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ABSTRACT framework include [3], [4]. They have various perfor-

In this paper, we propose two distributed contentiofnance bot_tlenecks due to one or more of the following:
based medium access control (MAC) algorithms to solb) EXtensive message passing among nodes, (2) syn-
a network utility maximization (NUM) problem in wire-chronous updates of contention probabilities that require

less ad hoc networks. Most of the previous NUM-basB§mogeneous computational capabilities among nodes,
random access algorithms have one or more of the f¢p) Small update stepsizes to guarantee convergence with
lowing performance bottlenecks: (1) extensive signalifPically slow speed, and (4) supporting only a limited
among nodes, (2) synchronous updates of contentfgyd€ Of utility functions due to non-convexity.
probabilities, (3) small update stepsizes to ensure conver OUr Proposed algorithms overcome the performance
gence but with typically slow speed, and (4) supportir%OttleneCkS qf previous proposed NUM-pased random
a limited range of utility functions under which the?CC€SS algorithms in all four aspects. First, they only
NUM is shown to be convex. Our algorithms overconigaUiré limited message passing (i.e., signalling) among
these bottlenecks in all four aspects. First, only limiteg°des- Based on the messages from other nodes, each
message passing among nodes is required. Second, f[]ﬁ}()e updates its persistent probabilities by solving a

asynchronous updates of contention probabilities al@c@ and myopic optimization problem in an attempt

allowed. Furthermore, our algorithms are robust to arl® Maximize thetotal network utility. Compared to

bitrary large message passing delays and message Ic}gg. NUM-based random access .algor_ithm in [3], our
Third, we do not utilize any stepsize during updates, thi@orithms can reduce the total signalling overhead by
our algorithms can achieve faster convergence. Finallff}o"e than a factor of 10. Second, our algorithms allow

our algorithms have provable convergence, optimalitftlly @synchronous updates of messages and contention

and robustness properties under a wider range of ut“ng),rob(';\bilities. They can tolerate arbitrary large and finite
functions, even if the NUM problem is non-convex asynchronism and message delays and are also robust to
' message losses. For example, even when the packet loss

rate of the underlying communication channel is down
to 0.5 (i.e., on average, half of the messages are lost),

There are two major types of wireless medium aour algorithms can still achieve the optimal performance
cess control (MAC) protocols: scheduling-based amdthin a short time. Third, in our algorithms, nodes up-
contention-based. In general, the contention-based-pradate their contention probabilities througkst response
cols are more scalable and inherently more flexible, bupdates, thus no small stepsizes are needed. This enables
they typically have poor performance due to insufficiemtur algorithms to achieve a much faster convergence
feedback. For example, in IEEE 802.11 distributed caompared with the previously proposed subgradient-
ordination function [1], a node updates its transmissidrased update methods (e.g., in [3], [4]). Finally, our
probability based on thieinary feedback of its data trans-algorithms have provable convergence property under a
mission:succes®r failure. This leads to low throughput, wider range of utility functions, even if the NUM cannot
unfair resource allocation, and unstable equilibrium [2he transformed into a convex optimization problem.

In this paper, we design distributed contention-basedThe rest of this paper is organized as follows. The
random MAC algorithms through the framework ofystem model is described in Section Il. Our proposed
network utility maximization (NUM), where nodesn- algorithms are presented in Section Ill. The convergence,
domly anddistributively access the shared channel witbptimality, and robustness of our algorithms are analyti-
certain transmission probabilities. Several related -algeally proved in Section IV. Simulation results are shown
rithms that are also proposed based on the same NUiMSection V. Conclusions are discussed in Section VI.

I. INTRODUCTION
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Fig. 1. A sample wireless ad-hoc network. In nadehose packets
which are assigned to be sent to nddéover link 1) and node:
(over link 2) are enqueued in queue 1 and queue 2, respgctiRel
and T boxes represent receiver and transmitter units, cegply.

Il. SYSTEM MODEL

Consider a wireless ad-hoc network. Lé{
{1,..., N} denote the set of nodes ad={1,...,L}

denote the set of unidirectional wireless links. For ea

noden € N, we denote the set of iteutgoing links
by £, C L, with size L,, = |L,|. Each noden has L,

separate queues, each queue holds the packets for On(?oﬂfcave in link rates —
its outgoing links of node: (see Fig. 1). Time is divided

into equal-length slots. At each time slot, nodemay
choose to transmit on one of its outgoing links L,

with a persistent probabilityp;. The probabilities need

to satisfy) ;.. p; < P < 1, where P;"** denotes
the maximumtotal persistent probability. Thus, node
may remain silent in some slots. In Fig. 1, noddas

Each linki € £ has autility which is an increasing

and concave function aof; and indicates link's degree
of satisfaction on its average rate. The utility of lihks
denoted byu(r;(p)), which is also a function op. We
are want to find the value g that solves the following

network utility maximizatiofNUM) problem [6]:

max Yice u(ri(p)),

)

where the feasible persistent probability region is

P={p:pi=PPn, 5 cp py S PR, WneN ie Ly }
and the utility function isa-fair [7]:

u<7«2—>={(1_“)_1”1_a’ i ae(0,1)U(1,00)

log 7, if a=1, vieL

®3)

Using (3), a wide range of efficient and fair alloca-

tions can be modeled. In fact, Problem (2) reduces to
éﬂroughput maximization withv— 0, to proportional fair
I

ocation withae =1, to harmonic mean fair allocation

with =2, and to max-min fairness with — oco.

Although the objective function in Problem (2) is
(ri,Vie L), itis not concave in
persistent probabilitiep due to the product form of the
data rate in (1). Thus, finding the global optimal solution
of this non-convexandconstrainedoptimization problem

is quite difficult even in a centralized fashion.

1.
In this section, we propose two distributed algorithms

ALGORITHMS

L, = 2 outgoing links.In this node, those packets whicty solve Problem (2), one fosingle-celltopologies in
are destined to nodeare enqueued in queue 1. SimilarlySection I1I-A and another one fageneraltopologies in
the packets which are destined to nadare enqueued Section I1I-B. In both algorithms, each nodeperforms
in queue 2. At each time slot, a packet from queue 1 dsmyopicand local optimization, i.e., optimizing thetal

sent over link 1 with probabilityp;, and a packet from
queue 2 is sent over link 2 with probabilipy.

For each node: € N, if the receiver node of link
i1 € L, is within the interference rangeof another
node s € N\{n}, then any transmission by node
(i.e., transmission on any link € L) interferes with

network utility by choosing the persistent probabilitiés o
its own outgoing links, assuming others do not change
theirs. Despite the complexity of the problem, we ob-
tained the solution of this local optimization problem
in closed-form, facilitated by limited signalling among
nodes and a simple local sorting procedure. Various

transmissions of link. Those nodes which interfere Withproperties of the a|gorithms’ inc|uding convergence, op-

transmissions of link are denoted by seY/;. For each

timality, and robustness, will be proved in Section IV.

noden € N, let r; denote the average data rate for link
i € L, which is a function of the persistent probabilityA. Single-Cell Topology

vectorp = (p;, Vi € L) of all links [5]:

ri(P) = Yipi HsE/\/i(l - Zje[js pj)- 1)
Here~; denotes the peak data rate for link.e., the rate

We begin by considering single-celltopology, where
all links interfere with each other. That is, for each N/
and anyi € L,,, the interference node saf; = N\{n}.
This models some practical networks includingeless

achieved by linki if no node inN; is active). To ensure personal area network&here multiple wireless devices

that no link is starved, for any nodeand any linki € £,,,
we requirep; > P™ > 0 and L, P < P#X, We
define P™Y = min,en PP, P™ = max,en P,
Y =minge, vi, andy™* =maxie ;.

interact with each other over short distances, as well
as indoorwireless local area networksvhere several
wireless devices communicate with an access point and
each other (e.g., in a large conference room).
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1) Noden’s Local Optimization Problem:For each  Defines as thesmallesnumber in sefo0, ..., L, —1}
node n, let p,, = (p;, Vi€ L,) denote the persistentsuch that we have:

probabilities of its outgoing links. Also lep_,, = 1 o of (Viori \L o
(pj, Vj€L\Ly) denote the persistent probabilities of all ;Lnin_L"JrU <1 ( ", ) T Vios Un(P—p)-

links other thanthe outgoing links of node. Consider 8)
the following local and myopicoptimization problem: ~We can show that if condition (8) holds for then it also
holds foro+1. We define the s&f,, = {i,41,...,i1,},

ijlEa%n 2iec Wri(Pn P—n)), (4) with its sizeB,, = |B,,| = L,—o. Notice that if condition
where for each node € A" we have: (8) does not hold for any € {0,..., L, — 1}, then we
— min s setB, = {} and B,, = 0. Similarly, let ¢ denote the

Po={Pn: Yier PiSEpiz Py VicLu}, (9) smallestnumber in the sef{0,..., L, — 1} such that:

By solving Problem (4), node: can selectp,, such max / Tomin ¢ a a1
that thetotal network utility is maximizecassuminghat P"_ /B = Lnts < _Zl:l . _(%<+1/%l) - 9)
p_,, is fixed (i.e., none of the other nodes change theéidain, we can show that if condition (9) holds farthen

persistent probabilities). It is clear that nodes amt it also holds forc + 1. We defineC,, = {i¢t1,...,i,},
selfish in this case, and thepoperatewith each other. and its sizey, = |Cy| = L, —<. If condition (9) does not
This is necessary for achieving the optimal performan®!d for any< € {0,..., L, — 1}, then we set,, = {}
in a distributed fashion. with C,, = 0. We also defined,, = BB,, U C,, with size
We can convert Problem (4) to an equivalent instruéln = 4| =L, —r wherex = min{o, c}. In fact, A, =
tive representation. In particular, its objective funatia  {éx+1,---,iz, }. Depending on the value of,(p_,),
the Sing|e_ce“ case can be written as: eitherAn:Bn or An:Cn USing An, the closed-form
solution of Problem (6) can be obtained as folléws
>icr w(ri(Pn P—p)) = [leean iy (1= ie . 20) Theorem 1:For each node €\, the unique optimal

1—a ‘ )T (1= e solution of Problem (6) isp}(p_,) = f.(P_,) =
( ) [Zla" (ipi) (= 2iee. p) (filp_,),YieL,), where for each link € £,,, we have:
ZsEN\{n} Zje[js(/yjpj)l_a/(l - Zleﬁs pl)l_a] : P;?ina if ieArw

Since the multiplicative term (J[.cpn (1 — filp—n)= [a 1 1—;4”13,;#"1 ] VAo Tun JifieLo\A,
> e, pi))' ™ does not depend orp_,, Problem Ve witR/va(P) |
(4) can beequivalentlywritten as: (10)

mmax (S, 0upi) +on(p)u (1-Sieg, pi)), ) o0 = max minteal biand
P.EP, wa = Yjeena, V(1) (11)
where The key to prove Theorem 1 is to show that
vn(p_,) = f.(p_,) satisfies thenecessaryand sufficientKarush-
a—1 o\ (7)) Kuhn-Tucker (KKT) optimality conditions [9, pp. 244].
EseN\{n}O_zjeﬁspj) (Zjeﬁs(%pﬁ) > Since Problems (4) and (6) are equivalemt(p_,,) is
Since > ;.. u(vip;) and “(1_22'6571 p;) are strictly also the unique global optimal solution of Problem (4).
concave with respect tp,, andv,(p_,,) is independent It is now clear that if noden wants to compute
of p,,, Problem (6) is strictly concave in local variabld10), the only information it needs from other nodes is
p,,. In other words, there exists a unique optimal solutiom (P—,)- If each nodes announces a messagg where:
of Problem (6) and thus Problem (4). _ et -a
2) Closed-Form Solution of Problem (4Next, we s = (1_Zj€55 pj) (Zj“s(%pj) )’ vseN\{n},
show how to obtain alosed-formoptimal solution for Node n can computev,(p_,) = > cnn (n}Ms- THIS
Problem (6). Consider a nodec A" and the set of its Motivates us to propose our first algorithm. =
outgoing linksL,,. We define a permutation,, . . . , iy, , 3) A Distributed MAC Algorithm: Our distributed

of the link indices in set,, such that for any and/ that "anhdom MAC algorithm is given in Algorithm 1, where

satisfy1<j<I< L,, we havef\l/'Fg"\‘/F. Thus, each noden € N, reg:_;trdless of how many links it
. 1 h - ’J< 4 U qi has, announces only single messagen,,. All nodes
N case ofar =1, We Navey;, < ... = %, and IN Case q,,qe the persistent probabilities of their outgoingdink
of a € (0,1), we havey;, > ... > v;, . For example,

based on the received messages from other nodes. The
let £,, ={4,7,12}, 74 = 18 Mbps, 7 = 24 Mbps, and babiliti
12— 6 Mbps. If @ > 1, then:iy — 12, ip—4, andis =T. probabilities and messages agynchronouslypdate

If «€(0,1), then we have,; =7, i, =4, andiz=12. LAll proofs are available in the longer version of this papefd].
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Let 7}, , andT,, ,, be two unbounded sets of time slots Compared with the distributed MAC algorithms pro-
at which noden updatesp,, and m,,, respectively. We posed in the literature, Algorithm 1 has several distinct

assume that there is a finite constahtsuch that: features: (i) less explicit message passing is needed (e.g.
in the subgradient algorithm proposed in [3], each node
Vtr €Thyp, 3t €Thyp, ta—1t1 < H, (12) needs to announcevo messages), (i) asynchronous

Vits € Tom , Its € Tym , (ta — t3) + D < H, (13) updates with arbitrarily finite delay, which minimizes the
coordination overhead and allows maximum heterogene-
where D denotes an upper bound aommunication ity among nodes, and (iii) does not use any stepsizes,
delay. From (12), each node updates the persistent prathich avoids the slow convergence problem due to small
abilities of its outgoing links at least once evdiytime stepsizes in the commonly used subgradient methods.
slots. From (13), the information used by each node is
outdated by at mosk time slots. We notice thall can B. General Topology

be arbitrarily large as long as it is bounded. Now consider the general case, where each node is
_ _ _ within the interference range of ambitrary subsebf the
Algorithm 1 - For each noden € A in a single-cell.  other nodes. For each node A and any of its outgoing

1: Allocate memory for messages = (m,---,my). links i € £,,, the set of nodes that interfere with link
2: Randomly choose transmission probabilitigs > is an arbitrary subset of all nodes, i.8; C V\{n}. In
Py for all link i € £,, so that) ;.. p; < P, this case, Problem (4) can leguivalentlywritten as:

" rRe?)r;gfm'y choosen, > 0 for all s € V. Jnax (Lieg, u((Pon)pi) +0,(P_n)u(1=Lies pi)).
5. Transmit on linki € £,, with probability p;. . o . (14,)
6 if t¢cT,,then yvhere_ for outgoing each link € £,,, auxiliary term~;
7 SetAr’L - getA(n, vn(p—n)7 Lna 717 e 7’YLn). IS deflned aSy;(p_n) = /72 HSEM (1 o Zleﬁs pl) and
8: Setp; = P™in for all i € A,. v (p_,) =

max __ min
P Ap PX

9 Setp; = |: 1 1-A, Pmin :| 0\‘/w?—’1w;l ZSEN-\{n}Z]EEHnEN (/yjijSEN' \{n}(l_Zleﬁ pl))l_a
Y wnt /v (P | pran Notice that~/(p_,,) does not represent the peak data
10: for all i € £,\A,. ! rate of linki. The closed-form solution of Problem (14)
11 if t € T, 4m then can be obtained similarly as that of Problem (6) in the
. B a1 1\t single-cell case. For each node= V, we can define a

12: Setm,=(1-3,c., i) <Zi€ﬁn(ﬁ) > permutation of link indices in set,,, ii,...,is,, such
13 Broadcastn,. that for any; and! that satisfyl <; </<L,, we have
14: |f_ a message is receivéden Updatem. oy (p_)oL < W If @ > 1 we have
15: until noden decides to leave the network. ) Y ‘

%, <<, Ifae(0,1), we have% >...>7; . Let

a’denote thesmallestvalue in {0, . 1} so that:

1 o
1: function get A(n, v, (p_,,), Ln,Y1s---,7L,,) Pmin —Lp+o'< Py i/(%{gm(p—n)/%z P!
2. SetB, = {} andC, = {}. " (15)
n la—1

3. if a>1then Setiy,...,ir,, so thaty; <...<~v;, . T \/72 )Y n(Pn)-
4: else Setiy,...,ir,, sothaty;, >...>~;, . Also let ¢’ denote the smallest value in set
5. foro=0,...,L,—1do {0,...,L,—1} such that we have:
6 if 1 Pmin L —|—o’ < 0_ & - . a—1+ pmax , =)
; é o )%; (iws /i) P~ Ints < T \/ (v, o) (o))
8 SetB, = {20+1, ...,ir, }. Break. (16)
9  end for We defineB), = {is'+1,...,ir, }, with its size B}, =
100 for¢=0,...,L,—1do |B,| = L, — o’. If (15) does not hold for any’ €
1 B Lre < 0§ (i /)" then g.”':l' ’lL“ - ld}’ f.theecr,‘ we sets, = {} With.tf%t =0
12: SetC, = {ic41,...,ir, }. Break. mitarly, We detine, = licg, - ir, }, With its size
13 end for " = |C,,| = L, — <. If condition (16) does not hold

for any<’ € {0,..., L, — 1}, then we seC], = {} with
C!, = 0. GivenB,, andC],, we defineA], = B/,UC], with
its size A}, = |A],| = L, — v’ wherex’ = min{o’,¢'}.

14: SetA, =B, UC_C,.
15: return A,,.
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Theorem 2:For each noden € N, the unique  Our second proposed algorithm works for any general

glonal optimal solution of Problem (14) is}(p_,) = topology and is shown in Algorithm 2. In this algorithm,
f(p_,) = (fli(p_,), Vi€ L,), where for each link each noden € N informs m,, s to all nodess whose

i € L;, function f;(p_,,) is defined as: transmissions interfere with transmissions of at least one
Flp_) = of the outgoing links of node. It also informsg,, to all

. o ) nodess whose outgoing transmissions is interfered by
By, ~ifie Ay, transmissions from node. All nodes then choose the
pmax_ 4! pmin . ey . . .
omin o persistent probabilities of their outgoing links based on
1 1—A’ Pr /o — )l ) - X .
RAeoT v +(</v;’(pn)} ,Otherwise - the received messages from other nodes. In Algorithm 2,
(17) T, andT;, ., are two unbounded sets of time slots at

which noden updatesp,, and announceg,, andm,, s

min
Pn

. . a-1 for all s # n, respectively. We will show in Section IV-B
with wr, (p_) :_zjeﬁn\_fl; \/(1/7_1/' (p—n)> ’ _that foranytopology, the fixed point of Algorithm 2 also
Eq. (17) provides optimal solution for Problem (4) ircorresponds to the global optimal solution of then-

the general topology case, which includes the single-ceinvexProblem (2) under proper technical conditions.
case as a special case. We define ngdmessagess:
V. CONVERGENCE, OPTIMALITY, AND
as =1—=3 icr, Djs (18)

ROBUSTNESS
A. Algorithm 1: Single-Cell Topology
Msn =2 ser,men, 1/ (0P [leenfny @)~ (19)  Here we first study Algorithm 1 which was proposed
_ to solve Problem (4) in a single-cell topology. We first
Then v,(p_,) = Dicann} Msn aNd vi(p_,) : :
Vi [Tsen; s for all i € £,. Messageg, denotes the _deflng ff(p) = (r{"(pc}’v" € AI/I)'hWheri,f"gp) IS an
probability that node remains silent at a time slot. Note" (10) for each noden. Recall that a fixed point o

that for each node: # s, if there does not exist anymappingf(p) is also a fixed point of AIgoriFhm 1'.
je L, such that € AV}, thenm, ,, =0 (i.e., noden does Theorem 3:Assume thatf(p) has a unique fixed

not cause interference to any outgoing link of nagle p0|r_1t p". Starting from any initial pointp € P, Al-
gorithm 1 globally converges tp*.

The key to prove Theorem 3 is to show that mapping
f(p) is amonotone mappinghus,asynchronous con-
vergence theorerfllO, pp. 431] is applicable. Next, we
show that not only Algorithm 1 has a unique fixed point
under mild technical conditions, the fixed point is the
global optimal solution of Problem (2).

Let F denote the set of fixed points of Algorithm 1.
For eachp* € F and any linki € L,, pf = fi(p~,).

and

Algorithm 2 - For each noden € NV in a general (i.e.,
arbitrary) topology.
1. Allocate memory for messagesm =
(mim,...,mny) andgq :.(ql, .oy QN).
2: Randomly choose,; > P™" for all links i € £,, so
that) ;. p; < P
3: Randomly choosen; ,, >0 andg, € (0,1) for se V.

4: repeat . :

. . . : e We also letS denote the set o$tationary points[11,
> Transmn on linki € Ly, with probability p;. pp. 194] of Problem (2). Note that all local (and global)
6: if teT,, then , .

; , , , optimal solutions of Problem (2) belong to s&t
7: Set A}, = getA(n,v),(p_,,), Ln, Vs, )- )
8: Setp; = P™n for all i € A’ ' Theorem 4:7 = 5.
pi n M pmax_yr pmin From Theorems 3 and 4, we have:
9 Setp; — 1L 1—A/ pmin &/~ L, Corollary 1: If either S or F is a_smgletonset (i.e. it
VYT WA/ (P | paain has only one element), then Algorithm 1 asynchronously
10: for all i € £,,\A},. " and globally converges to the unique global optimal
11 if teT,,, then solution of non-convex optimization problem in (2).
12: Setg, =1->.c, pi In [3], it has been shown that the set of stationary
13: Setmsn=>cr. men, 1 — Ppoints S is a singleton set for albv > 1. They used
. ](ijnsef\/j\{n}%) logarithmic mapping and transformed Problem (2) to

14: for all s € N'\{n}. an equivalent convex problem and showed that it has
15 Inform m., s 0 all s G_Ui€§nM' _ a unique stationary point. However, this transformation
16: Inform g,, to all s#n if 3j€ L; with n€N. yoes not work ifa e (0,1). That is the reason the

17:  if a message is receiveéddlen Updatem andgq.

, _ algorithm in [3] does not support the-fair utilities with
18: until noden decides to leave the network.

a€(0,1). Here we are able to show the following:
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Theorem 5:Consider the case where € (0,1). Set where ¢ is as in (21), A 1/P™in 4 1/(1 —

F is a singleton set if following holds: prmax) zmin (fy/min/fy/max)l_“(Lmin —1)%, Zmax —
lma o Ny e | fy/ e o I (L 1) /(L= L) P,
<T\II<I>(V >V X)><,-Ymin Fj <Q—m>< l, ,ylmln — ,ymln(l _ PmaX)N—l’ ,V/max _ ,ymax.
. (20) The key to prove Theorem 7 is to show thfd{p) is a
where L™ = min,en Ly, L™ = maxpen Ly, weighted maximum norm contraction mappimigh unit
I = (pPm(1—pmn))/(Pmn(1—P™m)), U = weights, thus, not only the fixed point set is a singleton

Lmex/(1—pmaxy41/pmin. Q=% _\-1/(L/L,—1), set, but also thasynchronous convergence theorr@,
pmin (N_1)(ymaxg/pmin_1)/7min)a‘1, ymax —  pp. 431] is applicable. Note that condition (22) is a

(N_l)(fymin(l/pmin_1)/7max)a—1, and we have: sufficient(but notnecessarycondition for asynchronous
Jmaxy1/a convergence. Simulation results verify that Algorithm 2
W, if ymex <y, converges under a wide range of system parameters.
) Vmin pmaxy (Vmin)l/a i . 21
( ' ) (14 (Vmin)t/oy” if ym=>1, (21) V. SIMULATION RESULTS

0.25, otherwise In this section, we assess the performance of our algo-

The key to prove Theorem 5 is to show that if (20)ithms. In particular, we show their advantages compared
holds, thenf is not only a monotone mapping, but alsqvith the subgradient-based algorithm43]
anl,-normcontraction mappingA contraction mapping
always has unique fixed point [10, pp. 183]. A. Signalling Overhead

Theorems 3 to 5 together show that Algorithm 1 High signalling overhead is a critical problem for
asynchronously converges to the unique global optimglyorithms which require cooperation among nodes in
solution of the Problem (2) when eithere (0,1) (under 4 wireless ad-hoc network. In this section, we compare
condition (20)) ora > 1 (with any system parameters).the signalling overhead in our proposed algorithms with
B. Algorithm 2: General Topology the subgradient-based glg_orithm [3]._ In the simulation

_ : _ model, the peak transmission rates (i-g.for all i€ L)

To analyze Algorithm 2, we first defined’(p) = e selectectandomly between 6 Mbps to 54 Mbps.
(£7(p),Vi € N), wheref,, (p) is as in (17). We denote i, parametera is set to 2 which models harmonic
the set of fixed points of mapping'(p) by F’, which 04 fair allocation. We assume that each message value
is the set of fixed points of Algorithm 2. Lef’ denote o ires two bytes. Thus, the signalling overhead for
the set of statlo/nary Pomts of Problem (2) in this casgach algorithm is defined as the total required message

Theorem 6:7" = &". exchange (in KBytes) that the algorithm needs before it

If o > 1, then fto_m [3, Lemma 1] we know thatiq,ches the optimal solution of Problem (2). Results for
stationary point sef" is a singleton. Thus, it > 1 and  ginq1e_cell and general topologies are shown in Fig. 2(a)
Algorithm 2 converges, then it converges to the uniqug, 4 Fig. 2(b), respectively. We see that increasig
global optimal solution of Problem (2). On the othef, . eaqes the signalling overhead. However, Algorithm
hand, ifa € (0,1), we can use the same idea of Theoreqy 5,4 - manage to reach the optimal solutions via
5 and obtain sufficient conditions to assure that the, . jess signalling. Compared to the subgradient-based

stationary point se$’ is a singleton set. However, un"kealgorithm and whev = 30, Algorithm 1 and Algorithm

/ .

f(p), f'(p) may not be always a monotone mapping., reqyce the signalling overhead by 1120% (from 55.2
To prove the asynchronous convergence of AlgonthmByte to 4.5 KByte) and 810% (from 111.3 KByte to

2, we first notice that since not all links interfere Withlo_8 KByte), respectively. Notice that one reason for the

each_ oth(?r, for each nodec N and any linki € L, . superiority of our algorithms is their faster convergence.

function fi may only depend on a small subset of entrigs "5y ition, Algorithm 1 reduces the message size by

in vgcto‘rp_n. We define.s.etﬂci as thedepende_ncy Sethalf, which also helps to reduce the signalling overhead.
for link 7. That is, for anyi, j € £, we havej € &; if and

only if p; appears in the formulation ¢f. Let X; = | ;| B. Robustness

denote the size of s&X;. We defineX™&* = icr Xi. . L .
et maXies A Since the communication channels are not ideal, trans-

Theorem 7:For any general topology, Algorithm 2 mitted messages by MAC protocols may be delayed or
globally and asynchronously converges to the unique

global optimal solution of Problem (2) if we have:

1— )
| Oé| \/N Y max A (I)(me’ Zmax) < 1’ (22)

2Further simulation results, including results on conveogeand
optimality as well as performance comparison with IEEE &Q2.
distributed coordination function, are available in [8].
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Fig. 2. Comparison between Algorithms 1 and 2 and the subgrad Fig. 3.  Comparison between Algorithm 2 and the subgradient-
based algorithm [3] in term of signalling overhead when tbeber based algorithm [3] in term of robustness to communicatietayl

of nodes varies from 5 to 30. Each point shows the averagdtses@nd message loss. (a) Optimality in percentage when maximum
from simulating 10 topologies. (a) Using Algorithm 1 fsingle-cell communication delay varies from 10 to 50 time slots, (b) @ptity
topologies, (b) Using Algorithm 2 fogeneraltopologies. in percentage when packet error rate varies from 0.1 to 0.5.

lost. In this section, we show that our algorithms argil (NSERC) of Canada, the Competitive Earmarked
robust with respect to both message delay and loss. Wesearch Grants (Project Number 412308) under the
only consider general topologies with = 30 nodes. University Grant Committee of the Hong Kong Spe-
Results for single-cell topologies are similar. cial Administrative Region, China, the Direct Grant

First, we assume that the communication delay varigsroject Number C001-2050398) of The Chinese Univer-
from 10 to 50 time slots. Results are shown in Fig. 3(agity of Hong Kong, as well as NSF CNS-0720570, ONR
We see that by increasing delay up to 50 time slot§p0014-07-1-0864, and AFOSR FA9550-06-1-0297.
the subgradient-based algorithm leads to 8.4% optimality
loss while Algorithm 2 can always find the exact optimal REFERENCES
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