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ABSTRACT

In this paper, we propose two distributed contention-
based medium access control (MAC) algorithms to solve
a network utility maximization (NUM) problem in wire-
less ad hoc networks. Most of the previous NUM-based
random access algorithms have one or more of the fol-
lowing performance bottlenecks: (1) extensive signaling
among nodes, (2) synchronous updates of contention
probabilities, (3) small update stepsizes to ensure conver-
gence but with typically slow speed, and (4) supporting
a limited range of utility functions under which the
NUM is shown to be convex. Our algorithms overcome
these bottlenecks in all four aspects. First, only limited
message passing among nodes is required. Second, fully
asynchronous updates of contention probabilities are
allowed. Furthermore, our algorithms are robust to ar-
bitrary large message passing delays and message loss.
Third, we do not utilize any stepsize during updates, thus
our algorithms can achieve faster convergence. Finally,
our algorithms have provable convergence, optimality,
and robustness properties under a wider range of utility
functions, even if the NUM problem is non-convex.

I. INTRODUCTION

There are two major types of wireless medium ac-
cess control (MAC) protocols: scheduling-based and
contention-based. In general, the contention-based proto-
cols are more scalable and inherently more flexible, but
they typically have poor performance due to insufficient
feedback. For example, in IEEE 802.11 distributed co-
ordination function [1], a node updates its transmission
probability based on thebinary feedback of its data trans-
mission:successor failure. This leads to low throughput,
unfair resource allocation, and unstable equilibrium [2].

In this paper, we design distributed contention-based
random MAC algorithms through the framework of
network utility maximization (NUM), where nodesran-
domlyanddistributivelyaccess the shared channel with
certain transmission probabilities. Several related algo-
rithms that are also proposed based on the same NUM

framework include [3], [4]. They have various perfor-
mance bottlenecks due to one or more of the following:
(1) extensive message passing among nodes, (2) syn-
chronous updates of contention probabilities that require
homogeneous computational capabilities among nodes,
(3) small update stepsizes to guarantee convergence with
typically slow speed, and (4) supporting only a limited
range of utility functions due to non-convexity.

Our proposed algorithms overcome the performance
bottlenecks of previous proposed NUM-based random
access algorithms in all four aspects. First, they only
require limited message passing (i.e., signalling) among
nodes. Based on the messages from other nodes, each
node updates its persistent probabilities by solving a
local and myopic optimization problem in an attempt
to maximize the total network utility. Compared to
the NUM-based random access algorithm in [3], our
algorithms can reduce the total signalling overhead by
more than a factor of 10. Second, our algorithms allow
fully asynchronous updates of messages and contention
probabilities. They can tolerate arbitrary large and finite
asynchronism and message delays and are also robust to
message losses. For example, even when the packet loss
rate of the underlying communication channel is down
to 0.5 (i.e., on average, half of the messages are lost),
our algorithms can still achieve the optimal performance
within a short time. Third, in our algorithms, nodes up-
date their contention probabilities throughbest response
updates, thus no small stepsizes are needed. This enables
our algorithms to achieve a much faster convergence
compared with the previously proposed subgradient-
based update methods (e.g., in [3], [4]). Finally, our
algorithms have provable convergence property under a
wider range of utility functions, even if the NUM cannot
be transformed into a convex optimization problem.

The rest of this paper is organized as follows. The
system model is described in Section II. Our proposed
algorithms are presented in Section III. The convergence,
optimality, and robustness of our algorithms are analyti-
cally proved in Section IV. Simulation results are shown
in Section V. Conclusions are discussed in Section VI.
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Fig. 1. A sample wireless ad-hoc network. In nodea, those packets
which are assigned to be sent to nodeb (over link 1) and nodec
(over link 2) are enqueued in queue 1 and queue 2, respectively. R
and T boxes represent receiver and transmitter units, respectively.

II. SYSTEM MODEL

Consider a wireless ad-hoc network. LetN =
{1, . . . , N} denote the set of nodes andL={1, . . . , L}
denote the set of unidirectional wireless links. For each
node n ∈ N , we denote the set of itsoutgoing links
by Ln ⊂ L, with size Ln = |Ln|. Each noden hasLn

separate queues, each queue holds the packets for one of
its outgoing links of noden (see Fig. 1). Time is divided
into equal-length slots. At each time slot, noden may
choose to transmit on one of its outgoing linksi ∈ Ln

with a persistent probabilitypi. The probabilities need
to satisfy

∑

i∈Ln
pi ≤ Pmax

n < 1, wherePmax
n denotes

the maximumtotal persistent probability. Thus, noden
may remain silent in some slots. In Fig. 1, nodea has
La = 2 outgoing links.In this node, those packets which
are destined to nodeb are enqueued in queue 1. Similarly,
the packets which are destined to nodec are enqueued
in queue 2. At each time slot, a packet from queue 1 is
sent over link 1 with probabilityp1, and a packet from
queue 2 is sent over link 2 with probabilityp2.

For each noden ∈ N , if the receiver node of link
i ∈ Ln is within the interference rangeof another
node s ∈ N\{n}, then any transmission by nodes
(i.e., transmission on any linkj ∈ Ls) interferes with
transmissions of linki. Those nodes which interfere with
transmissions of linki are denoted by setNi. For each
noden ∈ N , let ri denote the average data rate for link
i ∈ Ln, which is a function of the persistent probability
vectorp = (pi,∀i ∈ L) of all links [5]:

ri(p) = γipi

∏

s∈Ni
(1 − ∑

j∈Ls
pj). (1)

Hereγi denotes the peak data rate for linki (i.e., the rate
achieved by linki if no node inNi is active). To ensure
that no link is starved, for any noden and any linki∈Ln,
we requirepi ≥ Pmin

n > 0 and LnPmin
n ≤ Pmax

n . We
define Pmin = minn∈N Pmin

n , Pmax = maxn∈N Pmax
n ,

γmin =mini∈L γi, andγmax =maxi∈L γi.

Each link i ∈ L has autility which is an increasing
and concave function ofri and indicates linki’s degree
of satisfaction on its average rate. The utility of linki is
denoted byu(ri(p)), which is also a function ofp. We
are want to find the value ofp that solves the following
network utility maximization(NUM) problem [6]:

max
p∈P

∑

i∈L u(ri(p)), (2)

where the feasible persistent probability region is

P=
{

p : pi≥Pmin
n ,

∑

j∈Ln
pj ≤Pmax

n , ∀n∈N , i∈Ln

}

and the utility function isα-fair [7]:

u(ri)=

{

(1−α)−1r1−α
i , if α∈(0, 1)∪(1,∞),

log ri, if α=1,
∀ i ∈ L.

(3)
Using (3), a wide range of efficient and fair alloca-
tions can be modeled. In fact, Problem (2) reduces to
throughput maximization withα→0, to proportional fair
allocation withα= 1, to harmonic mean fair allocation
with α=2, and to max-min fairness withα→∞.

Although the objective function in Problem (2) is
concave in link ratesr=(ri,∀i∈L), it is not concave in
persistent probabilitiesp due to the product form of the
data rate in (1). Thus, finding the global optimal solution
of this non-convexandconstrainedoptimization problem
is quite difficult even in a centralized fashion.

III. ALGORITHMS

In this section, we propose two distributed algorithms
to solve Problem (2), one forsingle-cell topologies in
Section III-A and another one forgeneraltopologies in
Section III-B. In both algorithms, each noden performs
amyopicand local optimization, i.e., optimizing thetotal
network utility by choosing the persistent probabilities of
its own outgoing links, assuming others do not change
theirs. Despite the complexity of the problem, we ob-
tained the solution of this local optimization problem
in closed-form, facilitated by limited signalling among
nodes and a simple local sorting procedure. Various
properties of the algorithms, including convergence, op-
timality, and robustness, will be proved in Section IV.

A. Single-Cell Topology

We begin by considering asingle-celltopology, where
all links interfere with each other. That is, for eachn∈N
and anyi∈Ln, the interference node setNi =N\{n}.
This models some practical networks includingwireless
personal area networkswhere multiple wireless devices
interact with each other over short distances, as well
as indoorwireless local area networkswhere several
wireless devices communicate with an access point and
each other (e.g., in a large conference room).

2 of 7



1) Noden’s Local Optimization Problem:For each
node n, let pn = (pi, ∀ i∈Ln) denote the persistent
probabilities of its outgoing links. Also letp

−n =
(pj , ∀j∈L\Ln) denote the persistent probabilities of all
links other thanthe outgoing links of noden. Consider
the following local andmyopicoptimization problem:

max
pn∈Pn

∑

i∈L u(ri(pn,p−n)), (4)

where for each noden ∈ N we have:

Pn =
{

pn :
∑

i∈Ln
pi≤Pmax

n , pi≥Pmin
n ,∀ i∈Ln

}

, (5)

By solving Problem (4), noden can selectpn such
that thetotal network utility is maximizedassumingthat
p−n is fixed (i.e., none of the other nodes change their
persistent probabilities). It is clear that nodes arenot
selfish in this case, and theycooperatewith each other.
This is necessary for achieving the optimal performance
in a distributed fashion.

We can convert Problem (4) to an equivalent instruc-
tive representation. In particular, its objective function in
the single-cell case can be written as:
∑

i∈L u(ri(pn,p−n))=(
∏

c∈N\{n}(1−
∑

l∈Lc
pl))

1−α

(1−α)
[

∑

i∈Ln
(γipi)

1−α + (1 − ∑

i∈Ln
pi)

1−α

∑

s∈N\{n}
∑

j∈Ls
(γjpj)

1−α/(1 − ∑

l∈Ls
pl)

1−α
]

.

Since the multiplicative term (
∏

c∈N\{n}(1 −
∑

l∈Lc
pl))

1−α does not depend onp−n, Problem
(4) can beequivalentlywritten as:

max
pn∈Pn

(
∑

i∈Ln
u(γipi)+vn(p−n)u

(

1−∑

i∈Ln
pi

))

, (6)

where
vn(p−n) =

∑

s∈N\{n}
(

1−∑

j∈Ls
pj

)α−1(
∑

j∈Ls
(γjpj)

1−α
)

.
(7)

Since
∑

i∈Ln
u(γipi) and u

(

1−∑

i∈Ln
pi

)

are strictly
concave with respect topn andvn(p−n) is independent
of pn, Problem (6) is strictly concave in local variable
pn. In other words, there exists a unique optimal solution
of Problem (6) and thus Problem (4).

2) Closed-Form Solution of Problem (4):Next, we
show how to obtain aclosed-formoptimal solution for
Problem (6). Consider a noden ∈ N and the set of its
outgoing linksLn. We define a permutation,i1, . . . , iLn

,
of the link indices in setLn such that for anyj andl that

satisfy1≤j≤ l≤ Ln, we have α

√

γα−1
ij

≤ α

√

γα−1
il

. Thus,
in case ofα≥1, we haveγi1 ≤ . . . ≤ γiLn

, and in case
of α ∈ (0, 1), we haveγi1 ≥ . . . ≥ γiLn

. For example,
let Ln = {4, 7, 12}, γ4 = 18 Mbps, γ7 = 24 Mbps, and
γ12 =6 Mbps. If α≥1, then:i1 =12, i2 =4, andi3 =7.
If α∈(0, 1), then we havei1 =7, i2 =4, andi3 =12.

Defineσ as thesmallestnumber in set{0, . . . , Ln−1}
such that we have:

1

Pmin
n

−Ln+σ ≤∑σ
l=1

α

√

(

γiσ+1

γil

)α−1
+ α

√

γα−1
iσ+1

vn(p−n).

(8)
We can show that if condition (8) holds forσ, then it also
holds forσ+1. We define the setBn = {iσ+1, . . . , iLn

} ,
with its sizeBn = |Bn| = Ln−σ. Notice that if condition
(8) does not hold for anyσ ∈ {0, . . . , Ln − 1}, then we
set Bn = {} and Bn = 0. Similarly, let ς denote the
smallestnumber in the set{0, . . . , Ln − 1} such that:

Pmax
n /Pmin

n − Ln + ς ≤ ∑ς
l=1

α

√

(

γiς+1
/γil

)α−1
. (9)

Again, we can show that if condition (9) holds forς, then
it also holds forς + 1. We defineCn = {iς+1, . . . , iLn

} ,
and its sizeCn = |Cn| = Ln−ς. If condition (9) does not
hold for anyς ∈ {0, . . . , Ln − 1}, then we setCn = {}
with Cn = 0. We also defineAn = Bn ∪ Cn with size
An = |An|=Ln−κ whereκ = min{σ, ς}. In fact,An =
{iκ+1, . . . , iLn

}. Depending on the value ofvn(p−n),
eitherAn =Bn or An =Cn. UsingAn, the closed-form
solution of Problem (6) can be obtained as follows1.

Theorem 1:For each noden∈N , the unique optimal
solution of Problem (6) isp∗

n(p−n) = fn(p−n) =
(fi(p−n),∀i∈Ln), where for each linki∈Ln, we have:

fi(p−n)=











Pmin
n , if i∈An,

[

1
α
√

γi
α−1

1−AnPmin
n

wn+α
√

vn(p
−n)

]

Pmax
n −AnPmin

n
α
√

γi
α−1wn

Pmin
n

, if i∈Ln\An,

(10)
where[x]ab = max [min [x, a] , b] and

wn =
∑

j∈Ln\An

α

√

(1/γj)
α−1. (11)

The key to prove Theorem 1 is to show that
fn(p−n) satisfies thenecessaryand sufficientKarush-
Kuhn-Tucker (KKT) optimality conditions [9, pp. 244].
Since Problems (4) and (6) are equivalent,p∗

n(p−n) is
also the unique global optimal solution of Problem (4).

It is now clear that if noden wants to compute
(10), the only information it needs from other nodes is
vn(p−n). If each nodes announces a messagems where:

ms =
(

1−∑

j∈Ls
pj

)α−1(
∑

j∈Ls
(γjpj)

1−α
)

, ∀s∈N\{n},
node n can computevn(p−n) =

∑

s∈N\{n}ms. This
motivates us to propose our first algorithm.

3) A Distributed MAC Algorithm: Our distributed
random MAC algorithm is given in Algorithm 1, where
each noden ∈ N , regardless of how many links it
has, announces only asingle messagemn. All nodes
choose the persistent probabilities of their outgoing links
based on the received messages from other nodes. The
probabilities and messages areasynchronouslyupdated.

1All proofs are available in the longer version of this paper in [8].
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Let Tn,p andTn,m be two unbounded sets of time slots
at which noden updatespn and mn, respectively. We
assume that there is a finite constantH such that:

∀ t1 ∈ Tn,p , ∃ t2 ∈ Tn,p , t2 − t1 ≤ H, (12)

∀ t3 ∈ Tn,m , ∃ t4 ∈ Tn,m , (t4 − t3) + D ≤ H, (13)

where D denotes an upper bound oncommunication
delay. From (12), each node updates the persistent prob-
abilities of its outgoing links at least once everyH time
slots. From (13), the information used by each node is
outdated by at mostH time slots. We notice thatH can
be arbitrarily large as long as it is bounded.

Algorithm 1 - For each noden ∈ N in a single-cell.
1: Allocate memory for messagesm=(m1, · · ·,mN ).
2: Randomly choose transmission probabilitiespi ≥

Pmin
n for all link i ∈ Ln so that

∑

i∈Ln
pi ≤ Pmax

n .
3: Randomly choosems > 0 for all s ∈ N .
4: repeat
5: Transmit on linki ∈ Ln with probability pi.
6: if t ∈ Tn,p then
7: SetAn = getA(n, vn(p−n), Ln, γ1, . . . , γLn

).
8: Setpi = Pmin

n for all i ∈ An.

9: Setpi =

[

1
α
√

γα−1
i

1−AnPmin
n

wn+ α
√

vn(p
−n)

]

Pmax
−AnPmin

n

α
√

γ
α−1
i

w′
n

Pmin
n

10: for all i ∈ Ln\An.
11: if t ∈ Tn,qm then

12: Setmn =
(

1−∑

i∈Ln
pi

)α−1
(

∑

i∈Ln

(

1
γipi

)α−1
)

.

13: Broadcastmn.
14: if a message is receivedthen Updatem.
15: until noden decides to leave the network.

1: function getA(n, vn(p−n), Ln, γ1, . . . , γLn
)

2: SetBn = {} andCn = {}.
3: if α≥1 then Seti1,. . ., iLm

so thatγi1 ≤ . . .≤γiLn
.

4: else Seti1,. . ., iLm
so thatγi1 ≥ . . .≥γiLn

.
5: for σ = 0, . . . , Ln − 1 do

6: if 1/Pmin
n −Ln +σ ≤ ∑σ

l=1
α

√

(

γik+1
/γil

)α−1
+

7: α
√

γik+1
α−1vn(p−n) then

8: SetBn = {iσ+1, . . . , iLn
}. Break.

9: end for
10: for ς = 0, . . . , Ln − 1 do

11: if Pmax
n

Pmin
n

−Ln + ς ≤ ∑ς
l=1

α

√

(

γik+1
/γil

)α−1 then
12: SetCn = {iς+1, . . . , iLn

}. Break.
13: end for
14: SetAn = Bn ∪ Cn.
15: return An.

Compared with the distributed MAC algorithms pro-
posed in the literature, Algorithm 1 has several distinct
features: (i) less explicit message passing is needed (e.g.,
in the subgradient algorithm proposed in [3], each node
needs to announcetwo messages), (ii) asynchronous
updates with arbitrarily finite delay, which minimizes the
coordination overhead and allows maximum heterogene-
ity among nodes, and (iii) does not use any stepsizes,
which avoids the slow convergence problem due to small
stepsizes in the commonly used subgradient methods.

B. General Topology

Now consider the general case, where each node is
within the interference range of anarbitrary subsetof the
other nodes. For each noden∈N and any of its outgoing
links i ∈ Ln, the set of nodes that interfere with linki
is an arbitrary subset of all nodes, i.e.,Ni ⊆ N\{n}. In
this case, Problem (4) can beequivalentlywritten as:

max
pn∈Pn

(
∑

i∈Ln
u
(

γ′
i(p−n)pi

)

+v′n(p−n)u
(

1−∑

i∈Ln
pi

))

,

(14)
where for outgoing each linki ∈ Ln, auxiliary termγ′

i

is defined asγ′
i(p−n) = γi

∏

s∈Ni

(

1 − ∑

l∈Ls
pl

)

and

v′n(p−n) =
∑

s∈N\{n}
∑

j∈Ln:n∈Nj
(γj pj

∏

s∈Nj\{n}(1−
∑

l∈Ls
pl))

1−α.

Notice thatγ′
i(p−n) does not represent the peak data

rate of link i. The closed-form solution of Problem (14)
can be obtained similarly as that of Problem (6) in the
single-cell case. For each noden ∈ N , we can define a
permutation of link indices in setLn, i1, . . . , iLn

, such
that for anyj and l that satisfy1≤ j ≤ l≤Ln, we have
α

√

γ′
ij
(p−n)α−1 ≤ α

√

γ′
il
(p−n)α−1. If α ≥ 1, we have

γ′
i1
≤. . .≤γ′

iLn
. If α∈ (0, 1), we haveγ′

i1
≥ . . . ≥γ′

iLn
. Let

σ′ denote thesmallestvalue in{0, . . . , Ln−1} so that:
1

Pmin
n

−Ln+σ′≤∑σ′

l=1
α

√

(γ′
iσ′+1

(p−n)/γ
′
il
(p−n))

α−1

+ α

√

γ′α−1
iσ′+1(p−n)

v′n(p−n).

(15)

Also let ς ′ denote the smallest value in set
{0, . . . , Ln−1} such that we have:

Pmax
n

Pmin
n

−Ln+ς ′ ≤ ∑ς′

l=1
α

√

(

γ′
iς′+1

(p−n)/γ′
il
(p−n)

)α−1
.

(16)
We defineB′

n = {iσ′+1, . . . , iLn
} , with its sizeB′

n =
|B′

n| = Ln − σ′. If (15) does not hold for anyσ′ ∈
{0, . . . , Ln − 1}, then we setB′

n = {} with B′
n = 0.

Similarly, we defineC′
n = {iς′+1, . . . , iLn

} , with its size
C ′

n = |C′
n| = Ln − ς ′. If condition (16) does not hold

for any ς ′ ∈ {0, . . . , Ln − 1}, then we setC′
n = {} with

C ′
n = 0. GivenB′

n andC′
n, we defineA′

n = B′
n∪C′

n with
its sizeA′

n = |A′
n| = Ln − κ′ whereκ′ = min{σ′, ς ′}.
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Theorem 2:For each noden ∈ N , the unique
glonal optimal solution of Problem (14) isp∗

n(p−n) =
f ′

n(p−n) = (f ′
i(p−n), ∀ i ∈ Ln), where for each link

i ∈ Li, functionfi(p−n) is defined as:

f ′
i(p−n) =










Pmin
n , if i ∈ A′

n,
[

1
α
√

γ′

i(p−n)
α−1

1−A′

nPmin
n

w′

n(p−n)+
α
√

v′

n(p−n)

]

Pmax
n −A′

nPmin
n

α
√

γ′

i
(p

−n)α−1w′
n(p

−n)

Pmin
n

,otherwise,

(17)

with w′
n(p−n) =

∑

j∈Ln\A′

n

α

√

(

1/γ′
j(p−n)

)α−1
.

Eq. (17) provides optimal solution for Problem (4) in
the general topology case, which includes the single-cell
case as a special case. We define nodes’ messagesas:

qs = 1 − ∑

j∈Lj
pj, (18)

and

ms,n =
∑

j∈Ls:n∈Nj
1/(γjpj

∏

c∈Nj\{n} qc)
α−1. (19)

Then v′n(p−n) =
∑

s∈N\{n} ms,n and γ′
i(p−n) =

γi

∏

s∈Ni
qs for all i ∈ Ln. Messageqs denotes the

probability that nodes remains silent at a time slot. Note
that for each noden 6= s, if there does not exist any
j∈Ls such thatn∈Nj, thenms,n =0 (i.e., noden does
not cause interference to any outgoing link of nodes).

Algorithm 2 - For each noden ∈ N in a general (i.e.,
arbitrary) topology.

1: Allocate memory for messagesm =
(m1,n, . . . ,mN,n) andq = (q1, . . . , qN ).

2: Randomly choosepi ≥ Pmin
n for all links i ∈ Ln so

that
∑

i∈Ln
pi ≤ Pmax

n .
3: Randomly choosems,n >0 andqs∈(0, 1) for s∈N .
4: repeat
5: Transmit on linki ∈ Ln with probability pi.
6: if t ∈ Tn,p then
7: SetA′

n = getA(n, v′n(p−n), Ln, γ′
1, . . . , γ

′
Ln

).
8: Setpi = Pmin

n for all i ∈ A′
n.

9: Setpi =

[

1
α
√

γ′α−1
i

1−A′

nPmin
n

w′

n+
α
√

v′

n(p
−n)

]

Pmax
−A′

nPmin
n

α
√

γ
′α−1
i

w′
n

Pmin
n

10: for all i ∈ Ln\A′
n.

11: if t ∈ Tn,m then
12: Setqn = 1 − ∑

i∈Ln
pi.

13: Setms,n =
∑

j∈Ln:n∈Nj

1

(γjpj

∏

s∈Nj\{n}qs)
α−1

14: for all s ∈ N\{n}.
15: Inform mn,s to all s ∈ ∪i∈Ln

Ni.
16: Inform qn to all s 6=n if ∃j∈Ls with n∈Nj.
17: if a message is receivedthen Updatem andq.
18: until noden decides to leave the network.

Our second proposed algorithm works for any general
topology and is shown in Algorithm 2. In this algorithm,
each noden ∈ N informs mn,s to all nodess whose
transmissions interfere with transmissions of at least one
of the outgoing links of noden. It also informsqn to all
nodess whose outgoing transmissions is interfered by
transmissions from noden. All nodes then choose the
persistent probabilities of their outgoing links based on
the received messages from other nodes. In Algorithm 2,
Tn,p andTn,qm are two unbounded sets of time slots at
which noden updatespn and announcesqn, andmn,s

for all s 6= n, respectively. We will show in Section IV-B
that forany topology, the fixed point of Algorithm 2 also
corresponds to the global optimal solution of thenon-
convexProblem (2) under proper technical conditions.

IV. CONVERGENCE, OPTIMALITY, AND

ROBUSTNESS

A. Algorithm 1: Single-Cell Topology

Here we first study Algorithm 1 which was proposed
to solve Problem (4) in a single-cell topology. We first
definef(p) = (fn(p),∀ n ∈ N ), wherefn(p) is as
in (10) for each noden. Recall that a fixed point of
mappingf(p) is also a fixed point of Algorithm 1.

Theorem 3:Assume thatf(p) has a unique fixed
point p⋆. Starting from any initial pointp ∈ P, Al-
gorithm 1 globally converges top⋆.

The key to prove Theorem 3 is to show that mapping
f(p) is a monotone mapping, thus,asynchronous con-
vergence theorem[10, pp. 431] is applicable. Next, we
show that not only Algorithm 1 has a unique fixed point
under mild technical conditions, the fixed point is the
global optimal solution of Problem (2).

Let F denote the set of fixed points of Algorithm 1.
For eachp⋆ ∈ F and any linki ∈ Ln, p⋆

i = fi(p
⋆
−n).

We also letS denote the set ofstationary points[11,
pp. 194] of Problem (2). Note that all local (and global)
optimal solutions of Problem (2) belong to setS.

Theorem 4:F = S.
From Theorems 3 and 4, we have:
Corollary 1: If eitherS or F is asingletonset (i.e., it

has only one element), then Algorithm 1 asynchronously
and globally converges to the unique global optimal
solution of non-convex optimization problem in (2).

In [3], it has been shown that the set of stationary
points S is a singleton set for allα ≥ 1. They used
logarithmic mapping and transformed Problem (2) to
an equivalent convex problem and showed that it has
a unique stationary point. However, this transformation
does not work if α ∈ (0, 1). That is the reason the
algorithm in [3] does not support theα-fair utilities with
α∈(0, 1). Here we are able to show the following:
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Theorem 5:Consider the case whereα ∈ (0, 1). Set
F is a singleton set if following holds:
(

1−α

α
ΨΦ(V min,V max)

)2(γmax

γmin
Γ

)1−α(

Ω− 1

L/Lmin−1

)

<1,

(20)
where Lmin = minn∈N Ln, Lmax = maxn∈N Ln,
Γ =

(

Pmax(1 − Pmin)
)

/
(

Pmin(1 − Pmax)
)

, Ψ =
Lmax/(1−Pmax)+1/Pmin, Ω =

∑

n∈N 1/(L/Ln−1),
V min = (N −1)

(

γmax(1/Pmin−1)/γmin
)α−1

, V max =

(N−1)
(

γmin(1/Pmin−1)/γmax
)α−1

, and we have:

Φ(V min,V max)=















(V max)1/α

(1+(V max)1/α)2
, if V max≤1,

(V min)1/α

(1+(V min)1/α)2
, if V min≥1,

0.25, otherwise,

(21)

The key to prove Theorem 5 is to show that if (20)
holds, thenf is not only a monotone mapping, but also
an l2-normcontraction mapping. A contraction mapping
always has unique fixed point [10, pp. 183].

Theorems 3 to 5 together show that Algorithm 1
asynchronously converges to the unique global optimal
solution of the Problem (2) when eitherα ∈ (0, 1) (under
condition (20)) orα ≥ 1 (with any system parameters).

B. Algorithm 2: General Topology

To analyze Algorithm 2, we first definedf ′(p) =
(f ′

n(p),∀i ∈ N ), wheref ′
n(p) is as in (17). We denote

the set of fixed points of mappingf ′(p) by F ′, which
is the set of fixed points of Algorithm 2. LetS ′ denote
the set of stationary points of Problem (2) in this case.

Theorem 6:F ′ = S ′.
If α ≥ 1, then from [3, Lemma 1] we know that

stationary point setS ′ is a singleton. Thus, ifα ≥ 1 and
Algorithm 2 converges, then it converges to the unique
global optimal solution of Problem (2). On the other
hand, ifα ∈ (0, 1), we can use the same idea of Theorem
5 and obtain sufficient conditions to assure that the
stationary point setS ′ is a singleton set. However, unlike
f(p), f ′(p) may not be always a monotone mapping.

To prove the asynchronous convergence of Algorithm
2, we first notice that since not all links interfere with
each other, for each noden ∈ N and any linki ∈ Ln,
functionf ′

i may only depend on a small subset of entries
in vectorp−n. We define setXi as thedependency set
for link i. That is, for anyi, j∈L, we havej∈Xi if and
only if pj appears in the formulation off ′

i . Let Xi = |Xi|
denote the size of setXi. We defineXmax = maxi∈L Xi.

Theorem 7:For any general topology, Algorithm 2
globally and asynchronously converges to the unique
global optimal solution of Problem (2) if we have:

|1 − α|
α

√
N XmaxΛ Φ(Zmin, Zmax) < 1, (22)

where Φ is as in (21), Λ = 1/Pmin + 1/(1 −
Pmax), Zmin =

(

γ′min/γ′max
)1−α

(Lmin − 1)α, Zmax =
(

γ′max/γ′min
)1−α

((Lmin − 1) + α
√

(L−Lmin)Pmax)α,
γ′min = γmin(1 − Pmax)N−1, γ′max = γmax.

The key to prove Theorem 7 is to show thatf ′(p) is a
weighted maximum norm contraction mappingwith unit
weights, thus, not only the fixed point set is a singleton
set, but also theasynchronous convergence theorem[10,
pp. 431] is applicable. Note that condition (22) is a
sufficient(but notnecessary) condition for asynchronous
convergence. Simulation results verify that Algorithm 2
converges under a wide range of system parameters.

V. SIMULATION RESULTS

In this section, we assess the performance of our algo-
rithms. In particular, we show their advantages compared
with the subgradient-based algorithm [3]2.

A. Signalling Overhead

High signalling overhead is a critical problem for
algorithms which require cooperation among nodes in
a wireless ad-hoc network. In this section, we compare
the signalling overhead in our proposed algorithms with
the subgradient-based algorithm [3]. In the simulation
model, the peak transmission rates (i.e.,γi for all i∈L)
are selectedrandomly between 6 Mbps to 54 Mbps.
Utility parameterα is set to 2 which models harmonic
mean fair allocation. We assume that each message value
requires two bytes. Thus, the signalling overhead for
each algorithm is defined as the total required message
exchange (in KBytes) that the algorithm needs before it
reaches the optimal solution of Problem (2). Results for
single-cell and general topologies are shown in Fig. 2(a)
and Fig. 2(b), respectively. We see that increasingN
increases the signalling overhead. However, Algorithm
1 and 2 manage to reach the optimal solutions via
much less signalling. Compared to the subgradient-based
algorithm and whenN = 30, Algorithm 1 and Algorithm
2 reduce the signalling overhead by 1120% (from 55.2
KByte to 4.5 KByte) and 810% (from 111.3 KByte to
10.8 KByte), respectively. Notice that one reason for the
superiority of our algorithms is their faster convergence.
In addition, Algorithm 1 reduces the message size by
half, which also helps to reduce the signalling overhead.

B. Robustness

Since the communication channels are not ideal, trans-
mitted messages by MAC protocols may be delayed or

2Further simulation results, including results on convergence and
optimality as well as performance comparison with IEEE 802.11
distributed coordination function, are available in [8].
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Fig. 2. Comparison between Algorithms 1 and 2 and the subgradient-
based algorithm [3] in term of signalling overhead when the number
of nodes varies from 5 to 30. Each point shows the average results
from simulating 10 topologies. (a) Using Algorithm 1 forsingle-cell
topologies, (b) Using Algorithm 2 forgeneral topologies.

lost. In this section, we show that our algorithms are
robust with respect to both message delay and loss. We
only consider general topologies withN = 30 nodes.
Results for single-cell topologies are similar.

First, we assume that the communication delay varies
from 10 to 50 time slots. Results are shown in Fig. 3(a).
We see that by increasing delay up to 50 time slots,
the subgradient-based algorithm leads to 8.4% optimality
loss while Algorithm 2 can always find the exact optimal
solutions. Next, we consider the effect of message delay
when the packet error rate varies from 0.1 (i.e. 10% of
the messages are lost) to 0.5. From the results in Fig.
3(b), we see that Algorithm 2 is robust to message loss.

VI. CONCLUSION

In this paper, we designed two distributed contention-
based MAC algorithms to solve network utility maxi-
mization (NUM) problem in wireless ad hoc networks.
Both algorithms globally and asynchronously converge
to the global optimal solution of the NUM problem under
mild technical conditions on the system parameters.
Besides supporting a wider range of utility functions,
our proposed algorithms have several other advantages
over previously proposed algorithms, including less mes-
sage passing, fully asynchronous updates, robustness to
message delays and losses, and faster convergence.
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