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Abstract—In this paper, we show that an uncertain departure
time significantly changes the analysis in optimizing the charging
schedule of electric vehicles. We also obtain a closed-form solution
for the stochastic optimization problem that is formulated to
schedule charging of electric vehicles with uncertain departure
times in presence of hourly time-of-use pricing tariffs.
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I. BACKGROUND

Assume that time is divided into T time slots. Consider an
electric vehicle (EV) charging station with multiple charging
outlets, c.f. [1], [2]. At each charging outlet, let α ≥ 1 denote
the time slot at which an electric vehicle plugs in to the
charging outlet. Also let e denote the total energy needed to
charge the electric vehicle. In this section, we assume that the
driver indicates her departure time β ≤ T . As an example, if a
Chevrolet Volt with a depleted battery plugs in to the charging
outlet at 10:00 AM and the driver indicates that she will depart
at 2:00 PM and she expects a fully charged battery, then we
have α = 10, β = 14, and e = 16 kWh. Let x[t] denote the
scheduled energy usage for charging at time slot t. To finish
charging before the departure time β, it is required that

β∑
t=α

x[t] = e. (1)

Let µ[t] denote the price of electricity at time slot t. The
cost to finish charging is

∑β
t=α µ[t]x[t]. If all parameters are

known, then the cost is minimized if we choose x[τ ] = e,
where τ = argminα≤t≤β µ[t]; and we set x[t] = 0 for t 6= τ .
Here, τ is the time slot between α and β with the lowest price.
Note that, the above analysis works at each charging outlet,
regardless of the number of charging outlets at the charging
station. An exception is when the charging station is very large
and thus price-maker, as we point out in Section IV.

II. ANALYSIS UNDER UNCERTAIN DEADLINE

Next, assume that the deadline β is not known. Once an
EV plugs in, its target charge level e and start time α are
identified. However, the charging station may not know when
the EV will depart. Nevertheless, the charging station needs
to operate in a way that it minimizes the cost of electricity.

The system setup is as follows. At the beginning of each
time slot t ≥ α, if the user indicates that the EV will depart
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at the end of the current time slot, then we must set

x[t] = e−X[t], where X[t] ,
t−1∑
k=α

x[k], (2)

because we must assure finishing charging before the user’s
departure as required by (1). Otherwise, i.e., if the user does
not indicate that it will depart at the end of the current time
slot t, then the charging station faces the uncertainty that the
EV may depart at any of the future time slots t+ 1, . . . , T .

At each time slot t ≥ α, let πk|t , Pr{β = k | β > t}
denote the conditional probability that the user will depart in
a future time slot k, knowing that it will not depart by the
end of the current time slot t. We have

∑T
k=t+1 πk|t = 1. The

expected cost of electricity to finish charging is calculated as
T∑

i=t+1

πi|t

i−1∑
j=t

µ[j]x[j] + µ[i]x[i]


=

T∑
i=t+1

πi|t

i−1∑
j=t

µ[j]x[j] + µ[i] (e−X[i])

 ,

(3)

where the equality is due to the departure-time requirement in
(2). The question is: how can we minimize the above cost?

Answering the above question is trivial at t = T , because
from (2), we have no choice but setting x[T ] = e − X[T ].
However, to find the answer for t = α, . . . , T − 1, we need to
first define a new notation φ[t] in a recursive manner as

φ[t] , πt+1|tµ[t+1]+(1−πt+1|t)min{µ[t+1], φ[t+1]}, (4)

with terminal condition φ[T − 1] = µ[T ]. From this definition
and following the method of backward induction in stochastic
optimization [3], we can present the following key results.

Theorem 1: At the beginning of time slot t = α, . . . , T −1,
if the user indicates that it will be departing at the end of
time slot t, then x[t] must be set as in (2); otherwise, we can
minimize the expected cost of electricity by choosing

x?[t] = I(µ[t] ≤ φ[t])(e−X[t]), (5)

where I(·) is the 0-1 indicator function. If µ[t] ≤ φ[t],
then I(µ[t] ≤ φ[t]) = 1; otherwise, I(µ[t] ≤ φ[t]) = 0.
Furthermore, if we follow (5), then the expected cost during
the remaining time slots k = t, . . . , T is obtained as

C[t] , E

{
T∑
k=t

x?[t]µ[t]

}
= min{µ[t], φ[t]}(e−X[t]). (6)

The proof of Theorem 1 is given in the Appendix. Here,
φ[t] serves as a reference on whether the price µ[t] is low
enough to schedule the load, or if we should rather wait for a
future time slot. The value of φ[t] depends on the probability
mass function of the user departure time, e.g., see [4].
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III. CASE STUDY

Consider charging an EV with α = 1 PM and e = 16 kWh.
The departure time is characterized by the probability mass
function in Fig. 1(a). The price of electricity is based on the
time-of-use prices used by Ameren on March 1, 2014 [5].

The electricity price µ[t] and reference parameter φ[t] are
shown in Fig. 1(b). We can see that µ[t] > φ[t] at time slots
1, 2, 6, 7, 8, 9, 10, 11, and µ[t] ≤ φ[t] at time slots 3, 4, 5, 12.
From Theorem 1, if µ[t] > φ[t], then the price of electricity
at time slot t is not low enough and we must wait for a future
time slot before we schedule the load. As soon as µ[t] drops
below φ[t], we proceed with scheduling the load. Therefore,
if the user indicates that it will depart at the end of time slots
1 or 2, then the charging station schedules the entire load e at
time slots 1 or 2, respectively. In all other cases, the load is
scheduled at time slot 3. Note that, electricity is cheaper at time
slots 10, 11, and 12, compared to time slot 3. Nevertheless, it is
not optimal for the charging station to wait that long, because
it is likely for the EV to depart earlier than those low-price
hours. The expected cost of charging when our design is used
is 49 cents. However, if we follow the deterministic design in
Section I and wait until time slot τ = 12, then the expected
cost of electricity becomes 56 cents, i.e., %14.3 higher.

IV. CONCLUSIONS AND EXTENSIONS

We proposed a closed-form solution to optimally schedule
time-shiftable loads with uncertain deadlines, with focus on
charging EVs with uncertain departure times. We showed that
an uncertain deadline significantly changes the analysis.

This paper can be extended in several directions. First, one
can extend the analysis to consider other electricity pricing
models such as inclining block rates or real time prices. The
latter requires taking into account price uncertainty. Second,
we can revise the problem formulation to coordinate charging
across multiple charging outlets, e.g., due to load prioritization.
Third, we can also extend the analysis to the case where the
charging station is large enough such that the price becomes
correlated with the demand. Finally, other design factors may
be considered such as the per-time-slot charging power limits.

APPENDIX: PROOF OF THEOREM 1

Step 1: Suppose we are at the beginning of time slot t =
T − 1. Since πT |T−1 = 1, and from (3), the expected cost in
the remaining two time slots T − 1 and T becomes

µ[T ] (e−X[T − 1]) + (µ[T − 1]− µ[T ])x[T − 1]. (7)

The first term depends only on the electricity usage before the
current time slot t = T − 1. Hence, to minimize the expected
cost for the remaining time slots, we must set

x[T − 1] = I(µ[T − 1] ≤ µ[T ]) (e−X[T − 1]) . (8)

Once we substitute (8) in (7), we have

C[T − 1] = min{µ[T − 1], µ[T ]} (e−X[T − 1])

= min{µ[T − 1], φ[T − 1]} (e−X[T − 1]) .
(9)

Therefore, Theorem 1 holds for time slot t = T − 1.
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Fig. 1. The system parameters and numerical results for the case study.

Step 2: Suppose Theorem 1 holds for all time slot t ≥ i, for
a given i ∈ [α, T ]. That is, for any t = i+ 1, . . . , T , suppose
we set the energy usage x[t] = x?[t] as in (5); and accordingly
the expected cost in the remaining time slots C[t] is calculated
as in (6). Next, assume that we are at the beginning of time
slot t = i and suppose the user indicates that it will not depart
at the end of the current time slot. In that case, the expected
cost in the remaining time slots i, i+1, . . . , T is calculated as

x[i]µ[i] + E

{
T∑

k=i+1

x?[k]µ[k]

}
. (10)

Note that, from (5), each term x?[k] inside the summation
in (10) depends on X[k], which itself depends on x[i]. From
(4)-(6), and after reordering the terms, we can rewrite (10) as

x[i]µ[i] + πi+1|iµ[i+ 1] (e−X[i]− x[i])
+
(
1− πi+1|i

)
C[i+ 1]

= x[i]µ[i] + πi+1|iµ[i+ 1] (e−X[i]− x[i])
+
(
1− πi+1|t

)
min{µ[i+ 1], φ[i+ 1]} (e−X[i]− x[i])

= φ[i] (e−X[i]) + (µ[i]− φ[i])x[i].
(11)

The first term in the last line in (11) is constant. The second
term, however, is linear in x[i]. Therefore, to minimize the
expected cost in (11), we must follow (5) and set x[i] =
I (µ[t] ≤ φ[t]) (e−X[i]). By replacing this in (11) we have

C[i] = (φ[i] + I(µ[i] ≤ φ[i])(µ[i]− φ[i])) (e−X[i])

= min{µ[i], φ[t]}(e−X[i]).
(12)

This concludes the proof for any time slot t = α, . . . , T−1.�
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