−n)

)α−1

.

(15)
We defineB′

n = {iσ′+1, . . . , iLn} , with its size B′
n =

|B′
n| = Ln − σ′. If condition (14) does not hold for any

σ′ ∈ {0, . . . , Ln − 1}, then we setB′
n = {} with B′

n = 0.
Similarly, we defineC′

n = {iς′+1, . . . , iLn} , with its size
C′

n = |C′
n| = Ln − ς ′. If condition (15) does not hold for

any ς ′ ∈ {0, . . . , Ln − 1}, then we setC′
n = {} with C′

n = 0.
Given B′

n and C′
n, we defineA′

n = B′
n ∪ C′

n with its size
A′

n = |A′
n| = Ln − κ′ whereκ′ = min{σ′, ς ′}.

Theorem 2:For each noden∈N , the global optimal solu-
tion of problem (13) isp∗

n(p−n)=f ′
n(p−n)=(f ′

i(p−n), ∀ i∈
Ln), where for eachi∈Li, functionfi(p−n) is defined as:

f ′
i(p−n) =










Pmin
n , if i ∈ A′

n,
[

1
α
√

γ′
i(p−n)α−1

1−A′

nPmin
n

w′
n(p−n)+α

√
v′

n(p−n)

]

Pmax
n −A′

nPmin
n

α
√

γ′
i
(p−n)α−1w′

n(p−n)

Pmin
n

, otherwise,

(16)

with w′
n(p−n) =

∑

j∈Ln\A′
n

α

√

(

1/γ′
j(p−n)

)α−1
.

The proof of Theorem 2 is similar to that of Theorem 1.
Eq. (16) provides the optimal solution for problem (LOCAL-
NUM) for general topologies, which include the fully inter-
fered case as a special case. We can define nodes’ messages:

qs = 1 −∑j∈Lj
pj , (17)

ms,n =
∑

j∈Ls|n∈Nj
1/(γjpj

∏

c∈Nj\{n} qc)
α−1. (18)

Then v′n(p−n) =
∑

s∈N\{n} ms,n and γ′
i(p−n) =

γi

∏

s∈Ni
qs for all i ∈ Ln. Messageqs simply denotes the

probability that nodes remains silent at a time slot. Also note
that for each noden 6= s, if there does not exist anyj ∈ Ls

such thatn ∈ Nj , thenms,n = 0 (i.e., noden does not cause
interference to any outgoing link of nodes).

Our second proposed algorithm works for any general
topology and is shown in Algorithm 2. In this algorithm, each
noden ∈ N informsmn,s to all nodess whose transmissions

Algorithm 2 - Used by each noden∈N in a general topology.

1: Allocate memory form = (m1,n, . . . , mN,n) and q =
(q1, . . . , qN ).

2: Randomly choosepi ≥ Pmin
n > 0 for all i ∈ Ln such that

∑

i∈Ln
pi ≤ Pmax

n ≤ 1.
3: Randomly choosems,n > 0 andqs ∈ (0, 1) for all s ∈ N .
4: repeat
5: Transmit on outgoing linki ∈ Ln with probabilitypi.
6: if t ∈ Tn,p then
7: SetA′

n = getA(n, v′n(p−n), Ln, γ′
1, . . . , γ

′
Ln

).
8: Setpi = Pmin

n for all i ∈ A′
n.

9: Setpi =

10:

[

1
α
q

γ′α−1
i (p−n)

1−A′

nPmin
n

w′
n(p−n)+

α
√

v′
n(p−n)

]

Pmax−A′
nPmin

n
α
√

γ
′α−1
i

(p−n)w′
n(p−n)

Pmin
n

for all i∈Ln\A′
n.

11: if t ∈ Tn,qm then
12: Setqn = 1 −∑i∈Ln

pi.
13: Setmn,s =

∑

i∈Ln:s∈Ni
1/(γipi

∏

c∈Ni\{s} qc)
α−1

for any s 6= n.
14: Inform mn,s to all s ∈ ∪i∈LnNi.
15: Inform qn to all s∈N\{n} if ∃j∈Ls andn∈Nj .
16: if a message is receivedthen Updatem andq.
17: until noden decides to leave the network.

interfere with transmissions of at least one of the outgoing
links of node n. It also informsqn to all nodess whose
outgoing transmissions is interfered by transmissions from
noden. All nodes then choose the persistent probabilities of
their outgoing links based on the received messages from other
nodes. In Algorithm 2,Tn,p and Tn,qm are two unbounded
sets of time slots at which noden updatespn and announces
qn, andmn,s for all s 6= n, respectively. The assumptions on
asynchronism measure are the same as those in Algorithm 1.
We show in Section IV-B that forany topology, the fixed point
of Algorithm 2 also corresponds to the global optimal solution
of the non-convexproblem (NUM) under proper conditions.

In comparison with the prior algorithms in the literature
(e.g., [3]), Algorithms 1 and 2 are morerobust, converge
faster, and requireless signalling. We further discuss the
properties of our proposed algorithms in Sections IV and V.

IV. CONVERGENCE, OPTIMALITY , AND ROBUSTNESS

In this section, we prove the convergence, optimality and
robustness properties of our algorithms by using results in
distributed computation [17] and non-linear optimization[18].

A. Fully Interfered Network Topologies

Here we study Algorithm 1 which was proposed to solve
problem (LOCAL-NUM) in a fully interfered topology. We
first show thatif Algorithm 1 has a unique fixed point, then
it will globally converge to that fixed point. After that, we
provide the conditions under which the uniqueness of the fixed
point of Algorithm 1 is guaranteed. We also show that such
unique fixed point corresponds to the unique global optimal
solution of non-convex optimization problem (NUM).
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Definition 1: A vector mappingg(·) is monotone increas-
ing [17, pp. 191] if for anyp̃, p̂ ∈ P such thatp̃ � p̂, we
haveg(p̃) � g(p̂), where the inequalities are interpreted as
coordinate-wise. A vector mappingg(·) is monotone decreas-
ing if for any p̃, p̂ ∈ P such that̃p � p̂, we haveg(p̃) � g(p̂).

We definef(p)= (fn(p), ∀n∈N ), wherefn(p) is as in
Theorem 1. Recall that a fixed point of mappingf (p) is also
a fixed point of Algorithm 1. We can show that2:

Proposition 1: f(p) is monotoneincreasingif α ≥ 1, and
is monotonedecreasingif α ≤ 1.

The proof of Proposition 1 is given in Appendix B. This
enables us to show the following:

Theorem 3:Supposef has a unique fixed pointp⋆. Starting
from any initial pointp∈P , Algorithm 1 converges top⋆.

The proof of Theorem 3 is available in Appendix C.
The key idea is to show that the monotone mappingf (p)
satisfiessynchronous convergenceand box conditions; thus,
asynchronous convergence theorem[17, pp. 431] is applicable.
Theorem 3 is general and applies to any choice of system
parameters. It only requires thatf(·) has a unique fixed point.
Next, we will show that not only Algorithm 1 has a unique
fixed point under mild technical conditions, the fixed point is
indeed the global optimal solution of problem (NUM).

Let F denote the set of fixed points of Algorithm 1. For
eachp⋆ ∈ F and any linki ∈ Ln, we havep⋆

i = fi(p
⋆
−n).

We also letS denote the set ofstationary points[18, pp. 194]
of problem (NUM). Note that all local (and global) optimal
solutions of problem (NUM) belong to setS.

Theorem 4:F = S.
The proof of Theorem 4 is available in Appendix D. From

Theorems 3 and 4, we have:
Corollary 1: If either S or F is a singletonset (i.e., it has

one element), then Algorithm 1 asynchronously converges to
the unique global optimal solution of problem (NUM).

In [3], it has been shown that the set of stationary pointsS is
a singleton set for allα ≥ 1. They used logarithmic mapping
and transformed problem (NUM) to an equivalent convex
problem and showed that it has a unique stationary point.
However, this transformation does not work ifα ∈ (0, 1). That
is the reason the algorithm proposed in [3] does not support
the α-fair utility functions with α ∈ (0, 1). Here we are able
to provide sufficient conditions under which the non-convex
problem (NUM) has a unique optimal solution withα ∈ (0, 1).
To achieve this, we need to define a different mapping concept.

Definition 2: A mapping functiong(p) is a contraction
mapping[17, pp. 181] if there exists a constantζ ∈ (0, 1),
such that‖g(p̃) − g(p̂)‖ ≤ ζ ‖p̃ − p̂‖ for all p̃, p̂ ∈ P . Here
‖ · ‖ is some vector norm. A contraction mapping has unique
fixed point [17, pp. 183].

Theorem 5:Consider the case whereα ∈ (0, 1). SetF is
a singleton if the following holds:
(

1−α

α
Ψ Φ(V min,V max)

)2(
γmax

γmin
Γ

)1−α(

Ω− 1

L/Lmin−1

)

< 1,

(19)

2For the special case whenα = 1, vector mappingf(p
−n) is a constant

mapping as its value does not depend onp
−n. Thus, the convergence proof

for Algorithm 1 is trivial if α = 1. Same statement is true for Algorithm 2.

where Lmin = minn∈N Ln, Lmax = maxn∈N Ln, Γ =
(

Pmax(1 − Pmin)
)

/
(

Pmin(1 − Pmax)
)

, Ψ = Lmax/(1 −
Pmax) + 1/Pmin, Ω =

∑

n∈N 1/(L/Ln − 1), V min =

(N −1)
(

γmax(1/Pmin − 1) / γmin
)α−1

, V max = (N −1)
(

γmin(1/Pmin−1)/γmax
)α−1

, and we have:

Φ(V min,V max)=















(V max)1/α

(1+(V max)1/α)2
, if V max≤1,

(V min)
1/α

(1+(V min)1/α)2
, if V min≥1,

0.25, otherwise.

(20)

The proof of Theorem 5 is available in Appendix E. The
key is to show that if (19) holds, then mappingf is not only a
monotone mapping, but also anl2-norm contraction mapping.

In general, all the terms in (19), exceptΦ, are independent
of the number of nodesN . The value ofΦ can be arbitrarily
close to 0 ifN is large enough. Therefore,

Corollary 2: For anyα ∈ (0, 1) and any choice of other pa-
rameters, there exists a positive integerN̂ such that Algorithm
1 has a unique fixed point if the number of nodesN > N̂ .

Theorem 5 provides practical bounds on system parameters
that guarantee the uniqueness of the fixed point. For example,
consider the IEEE 802.11a standard whereγmin = 6 Mbps and
γmax = 54 Mbps. In Fig. 2, we plot the sufficient conditions on
upper bounds ofPmax and lower bounds ofPmin for utility
parameterα ∈ [0.1, 0.9] and number of nodesN ∈ [2, 100],
where each node has one outgoing link. As we can see, the
difference between the lower and upper bounds increases as
α or N increases, indicating the convergence condition is less
restrictive. In many cases, convergence of Algorithm 1 can
be obtained even when the sufficient condition (19) is not
satisfied. For example, it is easy to numerically verify thatfor
N = 2, problem (NUM) withα∈(0.5, 1) has a unique global
optimal solution with any choice of system parameters.

Theorems 3 to 5 together show that Algorithm 1 asyn-
chronously converges to the unique global optimal solutionof
the problem (NUM) when eitherα ∈ (0, 1) (under condition
(19)) or α ≥ 1 (with any system parameters). In particular,
Algorithm 1 works properly under delayed or even occasion-
ally lost messages. To have a better understanding on how the
system behaves with message loss, considerM consecutive
messages announced by an arbitrary noden. The firstM−1
messages are lost (e.g., due to collisions) while the last
message is properly received by all other nodess ∈ N\{n}.
In this case, all derived results will go through with another
asynchronism measure. Let̂H = MH . Since H and M
are bounded,̂H is also bounded. ConsiderinĝH as the new
asynchronism measure, Theorems 3 to 5 can still be applied.
Thus, convergence and optimality of Algorithm 1 are still
guaranteed. Interestingly, this robust behavior is accompanied
with fast convergence speed as shown in Section V.

B. General Network Topologies

Consider vector mappingf ′(p) = (f ′
n(p−n), ∀n ∈ N ),

wheref ′
n(p−n) is defined in Theorem 2. We denote the set of

fixed points of mappingf ′(p) by F ′, which is the set of fixed
points of Algorithm 2. We also denote the set of stationary
points of problem (NUM) byS′ in this case.
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Fig. 2. Sufficient conditions on the upper bounds ofPmax and lower bounds
of Pmin for α ∈ [0.1, 0.9] and N ∈ [2, 100] when Algorithm 1 is being
used and each node has one outgoing link. Solid lines represent lower bounds
on Pmin and dashed lines represent upper bounds onPmax.

Theorem 6:F ′ = S′.
The proof of Theorem 6 is similar to that of Theorem 4. If

α ≥ 1, then from [3, Lemma 1] we know that stationary point
setS′ is a singleton set. Together with Theorem 6, we have:

Corollary 3: If α≥1 and Algorithm 2 converges, it conve-
rges to the unique global optimal solution of problem (NUM).

If α ∈ (0, 1), we can use the same idea of Theorem 5 and
obtain sufficient conditions to assure that the stationary point
setS′ is a singleton set. We first notice that since not all links
interfere with each other, for each noden∈N and any linki∈
Ln, functionf ′

i may only depend on a small subset of entries
in vector p−n. For example, consider thechain topologyin
Fig. 3, where the interferences are withinone hop. For each
nodei, Ni = {n + 1, n + 2}. In this figure,f ′

i only depends
on (pi−5, . . . , pi−1, pi+2, . . . , pi+4). Notice thatγ′

i depends
on (pi+1, . . . , pi+4) and γ′

i−1 depends on(pi−5, . . . , pi−2).
Thusw′

n depends on(pi−5, . . . , pi−1, pi+2, . . . , pi+4). In ad-
dition, mn−2,n, mn−1,n, mn+1,n, and mn+2,n depend on
(pi−4, pi−3, pi−2), (pi−2, pi+1, pi+2), (pi−3, pi−2, pi+1), and
(pi+1, pi+2, pi+3), respectively. Thus,v′n also depends on
(pi−5, . . . , pi−1, pi+2, . . . , pi+4). We define setXi = {i −
5,. . . ,i− 1,i + 2, . . . , i + 4} as thedependency setfor link
i. Similarly, we can defineXi for all i ∈ L in any arbitrary
topology. That is, for anyi, j ∈ L, we havej ∈ Xi if and
only if pj appears in the formulation off ′

i . Let Xi = |Xi|
denote the size of setXi. We defineXmax = maxi∈L Xi. As
an example, for the chain topology in Fig. 3,Xmax = 8.

Theorem 7:For any general topology, the fixed point set
F ′ is a singleton ifα ∈ (0, 1) and

1 − α

α
Xmax Λ Φ(Zmin, Zmax) < 1, (21)

whereΦ is as in (20),γ′min = γmin(1−Pmax)N−1, γ′max =
γmax, Λ = 1/Pmin + 1/(1 − Pmax), and we have:

Zmin=
(

γ′min

γ′max

)1−α

(Lmin − 1)α, (22)

Zmax =
(

γ′max

γ′min

)1−α(

(Lmin−1)+ α
√

(L−Lmin)Pmax
)α

, (23)

Theorem 7 guarantees that Algorithm 2 has a unique fixed
point which is the global optimal solution of problem (NUM).
Notice thatZmin and Zmax are lower and upper bounds on

Fig. 3. A chain topology with one hop interference. Arrows in-
dicate the direction of the corresponding unidirectional wireless links.
Function f ′

i only depends on(pi−5, . . . , pi−1, pi+2, . . . , pi+4). No-
tice that γ′

i, γ′

i−1
, mn−2,n , mn−1,n, mn+1,n , and mn+2,n depend

on (pi+1, . . . , pi+4), (pi−5, . . . , pi−2), (pi−4, pi−3, pi−2), (pi−2, pi+1,
pi+2), (pi−3, pi−2, pi+1), and(pi+1, pi+2, pi+3), respectively.

γ′α−1
(wn(p−n)+α

√

vn(p−n))α for anyn∈N and anyi∈Ln.
The proof of Theorem 7 is similar to that of Theorem 5.
Theorem 7 is general and applies toany topology. Given the
particular topology of interest, we can further refine (21),e.g.,
as in (19). Notice that condition (21) is only sufficient as inthe
fully interfered case. For example,we can numerically verify
that for many practical topologies (e.g., chain topologies),
problem (NUM) with α ∈ (0.5, 1) has a unique local (thus
global) optimal solution forany choice of system parameters.

Unlike mappingf , mappingf ′ may not always be mono-
tone. Therefore, the convergence results in Theorem 3 do
not apply in general. However, we can still obtain sufficient
conditions under which the convergence to the unique fixed
point is guaranteed. Next, we define another mapping which
helps us prove the asynchronous convergence of Algorithm 2.

Definition 3: A mapping functiong(p) is aweighted maxi-
mum norm contraction mapping[17, pp. 434] ifg(p) is a con-
traction mapping with respect to a weighted maximum norm
‖g(p)‖ω

∞ = maxi∈L |gi(p)|/ωi, whereω = (ω1, . . . , ωL) is a
vector with positive coordinates.

Similar to monotone mappings, the weighted maximum
norm contraction mappings satisfy bothsynchronous con-
vergenceand box conditions [17, pp. 434-437]. Fromasyn-
chronous convergence theorem[17, pp. 431], this implies
that a weighted norm contraction mapping globally and asyn-
chronously converges to its unique fixed point, based on which
we can show the following key results:

Theorem 8:For any general topology, Algorithm 2 globally
and asynchronously converges to the unique global optimal
solution of problem (NUM) if

|1 − α|
α

√
N XmaxΛ Φ(Zmin, Zmax) < 1. (24)

If α ∈ (0, 1), then Zmin and Zmax are as in (22) and (23).
If α ≥ 1, Zmin = ( γ′min

γ′max )α−1(Lmin − 1)α and Zmax =

(γ′max

γ′min )α−1((Lmin − 1) + α
√

(L − Lmin)Pmax)α.
The proof of Theorem 8 is available in Appendix F. The

idea is to use the relationship betweenl2 and l∞ norms to
obtain a sufficient condition under whichf ′ is a weighted
maximum norm contraction mapping withunit weights. Thus,
Algorithm 2 asynchronously converges to its unique fixed
point. From Theorem 6, the convergence is indeed towards
the unique global optimal solution of problem (NUM). Notice
that condition (24) is a sufficient (but not necessary) condition
for asynchronous convergence. Simulation results in Section
V verify that Algorithm 2 converges under a wide range of
system parameters. We also notice that if (24) holds for some
α ∈ (0, 1), then (21) also holds for the sameα.
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The exact value of asynchronism measureH is not impor-
tant for any of the proofs. Following the same argument in
Section IV-A, Algorithm 2 works properly under delayed or
lost messages. In Section V, we assess the optimality, robust-
ness, and convergence of Algorithm 2 for several randomly
selected topologies and under different channel conditions.

V. SIMULATION RESULTS

In this section, we assess the optimality, convergence and
robust performance of our algorithms. In particular, we show
the advantages of Algorithms 1 and 2 compared with the
previously proposed subgradient-based algorithm in [3] (also
see [19]) as well as the IEEE 802.11 DCF. The simulation
environment is MATLAB. For DCF, we only implemented
the basic features, mostly the well-knownbinary exponentially
backoff (BEB) mechanism to update persistent probabilities,
without any carrier sensing mechanism. The parameters of
BEB are tuned based on the results in [2, Theorem 4].

A. Convergence and Optimality

We first consider a fully interfered topology withN = 3
nodes andL = 6 links. In this network, each node has two
outgoing links, one to each of the other two nodes. For all
nodesn ∈ N , we set the minimum persistent probability
Pmin

n =0.01 and the maximum total probabilityPmax
n =0.99.

We also set asynchronism measureH =10. The peak rates of
6 links areγ1 =6 Mbps,γ2 =36 Mbps,γ3 =9 Mbps,γ4 =12
Mbps, γ5 = 18 Mbps, andγ6 = 54 Mbps. Communication
delays among nodes are up to 10 slots and the packet error
rate is 0.1 (i.e., on average, 10% of the messages are lost). Fig.
4(a) shows the trajectories of adjusted persistent probabilities
and their optimal values whenα = 2 (which is greater than
1). In this case,p⋆ = [0.26, 0.11, 0.21, 0.18, 0.16, 0.09]

T . We
can see that Algorithm 1 converges to the optimal solution
p⋆ within less than 300 slots, even with communication
delay and message loss. Similar results whenα = 0.6
(which is less than 1) are shown in Fig. 4(b). In this case,
p⋆ = [0.06, 0.21, 0.07, 0.09, 0.18, 0.38]

T . Again, we see that
Algorithm 1 converges top⋆ within 320 slots. Similar results
can be obtained when the simulated network has achain
topology and Algorithm 2 is being used.

Next, we compare the convergence speed of Algorithm 2
and that of the subgradient-based algorithm [3] in a network
with a randomly generated general topology,N = 10 nodes,
and L = 24 wireless links. Results are shown in Fig. 5.
Here we assume that there is no communication delay and no
packet corruption in the underlying communication channel.
We can see that Algorithm 2 converges much faster than the
subgradient-based algorithm. In fact, Algorithm 2 converges
to the optimal persistent probabilities after only 11 iterations.
However, it takes 182 iterations for the subgradient-based
algorithm to reach the exact optimal persistent probabilities.

B. Signalling Overhead

In this section, we compare the signalling overhead in our
algorithms with the subgradient-based algorithm [3]. In the
simulation model, nodes arerandomly located in 100m ×
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Fig. 4. Simulation results for a fully interfered topology with three nodes and
six links. Algorithm 1 is used. Communications delay is 10 time slots, packet
error rate is 0.1, andγ1 =6, γ2 =36, γ3 =9, γ4 =12, γ5 =18, γ6 =54 (all
in Mbps). (a) Utility parameterα = 2, (b) Utility parameterα = 0.6.

100m and1km × 1km fields for fully interfered and general
topologies, respectively. The communication and interference
ranges are150m and 300m, respectively. Each node has
an outgoing link to any of its neighboring nodes within its
communication range. The peak data rates (i.e.,γi for all
i∈L) are selectedrandomlybetween 6 to 54 Mbps. Parameter
α is set to 2 which models harmonic mean fair allocation.
We assume that eachmessage value, both in our proposed
algorithms and the subgradient-based algorithm, requirestwo
bytes. We notice that since Algorithm 2 and the subgradient-
based algorithm [3] require transmission oftwo message
values, the size of their messages is twice larger than the size
of the messages of Algorithm 1. Recall that Algorithm 1 only
requires transmission of a single message value. Given the
message sizes, the signalling overhead for each algorithm is
defined as thetotal required message exchange (in Kbytes)
that the algorithm needs before it reaches the corresponding
optimal solution of problem (NUM). Simulation results for
general topologies when number of nodesN varies from 5 to
30 are shown in Fig. 6. We see that increasing the number of
nodes increases the signalling overhead. However, Algorithm
1 and 2 manage to reach the optimal solutions via much less
signalling. Compared to the subgradient-based algorithm and
when N = 30, Algorithms 1 and 2 reduce the signalling
overhead by 1120% (from 55.2 KByte to 4.5 KByte) and
810% (from 111.3 KByte to 10.8 KByte), respectively. Notice



9

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time Slot

P
er

si
st

en
t P

ro
ba

bi
lit

ie
s

(a)

Subgradient−based Algorithm
Optimal

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time Slot

P
er

si
st

en
t P

ro
ba

bi
lit

ie
s

(b)

Algorithm 2
Optimal

Fig. 5. Comparison between Algorithm 2 and the subgradient-based
algorithm [3] in term of convergence speed in a network withN = 10 nodes,
L = 24 links, and a randomly generated general topology. (a) Subgradient-
based algorithm is being used. (b) Algorithm 2 is being used.

that one reason for the superiority of our proposed algorithms
is their faster convergence speed. In addition, Algorithm 1
reduces the message amount by half, which also contributes
to reducing the signalling overhead.

C. Robustness

Since the underlying communication channels are not ideal
in practice, transmitted messages by MAC protocols may be
delayed or even be lost. In this section, we show that our
proposed algorithms are robust with respect to both message
delay and loss. The simulation model is the same as that
in Section V-B. We only consider general topologies with
N = 30 nodes. Results for fully interfered topologies are
similar. The simulation time is set to50, 000 time slots. For
each algorithm, we measure the optimality of the achieved
network utility at the end of each simulation run.

First, we assume that the communication delay varies from
10 to 50 time slots. Results are shown in Fig. 7(a). We see that
by increasing delay up to 50 time slots, the subgradient-based
algorithm leads to 8.4% optimality loss while Algorithm 2 can
always find the exact optimal solutions. Note that although
Algorithm 2 is robust to delay, higher delays can cause more
iterations for the algorithm to converge. Algorithm 2 converges
to the optimal persistent probabilities on average after 421,
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Fig. 6. Comparison between Algorithm 2 and the subgradient-based
algorithm [3] in term of signalling overhead when the numberof wireless
nodes varies from 5 to 30. Each point represents the average results from
simulating 10 random general topologies. Simulation results for the special
case of fully interfered topology are similar and omitted.
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Fig. 7. Comparison between Algorithm 2 and the subgradient-based
algorithm [3] in term of robustness with respect to message delay and loss.
Each point represents the average results from simulating 10 random general
topologies, each including 30 nodes. (a) Optimality in percentage when
maximum communication delay varies from 10 to 50 time slots,(b) Optimality
in percentage when packet error rate varies from 0.1 to 0.5.

1581, 3641, 6472, and 9923 time slots when communication
delay is 10, 20, 30, 40, and 50 time slots, respectively.

Next, we assess the effect of message delay when the packet
error rate varies from 0.1 (i.e., 10% of the messages are lost) to
0.5. Results are shown in Fig. 7(b). We see that Algorithm 2 is
robust to message loss. On average, it converges to the optimal
probabilities after 312, 473, 531, 629, and 727 slots when
packet error rate is 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.

D. Comparison with IEEE 802.11 DCF

Since our algorithms achieve the global optimal solution of
problem (NUM), they establish a performance upper-bound
for all MAC algorithms that are designed to solve the same
problem. On the other hand, they can resolve some of the
existing problems in the current 802.11 DCF, e.g., its well-
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Fig. 8. Comparison between DCF and Algorithm 2 when utility parameterα
varies from 0.5 to 5. Each point represents the average results from simulating
10 random general topologies, each including 30 nodes. Parameterα acts as
a knob in Algorithm 2 to control the tradeoff between efficiency andfairness.
As α increases, the resource allocation becomes more fair, but less efficient
and vice versa. (a) Aggregate network throughput, (b) Jain’s fairness index.

known short-term fairnessproblem due to binary exponential
backoff. Next, we compare Algorithm 2 with DCF in terms of
system throughput and Jain’s fairness index [20] whenN =30.
Short-term fairness is obtained using a sliding window of size
200 slots. Results when utility parameterα varies from 0.5
to 5 are shown in Fig. 8. Each point represents the average
results from simulating 10 random general topologies. We see
that, parameterα acts as aknob in Algorithm 2 to control
the tradeoff between efficiency and fairness. By increasing
α we can make the system more fair but less efficient (and
vice versa). Ifα = 0.5, then the throughput is 54.9% higher
than DCF (see Fig. 8(a)). Besides, for anyα ∈ [0.5, 5], the
fairness is much better than DCF (see Fig. 8(b)). We can see
that, regardless of the network size, by proper selection ofα
(between 0.5 and 2), Algorithm 2 can improve both system
throughput and fairness. Similar results are obtained whenwe
increase the number of nodes.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we designed two distributed contention-based
MAC algorithms to solve the NUM problem at the link-layer in
wireless ad hoc networks. Both algorithms globally converge
to the unique global optimal solution of the NUM problem
under mild conditions on system parameters. In particular,
it is true for α-fair utility functions with α ∈ (0, 1), in
which case the NUM problem cannot be transformed into
a convex optimization problem using logarithmic change of
variables as in the previous literature, and thus, it is already

very challenging to even prove the uniqueness of the optimal
solution before designing any algorithm.

Besides supporting a wider range of utility functions,
our proposed algorithms have several other advantages over
previously proposed NUM-based random MAC algorithms,
including much less message passing, fully asynchronous
updates, robustness to message delays and message losses,
and very fast convergence speed. Simulation results confirm
that our algorithms converge faster than the recently proposed
algorithm in [3] with significantly (e.g., a magnitude orderof
10 times) less signaling overhead. They are robust to arbitrary
delays in control message exchanges among wireless nodes,
and even control message losses due to channel errors in .
Moreover, our proposed algorithms achieve better efficiency-
fairness trade-off compared to the IEEE 802.11 DCF.

Results in this paper can be extended in several directions.
First, we can extend optimization problem (NUM) and formu-
late the network utility maximization problem at the transport-
layer to design an optimal, fast, and robust joint congestion
control and random MAC scheme. After decomposition of
the joint problem (cf. [21] and [19]), the random MAC
sub-problem can be solved in closed-form similar to (9)
and (16) for fully interfered and general network topologies,
respectively. We shall also extend our model to more realistic
networking scenarios, where the queues at each node have
finite-backlog [22], [23]. In this regard, the data rate model
in (1) needs to be modified. Most of the techniques used
in this paper, such as myopic adjustment of the persistent
probabilities using best-response, are expected to be still ap-
plicable for networks with finite-backlogged queues to reduce
the signaling overhead and achieve more robust performance.
We may also relax the need for the existence of equal-length
time slots, following the techniques used in [24, Section IV],
where a utility-optimal random access algorithm is proposed
for logarithmic utilities (i.e., α = 1) in pure (un-slotted)
ALOHA systems. It is also important to analyze how our
algorithms perform in a highly dynamic network, where the
nodes locations and wireless channels are quickly changing.
Finally, we may extend our random access model by including
carrier sensing. Carrier sensing can help to avoid collision
among those transmissions which their transmitter nodes are
within the carrier sensing range of each other. This can be
modeled by redefining the interference setNi for each link
i ∈ L and modify the data rate model in (1), accordingly.

APPENDIX

A. Proof of Theorem 1

Lemma 1:For each noden ∈ N , we have:

1

Pmin
n

−Bn ≤ α

√

γα−1
i

(

wn+ α
√

vn(p−n)
)

, ∀i∈Bn, (25)

Pmax
n

Pmin
n

−Cn ≤ α

√

γα−1
i wn, ∀i∈Cn. (26)

1

Pmin
n

−Bn > α

√

γα−1
i

(

wn+ α
√

vn(p−n)
)

, ∀i∈Ln\Bn,(27)

Pmax
n

Pmin
n

−Cn > α

√

γα−1
i wn, ∀i∈Ln\Cn. (28)
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Proof: From (7) and knowing thatLn\An =
{i1, . . . , iκ}, for each linki ∈ Bn we have:

1

Pmin
n

−Bn ≤∑j∈Ln\An

α

√

(

γiκ+1

γj

)α−1

+ α

√

γα−1
iκ+1

vn(p−n)

=
α

√

γα−1
iκ+1

γα−1
i

(

∑

j∈Ln\An
α

√

(γi

γj
)α−1+ α

√

γα−1
i vn(p−n)

)

≤ α

√

γα−1
i

(

wn + α
√

vn(p−n)
)

,

where the last inequality comes from the fact thatα

√

γα−1
iκ+1

≤
α

√

γα−1
iσ+1

≤ α

√

γα−1
i for all i ∈ Bn. Recall thatκ = min{σ, ς}

and iκ+1 ≤ iσ+1. Proof of (26) is similar. We prove (27) by
contradiction. Assume that there existsiε ∈Ln\An such that
(27) doesnot hold. It is clear thatε≤σ. We have

1

Pmin
n

− Ln + σ ≤ α
√

γiε

(

∑σ
l=1

α

√

(1
γl

)α−1+ α
√

vn(p−n)
)

(29)

1

Pmin
n

−Ln+ε−1≤∑ε−1
l=1

α

√

(
γiε

γl
)α−1+ α

√

γiεvn(p−n), (30)

where the last inequality results from the fact thatγiε

γl
≤1 for

all l=ε,. . . ,δ which implies
∑σ

l=ε
α
√

(γiε/γl)α−1 ≤ σ−ε+1.
Comparing with (7), inequality (30) implies thatiε ∈ An

which contradicts the assumption thatiε ∈ Ln\An. Proof of
(28) is similar and is omitted for brevity.

Since (LOCAL-NUM) is strictly concave inpn, its optimal
solution is unique [16, pp. 137] and satisfies the following
necessaryandsufficientKKT conditions [16, pp. 244]:

pi ≥ Pmin
n , ∀ i ∈ Ln, (31)

∑

i∈Ln
pi ≤ Pmax

n , (32)

1
γα−1

i pα
i

− vn(p−n)

(1−
P

i∈Ln
pi)

α = λn − δi, ∀ i ∈ Ln, (33)

λn

(
∑

i∈Ln
pi − Pmax

n

)

= 0, (34)

δi

(

Pmin
n − pi

)

= 0, ∀ i ∈ Ln, (35)

λn ≥ 0, δi ≥ 0, ∀ i ∈ Ln, (36)

whereλn denotes the Lagrangian multiplier corresponding to
constraint

∑

i∈Ln
pi ≤ Pmax

n and δi denotes the Lagrangian
multiplier corresponding to constraintpi ≥ Pmin

n for each
i ∈ Ln. Now we need to show that (9) leads to (31) to (36).

Condition (31) directly results from (9). We also have:

∑

i∈Ln
fi(p−n)

≤ AnPmin
n +

∑

i∈Ln\An

Pmax
n −AnPmin

n
α
√

γα−1wn

= AnPmin
n +

Pmax
n − AnPmin

n

wn

(

∑

i∈Ln\An

α

√

( 1
γi

)
α−1

)

by (10)
= Pmax

n .

Thus, condition (32) also holds. Two cases are possible:
Case I:

∑

i∈Ln
fi(p−n) < Pmax

n , which only happens if
∑

i∈Ln\An
fi(p−n) < Pmax

n − AnPmin
n . Thus, there exists

l ∈ Ln\An such that we have:

1

α

√

γα−1
l

1 − AnPmin
n

wn+ α
√

vn(p−n)
<

Pmax
n − AnPmin

n

α

√

γα−1
l wn

,

1 − AnPmin
n

wn + α
√

vn(p−n)
<

Pmax
n − AnPmin

n

wn
. (37)

Multiplying both sides of this inequality byα
√

(1/γi)α−1,
for any link i ∈ Ln\An, we have:

1

α

√

γα−1
i

1 − AnPmin
n

wn + α
√

vn(p−n)
<

Pmax
n − AnPmin

n

α

√

γα−1
i wn

.

Hence, for eachi ∈ Ln\An, we have:

fi(p−n)=max



Pmin
n ,

1

α

√

γα−1
i

1 − AnPmin
n

wn + α
√

vn(p−n)



 . (38)

In this case, we haveσ ≤ ς and κ = min{σ, ς} = σ. In
other words,An = Bn and An = Bn. We prove this by
contradiction. Assume thatσ > ς andκ = ς. We have:

1 − (Ln − ς)Pmin
n

∑ς
l=1

α

√

( 1
γil

)α−1 + α
√

vn(p−n)

by (37)
<

Pmax
n − (Ln−ς)Pmin

n
∑ς

l=1
α

√

( 1
γil

)α−1

by (8)
≤ α

√

γα−1
iς+1

Pmin
n .

Thus,

1

Pmin
n

−Ln+ς < α

√

γα−1
iς+1

(

∑σ
l=1

α

√

( 1
γil

)
α−1

+ α
√

vn(p−n)
)

.

(39)
Comparing (39) and (7), we haveiς+1 ∈ Bn. This implies that
σ ≤ ς which contradicts our counter assumptionσ > ς. Thus,
κ = σ and we have:

An = Bn, An = Bn. (40)

We can verify that conditions (33)-(35) hold forpn =fn(p−n)
if λn =0 and we setδi = 0 if i ∈ Ln\An and set:

δi =
vn(p−n)

(

1−AnPmin
n −∑j∈Ln\An

fj(p−n)
)α−

(

1
α
√

γi
α−1Pmin

n

)α

(41)
if i ∈ An. Next, we need to show that (36) holds. For each
nodei ∈ An, we have:

vn(p−n)
(

1 − AnPmin
n −∑j∈Ln\An

fj(p−n)
)α

by (38)
≥ vn(p−n)

(1 − AnPmin
n )

(

1 −∑j∈Ln\An

α
q

1/γα−1
j

wn+ α
√

vn(p−n)

)α

by (10)
=





α

√

γα−1
i

(

wn + α
√

vn(p−n)
)

α

√

γα−1
i (1 − AnPmin

n )





α

by (25)
≥

and (40)





1/Pmin
n − An

α

√

γα−1
i (1 − AnPmin

n )





α

=





1

α

√

γα−1
i Pmin

n





α

,
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Therefore,δi ≥ 0 for all i ∈ Ln and condition (36) also holds.
Finally, for each linki ∈ Ln\An we have:

Pmax
n −AnPmin

n

α

√

γα−1
i wn

by (37)
>

1 − AnPmin
n

α

√

γα−1
i

(

wn+ α
√

vn(p−n)
)

and (27)
≥

by (40)
Pmin,

(42)
which guarantees that the upper bound in (9) is indeed greater
than the lower bound. This completes the proof for Case I.

Case II:
∑

i∈Ln
fi(p−n) = Pmax

n , which happens only if
∑

i∈Ln\An
fi(p−n) = Pmax

n − AnPmin
n . (43)

We already know that
∑

i∈Ln\An

Pmax
n −AnPmin

n
α
√

γα−1
i wn

by (10)
= Pmax

n − AnPmin
n . (44)

From (43) and (44) and sincefi(p−n) ≤ (Pmax
n −AnPmin

n )

/( α

√

γα−1
i wn) for all i ∈ Ln\An, we have:

fi(p−n)=
Pmax

n − AnPmin
n

α

√

γα−1
i wn

, ∀i ∈ Ln\An. (45)

From (9) and (45) we have:

1−AnPmin
n

wn+ α
√

vn(p−n)
≥ Pmax

n −AnPmin
n

wn
. (46)

In this case, we haveσ ≥ ς and κ = min{σ, ς} = ς. In
other words,An = Cn, and An = Cn. We prove this by
contradiction. Assume thatσ < ς andκ = σ. We have:

Pmax
n − (Ln−σ)Pmin

n
∑σ

l=1
α

√

( 1
γil

)α−1

by (46)
≤ 1 − (Ln − σ)Pmin

n
∑σ

l=1
α

√

( 1
γil

)α−1+ α
√

vn(p−n)

by (7)
≤ α

√

γα−1
iσ+1

Pmin
n .

Thus, we have:

Pmax
n

Pmin
n

− Ln + σ ≤ α

√

γα−1
iσ+1

(

∑σ
l=1

α

√

(

1
γil

)α−1
)

. (47)

Comparing (47) and (8), we haveiσ+1 ∈ Cn. This implies that
σ ≥ ς which contradicts our counter assumptionσ < ς. Thus,
κ = ς and we have:

An = Cn, An = Cn. (48)

We can verify that conditions (33)-(35) hold for eachpn =
fn(p−n) if we set

λn =

(

wn

Pmax
n − AnPmin

n

)α

−
(

α
√

vn(p−n)

1 − Pmax
n

)α

, (49)

and

δi =







(

wn

Pmax
n −AnPmin

n

)α

−
(

1
α
√

γi
α−1Pmin

n

)α

, if i∈An,

0, if i∈Ln\An.
(50)

Next, we show that (36) holds. From (46) and by reordering,

wn(1 − AnPmin
n ) ≥ (wn+ α

√

vn(p−n))(Pmax
n −AnPmin

n )

wn

Pmax
n −AnPmin

n

≥
α
√

vn(p−n)

1 − Pmax
. (51)

On the other hand, from (26) and (48) and by reordering,

wn/(Pmax
n − AnPmin

n ) ≥ 1/( α

√

γα−1
i Pmin). (52)

Replacing (51) in (49), we haveλn ≥ 0. On the other hand,
replacing (52) in (50), we haveδi ≥ 0 for all i ∈ Ln. Thus,
condition (36) holds. Finally, for eachi ∈ Ln\An we have:

(Pmax
n − AnPmin

n )/(
α

√

γα−1
i wn)

and (28)
≥

by (48)
Pmin, (53)

which guarantees that the upper bound in (9) is greater than
or equal to the lower bound. �

B. Proof of Proposition 1

If α ≥ 1, then for anyp̃, p̂ ∈ P such that̃p � p̂, we have:
p̃j ≤ p̂j , for all j ∈ L. Thus,

1 −∑j∈Ls
p̃j ≥ 1 −∑j∈Ls

p̂j , ∀ s ∈ N , (54)

1/p̃j ≥ 1/p̂j, ∀ j ∈ L. (55)

From (54) and (55),

ms(p̃−n) ≥ ms(p̂−n), ∀ s ∈ N , (56)

vi(p̃−n) ≥ vi(p̂−n), ∀ i ∈ L, (57)

wi + α
√

vi(p̃−n) ≥ wi + α
√

vi(p̂−n) ∀ i ∈ L, (58)

fi(p̃−n) ≤ fi(p̂−n), ∀ i ∈ L. (59)

Thus, the vector functionf(p) is a monotone increasing
mapping. Ifα ≤ 1, then the sign of the inequalities in (56)-
(59) is reversed andf (p) becomes monotone decreasing.�

C. Proof of Theorem 3

SinceH is bounded, the local memory of each noden ∈
N is updated infinitely often ast → ∞. Thus, the total
asynchronismassumption [17, pp. 430] holds. First suppose
with α≥1. Let pminandpmaxdenote twoN×1 vectors with all
entries equal toPminandPmax, respectively. Sincef(p⋆)=p⋆,
pmin � p⋆ � pmax, andf(·) is monotone increasing, we have:

pmin � f(pmin) � p⋆ � f(pmax) � pmax. (60)

Note that, for eachn ∈ N and i ∈ Ln, fi(p
min) ≥ Pmin

n ≥
Pmin and fi(p

max) ≤ Pmax
n ≤ Pmax. Let fk(p) denote

the composition off with itself k times, wheref0(p) = p.
Starting from (60) and applyingf for k ≥ 0 times, we have:

fk(pmin)�fk+1(pmin)� p⋆�fk+1(pmax)�fk(pmax). (61)

We also define:Pk = {p|fk(pmin) � p � fk(pmax)}.
If p ∈ Pk, then f(p) ∈ Pk+1. From (61),Pk+1 ⊆ Pk

for all k ≥ 0. We can also show (by contradiction) that if
Pk 6= {p⋆}, thenPk+2 6= Pk. That is,Pk+2 ⊂ Pk. Thus,
limk→∞ fk(pmin) = limk→∞ fk(pmax) = p⋆. Besides, if
p, p̂ ∈ Pk, then (p1, · · · , pi−1, p̂i, pi+1, · · · , pL) ∈ Pk for
anyk ≥ 0. Therefore, bothsynchronous convergenceandbox
conditions [17, pp. 431] hold. Fromasynchronous convergence
theorem[17, pp. 431], starting from any point inP0, Algorithm
1 will converge top⋆. SinceP ⊆ P0, the proof forα≥ 1 is
complete. Now consider the case withα≤1, from Proposition
1, the mappingf (·) is monotone decreasing. We have:

pmin � f(pmax) � p⋆ � f(pmin) � pmax. (62)
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Comparing with (60), the orders off (pmin) andf(pmax) is
exchanged in (62). Applyingf(·) once more, we have:

f (pmax) � f2(pmin) � p⋆ � f2(pmax) � f(pmin).

By mathematical induction, we can show that ifk is odd, then

fk(pmax) � fk+1(pmin) � p⋆ � fk+1(pmax) � fk(pmin),

and if k is even, then:

fk(pmin) � fk+1(pmax) � p⋆ � fk+1(pmin) � fk(pmax),

For each (either odd or even)k ≥ 0, we rede-
fine set Pk = {p|min[fk(pmin), fk(pmax)] � p �
max[fk(pmin), fk(pmax)]}. The rest of the proof follows the
case ofα ≥ 1 and is omitted for brevity. �

D. Proof of Theorem 4

For eacĥp⋆ ∈ F and each linki ∈ N , Theorem 1 states that
p̂⋆

i is the unique global optimal solution of convex Problem
(LOCAL-NUM), and satisfies the KKT conditions in (31)-
(36). We denote the corresponding Lagrangian multipliers by
λ̂⋆

n and δ̂⋆
i for all i ∈ Ln. We also definêλ

⋆
= (λ̂⋆

n, ∀ n ∈
N ) and δ̂

⋆
= (δ̂⋆

i , ∀ i ∈ L). On the other hand, since any
local optimum p̂ ∈ S is a regular point [18, pp. 315] of
non-convex Problem (NUM), and so must satisfy the KKT
necessaryconditions[18, Proposition 3.3.1], for anyi ∈ N ,

p̃⋆
i ≥ Pmin

n , ∀n ∈ N , i∈Ln,(63)
∑

i∈Ln
p̃⋆

i ≤ Pmax
n , ∀n∈N , (64)

1
yn(p̃⋆

−n)

(

1
γα−1

i pα
i

− vn(p⋆
−n)

(1−P

i∈Ln
pi)α

)

=λ̃⋆
n−δ̃⋆

i , ∀n∈N , i∈Ln, (65)

λ̃⋆
n

(
∑

i∈Ln
pi − Pmax

n

)

= 0, ∀n∈N , (66)

δ̃⋆
i

(

Pmin
n − pi

)

= 0, ∀n ∈ N , i∈Ln,(67)

λ̃⋆
n ≥ 0, δ̃⋆

i ≥ 0, ∀i∈Ln, (68)

where yn(p−n) = (
∏

s∈N\{n}(1 −∑j∈Ls
pj))

α−1
> 0. We

define, λ̃
⋆

= (λ̃⋆
n, ∀ n ∈ N ) and δ̂

⋆
= (δ̂⋆

i , ∀ i ∈ L).
If (p̂⋆, λ̂

⋆
, δ̂

⋆
) satisfies conditions (31)-(36) for alln ∈ N ,

then (p̂⋆, (λ̂⋆
n/yn(p̂⋆

−n), ∀ n ∈ N ), (δ̂⋆
i /yn(p̂⋆

−n), ∀ n ∈
N , i ∈ Ln)) satisfies conditions (63)-(68). On the other
hand, if (p̃⋆, λ̃

⋆
, δ̃

⋆
) satisfies conditions (63)-(68), then

(p̃⋆, (λ̃⋆
nyn(p̃⋆

−n), ∀n ∈ N ), (δ̃⋆
i yn(p̃⋆

−n), ∀n ∈ N , i ∈ Ln))
satisfies conditions (31)-(36) for alln∈N . The former implies
thatF ⊆ S while the later impliesS ⊆ F . Thus,F = S. �

E. Proof of Theorem 5

For anyp ∈ P , JacobianJ(p) is defined as anL×L matrix
whose entry in rowi and columnj is ∂fi/∂pj. Consider node
n ∈ N and eachi ∈ Ln, if j ∈ Ln then we haveJi,j(p) = 0.
On the other hand, ifj /∈ Ln, wherej ∈ Ls, then we have:

Ji,j(p) =

α−1
α

(1−AnPmin
n )

1−
P

k∈Ls
pk

»

ms+

„

1−
P

k∈Ls
pk

pjγj

«α−1„
1−

P

k∈Ls
pk

pj

«–

α
√

γα−1
i vn(p−n)1−1/α(wn+vn(p−n)1/α)2

.

(69)
This is under the assumption thatfi ∈ (P min

n , (P max
n −

AnPmin
n )/ α

√

γα−1
i wn). If fi is chosen to be one of the

boundary points, then the corresponding entry is 0. Thus, (69)

provides upper-bounds (in absolute values) on the entries of
the Jacobian. We can show that:

‖J‖∞ ≤ 1−α

α
max

i∈Ln,n∈N

{

(γivn(p−n))1/α

(1+(γivn(p−n))
1/α

)2

}

×
(

Lmax

1−Pmax
+

1

Pmin

)

≤ 1 − α

α
ΨΦ(V min, V max).

(70)

Note that1 − AnPmin
n ≤ 1 and α

√

γα−1
i wn ≥ 1 for all i ∈

Ln\An. Functionx1/α/(1+x1/α)2 is always non-negative and
less than 0.25. It has a unique maximum atx = 1. The function
is monotonically increasing for0 ≤ x < 1 and monotonically
decreasing forx > 1. Its value approaches zero as eitherx →
0 or x → ∞. We can similarly show that:

‖J(p)‖1 ≤ 1 − α

α
Ψ Φ(V min, V max)

(

γmax

γmin
Γ

)1−α

×
(

Ω − 1

L/Lmin − 1

)

.

(71)

From (19), (70), and (71), we have [17, pp. 635]:

‖J(p)‖2 ≤
√

‖J(p)‖∞ ‖J(p)‖1 < 1. (72)

Let p̃, p̂ ∈ P . From (72) and by Cauchy Schwarz inequality,

‖f(p̃) − f (p̂)‖2 ≤ ‖J(p)‖2 ‖p̃ − p̂‖2 < ‖p̃− p̂‖2,

wherep is any convex combination of̃p and p̂. Thus,f is an
l2-norm contraction mapping. �

F. Proof of Theorem 8

Following the same argument as in Appendix E, condition
(21) implies that for eachp ∈ P , we have:

√
N‖J ′(p)‖2 < 1

whereJ ′(p) denotes the Jacobian matrix off ′(p). From linear
algebra, we also know that for eachN × 1 vectora we have
‖a‖∞ ≤ ‖a‖2 ≤

√
N‖a‖∞. Let p̃, p̂ ∈ P . Using the Cauchy-

Schwarz inequality, we have:

‖f ′(p̃) − f ′(p̂)‖∞ ≤ ‖f ′(p̃) − f ′(p̂)‖2

≤ ‖J ′(p)‖2 ‖p̃ − p̂‖2

< ‖p̃ − p̂‖2/
√

N

≤ ‖p̃ − p̂‖∞.

Thus, condition (21) guarantees that mapping functionf ′(·)
is indeed anl∞ norm contraction mapping. Thus, it asyn-
chronously converges to itsuniquefixed point. From Theorem
6, this further implies that Algorithm 2 converges to the unique
global optimal solution of problem (NUM). �
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