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However, in the current IEEE 802.15.3 standard for MAC (media access control) of high-rate

WPANs, the implementation details of some key issues such as scheduling and QoS provisioning

have not been addressed. In this paper, we first propose a Markov decision process (MDP) model

for optimal scheduling for video flows in high-rate WPANs. Using this model, we also propose

a scheduler that incorporates compact state space representation, function approximation, and

reinforcement learning (RL). Simulation results show that our proposed RL scheduler achieves

nearly optimal performance and performs better than F-SRPT, EDD+SRPT, and PAP scheduling

algorithms in terms of a lower decoding failure rate.
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I. INTRODUCTION

In recent years, ultra-wide band (UWB) technology has received increasing attention in the

wireless world. It provides short-range connectivity, low transmit power levels, and high-data

rates. This makes UWB be the physical layer of choice for high-rate wireless personal area

networks (WPANs). UWB-enabled WPANs can offer many new applications, such as home

entertainment, real-time multimedia streaming, and wireless universal serial bus (USB).

In order to fully exploit UWB technology in high-rate WPANs, upper layers, including the

media access control (MAC) layer, must be properly designed for high-rate applications. Video

transmission is one such application for high-rate WPANs, which is predicted to constitute a

major traffic load. Real-time video flows are delay-sensitive and require quality of service (QoS)

guarantee. However, in the IEEE 802.15.3 standard for MAC [1], which is designed for WPANs,

details of scheduling and QoS support are left to the developers. Consequently, in this paper, we

aim to design an application-aware scheduling algorithm for MAC layer to provide the required

QoS for video traffic.

Similar to other real-time traffic, video flow is delay sensitive and its frames are dropped at

the receiver if their delay exceeds the maximum tolerable delay. However, video stream has a

few unique characteristics that make QoS support more challenging than other real-time traffic.

It has large peak-to-average ratio of the frame sizes and hierarchical structure with dependency

among its frames [2].

Recently, various MAC scheduling algorithms have been proposed for high-rate WPANs (e.g.,

[2]–[10]). For impulse-based UWB, scheduling problems can be formulated as rate and power

allocation problems. These problems can be modeled as a joint optimization problem, so as to

minimize the total power consumption [7] or maximize the total system throughput [9]. The

concept of exclusion region is also used for such schedulers [10]. On the other hand, with no

assumption on the type of physical layer, Mangharam et al. proposed the fair shortest remaining
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processing time (F-SRPT) scheduler [5]. SRPT schedules different jobs in the system in the

order of their remaining processing time, from the shortest to the longest. F-SRPT is a variation

of SRPT that maintains fairness among flows with different data rates. In [6], the earliest due

date (EDD) method is used along with SRPT. In [11], Rhee et al. used the application layer

information at MAC layer. Each device informs the piconet controller of the maximum size

of its I , P , and B frames for video flows. The channel time is then allocated based on these

values. Kim and Cho proposed a scheduling algorithm designed for MPEG-4 flows [2]. Each

MPEG-4 frame type is scheduled with a pre-assigned priority (PAP) in I , P , and B order.

The scheme proposed in [8] focuses on reducing the average waiting time by using an M/M/c

queuing model for channel time allocation at the piconet coordinator. It also proposed a command

aggregation scheme in order to reduce MAC overhead when sending short command frames.

Energy efficiency is considered by the scheduler proposed in [12]. It defines different service

categories in order to balance between energy efficiency and QoS. It also uses the application

layer information to assign priorities to the buffered frames at the source of a flow. In [13], we

proposed a frame-decodability aware (FDA) technique to improve the performance of scheduling

of video flows.

The objective of our work is to design a systematic scheduling algorithm for video flows in

high-rate WPANs. The contributions of in this paper are as follows:

• We provide a mathematical framework based on Markov decision process (MDP) to deter-

mine the optimal scheduler for video flows in high-rate WPANs. This framework takes into

account the number and pattern of video flows, and their hierarchical structure.

• Using the MDP framework, along with compact state space representation, function ap-

proximation, and reinforcement learning (RL), we propose a practical scheduling algorithm

which can provide significantly better QoS to video flows when compared to some other

schedulers [14].

• Simulation results show that our proposed RL scheduler achieves nearly optimal perfor-
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mance and performs 53%, 42%, and 49% better than F-SRPT, EDD+SRPT, and PAP

schedulers, respectively [15].

The rest of this paper is organized as follows. In Section II, we provide an overview of the

IEEE 802.15.3 standard for MAC, the hierarchical structure of video streams, related scheduling

algorithms, the performance metrics for video flows, and reinforcement learning. In Section III,

we describe the mathematical formulation for the optimal video scheduler. The implementation

mechanisms of the RL algorithm are described in Section IV. Section V describes an extension

of our proposed model. Results for performance evaluations and comparisons are presented in

Section VI. Conclusions and future work are discussed in Section VII. A list of nomenclature

is in Table I.

II. BACKGROUND

A. IEEE 802.15.3 MAC Standard

The IEEE 802.15.3 is designed for WPANs and aims to provide low cost, low power consump-

tion, and high data rate communications, within its area of operation called the piconet [1]. A

piconet consists of a number of independent devices (DEVs) that communicate with each other

under the control of the piconet coordinator (PNC). The PNC provides basic timing, performs

scheduling, and manages the QoS requirements of the piconet.

Within a piconet, the timing is based on superframes, which consists of three parts (see Fig. 1).

The first part, beacon, announces timing allocations, superframe duration, and other piconet

synchronization parameters. The second part, the contention access period (CAP), is used to

communicate commands and asynchronous data. The third part, channel time allocation period

(CTAP), is composed of channel time allocations (CTAs) and management CTAs (MCTAs). A

DEV can use its CTA, which is assigned to it by the PNC, for isochronous streams, asynchronous

data transfer, or sending commands. Channel access during CTAP is TDMA and there is no



5

contention in this period. By sending beacon at the beginning of superframe, the PNC announces

the start time and duration of each CTA as well as the DEVs that are allowed to use it.

As the central coordinator, PNC is responsible for scheduling. Depending on the scheduling

algorithm, PNC requires certain information such as the number of flows, their reserved rates,

their queues’ status, and type and deadline of the frames in their queues, in order to allocate

CTAs to different flows.

B. Video Streams

A typical video encoder generates a sequence of three types of compact frames: intra-coded

(I), predictive (P ), and bidirectional (B) frames [16]. Because of the different compression

schemes used to encode the different frame types, I frames tend to be larger (less compressed)

than P and B frames, and P frames tend to be larger than B frames. Video encoders generate

the three frame types according to a predefined pattern called group of pictures (GOP). This

pattern is characterized by two parameters (N, M), where N is the I-to-I frame distance, and

M is the I-to-P frame distance [16]. This pattern is generally fixed for a given video sequence,

and N is a multiple of M . Fig. 2 illustrates the hierarchical structure of video streams, as well as

decoding dependencies among the frames. In order for a frame to be decodable at the receiver,

all other frames that it depends on, including the frame itself, must be available at the receiver. A

frame is undecodable if it is directly or indirectly lost [17]. Direct loss happens when the receiver

does not receive the frame completely, either because of channel error or deadline expiration. A

frame is indirectly lost when some frames that it depends on are directly lost. As an example,

in Fig. 2, all the frames in a GOP depend on the only I frame in that GOP; therefore, if that

I frame does not meet its deadline, the whole GOP is considered undecodable (direct loss of

the I frame and hence, indirect loss of the rest of the frames). For instance, with N = 12 and

frame rate of 30 frames per second (fps), this would result in impaired quality for about 360

ms, which is fairly obvious to a user. Similarly, loss of P frames can also degrade the quality of
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video streams. Table II shows the number of frames depending on each frame inside a GOP. The

larger the number of dependencies on a frame, the more important that frame is for decoding

process at the receiver. Consequently, video frame types can be ranked, from the most important

to the least important, as I , P , and B.

C. Scheduling Algorithms

In an 802.15.3 piconet, the CTA requirements of a flow can be regarded as a job. It has been

shown that the Shortest Remaining Processing Time (SRPT) scheduling algorithm minimizes the

number of pending jobs in the system, and thus minimizes the average waiting time of the jobs

[18]. It schedules different jobs in the system in the order of their remaining processing time,

from the shortest to the longest. In the preemptive case, SRPT switches to a newly arrived job

if the processing time of that job is shorter than the job currently being served.

In systems with heterogeneous flows that have different average data rates, SRPT favors the

flows with smaller average data rate since they tend to have smaller frames. In [5], Mangharam

et al. proposed a variation of SRPT, which maintains fairness among flows with different data

rates. This scheduling algorithm, called Fair-SRPT (F-SRPT), first normalizes the size of the

frames belonging to a flow to the mean rate of that flow. This normalized size is then used by

SRPT to sort the frames. As a result of the normalization in the first step, flows with smaller

mean data rate will not dominate channel access. Hence, network resources are allocated in a

fair manner. The channel time allocation algorithm proposed in [5] guarantees that all the flows

receive at least as much as their reserved amount of CTA. If a flow does not require all of its

reserved CTAs (i.e., under-loaded), the excess is added to the idle channel time. This idle channel

time is shared among the overloaded flows, which require more CTA than their reservation.

The optimality of SRPT, in that it minimizes the average waiting time of the jobs in the

system, holds only when the jobs have no delay constraint. Thus, in the systems with delay

sensitive traffic, SRPT need not be the best scheduler, and using deadline information can yield
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better performance. One scheduler that considers the deadline of the frames is the earliest due

date (EDD). It schedules the frames in the order of their deadlines, from the earliest on. It

is proven that EDD policy minimizes the probability of packet dropping in the system due to

delay violation [19]. However, in WPANs, where the PNC should be informed of the internal

state of the system queues, it is not practical to convey the exact deadline. This information

is represented in a quantized form, usually with respect to the superframe size. A DEV may

inform the PNC that the frame in its queue will expire after j full superframes. As a result of

quantization, many frames may have equal deadlines, hence a tie-breaking method is needed.

In [6], Torok et al. used EDD along with SRPT as the tie-breaking method. They studied the

performance of this scheduler under real-time traffic with variable frame sizes. They modeled

this traffic with batch arrival process. Each batch is the MAC fragments of a frame and all have

the same deadline. In addition, the inter-arrival time of the batches is equal to the inter-arrival

time of the frames and can be constant or variable. For each flow, PNC has the information

about the size and deadline of its first (head-of-the-queue) frame, as well as the total size of

its queue. EDD+SRPT scheduler first selects the flows based on the deadline of the first frame

in their queue (i.e., according to EDD). If the first frame of several flows have equal deadline,

then they are scheduled in ascending order of their frame size (i.e., according to SRPT). After

serving the frames closest to expiration, the remaining channel time, if any, is allocated to the

flows according to their total queue size using SRPT algorithm.

The pre-assigned priority (PAP) in [2] schedules video frames their importance (i.e., in I , P ,

and B order). EDD and SRPT are used to break ties among frames of the same type, when

they cannot be served together in one superframe. The work in [2] used mini packets with short

duration for signaling purposes. This method divides the CTAP part of the superframe into two

parts. The first part is CTA and is used for transmission of real-time traffic. The second part is

Feedback CTAs (FCTAs). The PNC allocates this part for transmission of mini packets. There

are two classes of information contained in the mini packets. The first class is used for CTA
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allocation to video flows in the system. This includes data rate, ACK policy and fragmentation

threshold between source and destination of the flow, as well as video frame type and queue

status information of the source of the flow. These pieces of information are contained in the mini

packet only when necessary (i.e., when their value changes). The second class of information is

used for deciding the allocation of FCTA for mini packets. In order not to waste channel time

with unused FCTA, it is only allocated to the DEVs that need to send mini packet to the PNC

(i.e., when a new video frame arrives at the DEV). Therefore, this class of information includes

the time of the next arrival. By using that information, the PNC can allocate FCTAs only to

the flows that need it. After receiving all the mini packets from the DEVs, the PNC performs

scheduling based on the received information.

D. Performance Metrics: JFR and DFR

Video frames, like other real-time traffic, are delay sensitive. The video frames will be dropped

at the receiver if their delay exceeds the maximum tolerable delay. This is the base of job failure

rate (JFR) criterion for evaluating performance of schedulers in the MAC layer. For a delay

sensitive flow, JFR is defined as the fraction of frames that do not meet their transmission

deadlines, and are hence useless and get dropped. An important consequence of hierarchical

structure of video stream is that JFR, by itself, cannot accurately reflect the QoS given to a

video flow at the MAC layer. In other words, low JFR does not necessarily indicate high QoS.

As a result, another performance metric is required for comparing the performance of different

schedulers. We use the decoding failure rate (DFR) criterion, which takes frame dependencies

into account. DFR is defined as the ratio of the total number of undecodable frames to the

total number of frames [17]. DFR can be viewed as an objective measure of user-perceived

degradation of quality, and is the main performance metric in this paper.
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E. Reinforcement Learning (RL)

In many real-life sequential decision making problems, dynamic programming (DP) techniques

are not practical because of two main reasons. First, the agent may not have complete knowledge

about dynamics of the system or environment. Second, when the system state and/or action space

is huge (e.g., continuous state spaces), it is not feasible to exploit DP. The former problem is

called curse of modeling, while the latter is called curse of dimensionality. Reinforcement learning

(RL) combines DP methods with other methods including stochastic approximation and function

approximation to tackle these problems [20]. In RL, an agent should learn a policy (i.e., how to

map situations to actions) through trial and error. The agent is not provided with the policy, but

instead it must discover which actions yield the most reward by trying them. In an RL model,

the agent has an indication of the system state. The agent takes action, which leads the system

to another state. The value of this state transition is communicated to the agent through a scalar

reinforcement signal (or reward). The agent should choose actions that tend to increase some

function of the reward. Similar to DP, this function can be average discounted reward, average

reward, or other reward functions. Unlike DP, however, the agent should learn to maximize this

function over time by systematic trial and error, guided by a wide variety of algorithms [20]

[21]. The system environment can be either real or simulated. If a simulator is used, complete

knowledge of the random variables that govern the system dynamics is required [22].

In order to obtain a lot of rewards, the agent should be greedy; i.e., it should choose the actions

that it has discovered to produce a lot of reward. In other words, it should exploit its current

experience. However, there might exist better actions that the agent has not yet discovered or

explored. As a result, if the agent occasionally deviate from the greedy manner (i.e., perform

exploration), chances are that it can find better actions. The dilemma in RL is that neither

exploration nor exploitation should be pursued exclusively. In fact, one of the challenges of RL

is to balance the trade-off between exploitation and exploration. The agent must try a variety of
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actions and progressively favor those that appear to be best. On a stochastic task, each action

must be tried many times to gain a reliable estimate of its expected reward [21].

When the agent does not have the system model, it should build a knowledge base according

to its interaction with the system. In Q-learning, this knowledge base is made up of factors

called Q-values. For each state s ∈ S and each action a ∈ As, the agent saves a Q-value Q(s, a)

and updates these values as the agent learns. Before the learning begins, all the Q-values are

set to the same value. At a decision epoch, when the system is in state s, the agent chooses an

action a that maximizes the Q-value (i.e., a = arg maxa′∈As
Q(s, a′)). The simulator will then

simulate the chosen action a in the current state s and evolve to the new state s′. It also gives the

accrued reward and the time spent during the state transition. The learning algorithm embedded

in the agent will then use this information to update Q(s, a). Basically, Q(s, a) increases if a

was a good action (i.e., good actions are rewarded), and decreases otherwise. An exclusively

greedy learning algorithm is not the best. Consequently, the agent should occasionally explore

and choose an action other than the one with the maximum Q-value. Over time, as the agent

explores and tries out all the state-action pairs often enough, it learns the best action in each

state. In other words, it learns an optimal (or near-optimal) policy. At this point, the agent should

cease exploration and follow the learned optimal policy in a greedy manner.

Most of the RL algorithms in the literature, including Q-learning, are based on the dis-

counted reward optimality criterion. Moreover, these algorithms cannot automatically extend

to the average reward criterion [23]. As we will show in Section III-D, the average reward

criterion is more suitable for our scheduling problem. We use an algorithm called SMART

(Semi-Markov Average Reward Technique) [24] [25] [26] that is designed for average reward

RL. The convergence analysis of this algorithm is given in [25] and it has been successfully

applied to different problems including production inventory [24], airline seat allocation [26],

and QoS provisioning in wireless cellular networks [23]. The difference between Semi-Markov

decision process (SMDP) and Markov decision process (MDP) is that for SMDP, the time that
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it takes the system to transit from one state to the other is stochastic. MDP is a special case

of SMDP when the state transition duration is fixed. Since in Section III we formulate the

scheduling problem in the form of an MDP, we can use this algorithm with fixed state transition

duration.

III. OPTIMAL SCHEDULING ALGORITHM FOR VIDEO TRAFFIC

In this section, we formulate the problem of finding the scheduling policy with minimum

average DFR in the form of a Markov decision process (MDP) with average reward criterion

[27]. We then relate the gain of the scheduling policy with the average DFR that it yields. As

a result of the linear relationship between gain and average DFR, we can use reinforcement

learning (RL) techniques [20] [21] to find the scheduling policy which minimizes average DFR.

Consider a WPAN and let F denote the total number of video flows. We denote F =

{1, 2, . . . , F} as the set of all flows. We assume that the deadline of all video frames is fixed1,

and is equal to the frame inter-arrival time γ. As a result, the queue of each flow holds no

more than one frame at any time. We denote the GOP pattern of the ith video flow (i ∈ F ) by

(Ni, Mi), where Ni and Mi are the I-to-I and I-to-P frame distance, respectively. The GOP

pattern of all flows is assumed to remain constant during the flows’ lifetime. An MDP problem

formulation includes the set of decision epochs, the set of system states, the set of actions, the

reward function, and the state transition probabilities. We define these elements for our MDP in

the following subsections.

A. Decision Epochs

The scheduler should make a decision at the beginning of each superframe, and decide to

schedule which flows in that superframe. The superframe size η is assumed to be fixed and

1Notice that a tight fixed deadline indicates the worst-case scenario in which the source codec has no buffering capability;

thus, it can only handle one frame every γ (i.e., frame inter-arrival time) seconds.
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is less than γ. For simplicity, we show the decision epochs in terms of superframe size. For

example, the actual time of decision epoch n, which is the beginning of the nth superframe, is

(n− 1)η. Therefore, the set of decision epochs is {1, 2, . . . , T}.

B. States

Let the function txi(x) denote the amount of channel time that flow i requires to send x bits of

data. The simplest form of this function is txi(x) = x/channel data ratei. However, depending

on the acknowledgement policy, inter-frame spacing times, and maximum MAC fragment size,

this function can have a different form. Moreover, assume that the maximum frame size of flow

i is Lmax
i . We define the set of possible system states as follows:

S ,

{

s = (l,d, g, δ) | ∀ i ∈ F : 0 ≤ li ≤ txi(L
max
i ),

di ∈ {0, . . . , D
max}, gi ∈ {0, . . . , Ni − 1}, δi ∈ {0, 1}

}

, (1)

where

• l , [l1 l2 · · · lF ], and li is the channel time required by the frame in the queue of flow i,

in milliseconds.

• d , [d1 d2 · · · dF ], and di is the number of full superframes remaining until the arrival

of the next frame of flow i. Since the maximum tolerable delay for video frames is the

frame inter-arrival time, di can alternatively be interpreted as the deadline of the frame in

the queue of flow i, in terms of superframe size.

• g , [g1 g2 · · · gF ], and gi is the offset of the frame in the queue of flow i, with respect to

the beginning of the frame’s GOP of flow i. For the first frame of the GOP gi = 0, and for

the last one gi = Ni − 1.

• δ , [δ1 δ2 · · · δF ], and δi is a binary variable which denotes whether the current frame in

the queue of flow i can be decoded successfully at the receiver. δi is set to 0 if any I or
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P frame, on which the current frame of flow i depends, is directly lost; and is equal to 1

otherwise.

• Dmax , ⌊γ

η
⌋, is the maximum frame deadline in units of superframe size η, where ⌊·⌋ is

the floor function.

The scheduler incorporates the FDA technique [13], [14] to determine the value of δ based

on l, d and g.

C. Actions

Let A be the set of all possible actions. We have,

A =
{

a , (a1, a2, · · · aF , p) | p ∈ F ∩ {0}; ai ∈ {0, 1}, ∀ i ∈ F ; ap = 0 if p 6= 0
}

, (2)

where ai is equal to 1 if the scheduler allocates enough channel time to flow i so that it can fully

transmit its frame. Otherwise, it is equal to 0. The parameter p is the flow that can only transmit

parts of its frame during the channel time that the scheduler allocates to it. If no such flow exists,

then p = 0. Here we assume that in each superframe, the scheduler allows at most one partial

frame transmission, and the rest are full frame transmissions. To explain this, we notice that in

general, we are not interested in partial transmissions as a half (incomplete) frame is not useful

for a video decoder at the destination node. In fact, we will see that our introduced rewarding

function in Section III-D only rewards full transmissions. Nevertheless, we still allow a single

long (i.e., almost complete) partial transmission as it is more similar to a full transmission.

The last conditional statement in (2) implies that the frame of flow p cannot be both fully and

partially transmitted simultaneously.

At each decision epoch, the scheduler should choose an action depending on the current state.

The chosen action must satisfy a few constraints. First, the channel time required to transmit

scheduled frames should not be more than the superframe length η:

F
∑

i=1

(ai · li) ≤ η. (3)
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In addition, all the scheduled flows must be eligible. That is,

ai ≤ ei, ∀ i ∈ F (4)

dp > 1 and ep = 1, if p 6= 0, (5)

where ei denotes the eligibility of the flow i for being scheduled. Flow i ∈ F is eligible (ei = 1)

if it has a frame that is not expired (di > 0) and is decodable (δi = 1); otherwise, it is ineligible

for being scheduled (ei = 0). Equation (4) implies that ai = 0, if ei = 0. In other words, the

ineligible flows are never scheduled. Equation (5) implies that p should be eligible and have a

deadline greater than 1. Partial transmission of a frame with deadline one is wasting channel

time, since the frame will expire at the end of the superframe. After the scheduler makes its

decision about which frames should get fully transmitted in a superframe, there may still remain

some channel time in that superframe that is not enough for full transmission of any unscheduled

frame. This remaining time is given by:

lpartial = η −
F
∑

i=1

(ai · li).

The fact that lpartial is not enough for full transmission of any eligible frame that is not scheduled,

can be formally expressed as the following constraint:

li > lpartial, ∀ i ∈ F , ei = 1, ai = 0. (6)

The idle channel time is allocated to the flow p. If no such flow exists, then p is set to 0.

Consequently, the set of possible actions in state s ∈ S, denoted by As, is the largest subset

of A, whose members satisfy all the constraints (3)–(6). These constraints guarantee that the

scheduler accommodates as many eligible frames as possible. Note that As is stationary and

only depends on the system states.

D. Reward Function and Gain

As mentioned in Section II-B, because of the hierarchical structure and interdependency of

video frames, some frames may get indirectly lost. The reward function that we choose should
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account for this fact. We give a reward of one unit when a frame is scheduled. On the other

hand, if the deadline of a frame expires, the scheduler receives a penalty (negative reward) of

W units, where W is the number of frames that depend on the expired frame. Table II shows

the number of dependencies between GOP frames of an (N, M) video flow.

Let ci(s) be the state-dependent penalty (or cost) function for flow i:

ci(s) =























(

Ni + (Mi − 1)
)

· ei · U{di=1}, if yi(gi) = I,

ei · U{di=1}, if yi(gi) = B,
(

Ni − 1− ( gi

Mi
− 1)Mi

)

· ei · U{di=1}, if yi(gi) = P ,

where the function yi(g) : {0, . . . , Ni − 1} → {I, B, P} maps g to frame types as follows:

yi(g) =























I, if g = 0,

B, if g mod Mi ≥ 1,

P, if g mod Mi = 0 and g 6= 0.

Furthermore, U{·} is the indicator function and is equal to 1 if its argument is true, and is 0

otherwise. The product ei(n) × U{di(n)=1} indicates if the flow i has an urgent eligible frame.

Hence, the scheduler should receive ci(s(n)) units of penalty if it does not schedule the frame

of flow i in the current superframe.

As a result, we can express the state- and action-dependent reward that the scheduler receives

at superframe n by:

r(s(n), a(n)) =
F
∑

i=1

[

ai(n)− ci(s(n))(1− ai(n))

]

. (7)

In order to show the merits of the reward function in (7), we study the policy gain that it yields.

The gain of policy π under the average reward criterion is the average accumulated reward. In

our formulation, the policy gain is given by:

ρπ =
1

T

T
∑

n=1

r(s(n), a(n))

=
F
∑

i=1

(

∑T
n=1 ai(n)−

∑T
n=1 ci(s(n))(1− ai(n))

T

)

. (8)
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The total number of frames for each flow is total frames = total time
inter arrival time

= ηT

γ
. Furthermore, the

terms
∑T

n=1 ai(n) and
∑T

n=1 ci(s(n))(1− ai(n)) in (8) are in fact the total number of scheduled

frames and the total number of undecodable frames for each flow, respectively. In addition, these

two terms sum up to the total number of frames for flow i. Consequently, equation (8) can be

rewritten as:

ρπ =
η

γ

F
∑

i=1

( total scheduled− total undecodable

total frames

)

=
η

γ

F
∑

i=1

(

1−
2× total undecodable

total frames

)

=
η

γ

F
∑

i=1

(1− 2DFRπ
i )

=
ηF

γ
−

2η

γ

F
∑

i=1

DFRπ
i , (9)

where DFRπ
i is the decoding failure rate of flow i under the policy π. Let DFR

π
, 1

F

∑F
i=1 DFRπ

i

denote the average DFR under the policy π. Using (9), we have

DFR
π

=
1

2
−

γ

2ηF
ρπ. (10)

Equation (10) shows that in our formulation, the average DFR is a linear function of gain.

Therefore, we conclude that:

arg max
π

ρπ = arg min
π

DFR
π
. (11)

Hence, an optimal (maximum) gain policy yields the optimal (minimum) average DFR, which

is what we aim to find.

E. State Transitions

Assume that at superframe n, the system is in state s(n) and chooses the action a(n). In this

section, we determine the system state at superframe n+1, s(n+1). This state depends on s(n),

a(n) and new frame arrivals. We determine the state transitions per flow, i.e., we show how the
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state variables relate to each flow change. The whole system state is updated by performing the

same procedure for all the flows.

When di(n) ≥ 1, no new video frame will arrive for flow i. Thus, the remaining time until

the next arrival is reduced by one superframe. If the flow is scheduled, its length will become 0.

And if it is partially transmitted, its length will reduce by lpartial. Otherwise, the length remains

unchanged. The frame offset within GOP also does not change. The value of δi changes only

when an I or P frame of flow i expires, or when a new GOP starts, which is indicated by arrival

of a new I frame for flow i. None of these happens when di(n) ≥ 1. Hence, if di(n) ≥ 1, then

the state deterministically changes as follows:

di(n + 1) = di(n)− 1,

li(n + 1) = li(n)(1− ai(n))− lpartialU{i=p},

gi(n + 1) = gi(n),

δi(n + 1) = δi(n).

When di(n) = 0, it means that the frame in the queue of flow i has expired, if it has not

already been sent, i.e., if li(n) 6= 0. It also means that a new frame will arrive for flow i, within

superframe n. We denote the deadline and channel time requirement of the newly arrived frame

for flow i within superframe n by dnew
i (n) and lnew

i (n), respectively.

Let probi(l
new
i (n)) denote the probability that the channel time request of flow i is lnew

i (n).
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Thus, when di(n) = 0 ,the state changes with probability probi(l
new
i (n)) as follows:

di(n + 1) = dnew
i (n),

li(n + 1) = lnew
i (n),

gi(n + 1) = (gi(n) + 1) mod Ni,

δi(n + 1) =























1, if yi(gi(n + 1)) = I,

0, if yi(gi(n)) = I, P and li(n) 6= 0,

δi(n), otherwise,

This probability is simply related to the frame size distribution probability of flow i.

IV. ALGORITHM IMPLEMENTATION: RL SCHEDULER

In this section, we discuss how to find the optimal gain policy defined by the MDP given

in the previous section. Our formulation has modeling and dimensionality issues, so dynamic

programming cannot be used. First, we do not have the knowledge of the state transition

probabilities, because the scheduler does not know the frame size distribution of the video flows

beforehand. We use the SMART algorithm [24] to overcome the curse of modeling. Second, in

the state space defined in equation (1) we have one continuous variable, i.e. the frame length.

Even if we quantize this variable to several levels, the state space would still be huge. For

instance, suppose that Dmax = 4 and Ni = 12 for all i ∈ F , and we quantize li’s to 8 levels.

Thus, |S| = (8 × 5 × 12 × 2)F
≈ 1000F . Furthermore, it is easy to verify that |A| = F · 2F .

The semi-Markov average reward techique (SMART) learns the Q-function Q : S×A→ R,

which has impractical memory requirement and convergence rate given the size its domain. To

tackle this issue, we solve the problem in two phases. In Section IV-A, we describe a compact

representation of the state-action space, which is a mapping from S × A to a smaller set Ω.

Then, in Section IV-B, a memory-based function approximator is used to map Ω to the set of

real numbers R.
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A. Features and State Space Representation

We use an aggregation scheme [21], which gives a more compact representation of the

state-action space. This scheme is useful when we have knowledge of an initial part of the

environment’s dynamics but not necessarily of the full dynamics. For instance, in our formulation,

the effect of chosen action on the system state can be deterministically simulated by the scheduler.

On the other hand, the new frame arrivals cannot be deterministically simulated. Using this

scheme, we obtain a more efficient learning method by breaking the environment’s dynamics

into the immediate effect of the action, which is deterministic and perfectly known, and the arrival

process of new frames with unknown size distribution [21]. We refer to the system state after

the effect of the taken action as afterstate [21]. The actual system state in the next superframe

is the afterstate updated according to the new frame arrivals.

In order to explain how afterstates can cause aggregation within the state-action space, consider

the case when at superframe n the scheduler can accommodate all the eligible frames in the

system (i.e., when the system is under-loaded). Examples of this case are:

• Flow 1 has a frame with l1 = 2, d1 = 2, g1 = 0, and δ1 = 1. The rest of the flows have no

frame and their queues are empty;

• Flow 2 has a frame with l2 = 1, d2 = 3, g2 = 5, and δ2 = 1. The rest of the flows have no

frame and their queues are empty;

• Flows 1 and 3 have a frame with l1 = 0.5, d1 = 2, g1 = 3, δ1 = 1, l3 = 2.5, d3 = 1, g3 = 7,

and δ3 = 1. The rest of the flows have no frame and their queues are empty.

In any of the above examples, the scheduler’s action is that all the eligible frames be transmitted

in superframe n. The effect of this action is that the system will become empty. Thus, the

afterstate (i.e. the system state after the effect of the action) corresponds to an empty system.

As a result, all of the state-action pairs, which correspond to an under-loaded system becoming

empty, have the same afterstate and can be aggregated. Similarly, any afterstate represents all
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the state-action pairs that result in that afterstate. Using afterstates is in fact a mapping from

S×A to S. Reference [28] successfully applies this idea to admission control problem in cellular

networks.

The state space of our MDP has binary variables in δ, continuous variables in l, and integer

variables in d and g. Even after using afterstates, the scheduler should learn the Q-function over

S, which is still very large. Therefore, we need to specify the important features in each afterstate,

which most affect the scheduling decision. As mentioned before, there is no systematic way of

choosing the features. We approach this task by studying the behavior of the SRPT, EDD and

PAP schedulers. All of these schedulers can be viewed as single-stage decision making process,

where the scheduler chooses an action merely based on its immediate effect, i.e., based on

the resulting afterstate. SRPT uses information about length. Since it minimizes the number of

pending frames in the system, it chooses an action that yield an afterstate with minimum number

of frames. In other words, the only feature of the afterstate that is important for SRPT is the

number of frames in the system. Similarly, EDD+SRPT uses the number of frames in the system,

but groups them according to their deadlines. It chooses an action that leads to the afterstate with

the minimum number of frames in the group with the smallest deadline. If this value is the same

for the afterstates of two actions or more, the size of the group with second smallest deadline

is used, and so on. Therefore, the features that EDD+SRPT used are the number of frames in

each deadline group. PAP, which is an application-aware scheduler, further partitions the frames

in the system according to their type. In other words, SRPT, EDD+SRPT, and PAP schedulers

mainly focus on the information about length, deadline, and type, respectively. With the addition

of FDA technique, they can take advantage of decodability as well. Since the optimal scheduler

should focus on all the information, it is reasonable to assume that it uses all the features used

by those schedulers. In light of these similarities, the following features are chosen:

• Fy, non urgent =
∣

∣

∣

{

i | li > 0, yi(gi) = y, δi = 1, di > 1
}

∣

∣

∣
is the number of all the frames of

type y in the system that have a deadline greater that 1.
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• Fy, urgent =
∣

∣

∣

{

i | li > 0, yi(gi) = y, δi = 1, di = 1
}

∣

∣

∣
is the number of all the frames of

type y in the system that have a deadline equal to 1.

• Fy, lost =
∣

∣

∣

{

i | li > 0, yi(gi) = y, di = 0
}

∪
{

i | li > 0, yi(gi) = y, δi = 0
}

∣

∣

∣
is the number

of all the frames of type y in the system that are either expired or indirectly lost.

The parameter y can be substituted with I , P , and B. Thus, in total we represent each afterstate

using 9 (i.e., 3×3) features. A vector whose elements are the features is referred to as a feature

vector. Since in our formulation every feature can vary from 0 to F , the set of all feature vectors

is Ω = {0, 1, . . . , F}9.

So far in this section, we have performed two aggregation steps. The first one is the use of

afterstates, which is a function from S×A to S. The second aggregation is feature extraction,

which is a function from S to Ω. Using the procedures described in this subsection, we can

define the function f : S × A → Ω, where x = f(s, a) is the feature vector of the afterstate

resulted by taking action a in state s. In the rest of this section, we describe how we can perform

generalization (i.e., function approximation) over the set of feature vectors Ω.

B. Function Approximation: Kanerva Coding

As the dimension of the state space grows, the complexity of many function approximators,

such as tile coding, increases exponentially with it. However, the complexity of the target

function can be unrelated to the size and dimensionality of the state space, and need not grow

exponentially with it [21]. For instance, we might have a 100-dimensional state space where only

one of the dimensions happens to affect the target function. Kanerva coding is a memory-based

function approximator that allows us to deal with the complexity of a reasonable approximation

of the target function, and not the dimensionality of the state space [21]. It was originally

presented in the context of sparse distributed memory [29]. Like other memory-based techniques,

it has nice memory requirement and generalization properties, and also allows dynamic memory

allocation. The strength of Kanerva coding increases with the number of its memory locations
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(i.e., prototypes), which can be set independent of the dimensionality of the state space. The more

the number of prototypes, the more the complexity of the target function that it can approximate.

Kanerva coding is successfully applied in the context of RL in [30] and [31].

In our scheduling problem, we use Kanerva coding to approximate the function Q̂ : Ω→ R,

which gives the value of a feature vector. The prototypes of Kanerva coding are feature vectors

in Ω. The value of any feature vector in Ω is then approximated using the values of those

prototypes. In order to do so, a similarity metric should be defined. We define the distance

of two feature vectors x, z ∈ Ω as the number of unequal features in the two vectors, i.e.,

dist(x, z) ,
∑|x|

j=1 U{xj 6=zj} [31]. Furthermore, we define the similarity of two feature vectors x

and z as follows [32]:

λ(x, z) =











1−
dist(x, z)

β
, dist(x, z) ≤ β

0, otherwise,

where β is the activation radius. In other words, two feature vectors have no similarity if they

have more than β different features. Let hk be the kth prototype in Kanerva coding. To calculate

the value of a feature vector x, we first determine the set of prototypes that are activated by x,

which are similar to it. We denote this set by Hx and formally define it as Hx = {k | λk > 0},

where λk , λ(x,hk) is the similarity between x and hk. Let wk be the value corresponding to

hk. Then the value of x is given by

Q̂(x) =

∑

k∈Hx

λkwk
∑

k∈Hx

λk

. (12)

Thus, the function Q̂(·) is a linear combination of the value of prototypes. Using the standard

gradient descent algorithm [21] for linear approximation, the update equation becomes [32]:

wi ← wi + µ
λi

∑

k∈Hx

λk

{

[

r(s, a)− ηρ + max
a
′

Q̂(f(s′, a′))
]

− Q̂(f(s, a))

}

, ∀ i ∈ Hx. (13)

Since in our formulation, the immediate reward does not depend on s′, we have used r(s, a)

instead of r(s, a, s′).
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The distribution of prototypes in the state space is crucial for the approximation accuracy. In

our problem, it is not efficient to cover the whole state space, because the scheduler does not

necessarily explore all of it. Instead, we use a dynamic prototype addition method, which covers

the vicinity of the trajectory that the scheduler explores within the state space. We follow the

approach given in [32]. The dynamic addition algorithm starts with an empty set of prototypes,

and builds up over time. If the set is too sparse around an encountered feature vector, enough

prototypes are added. Furthermore, the prototypes should not be too close (similar) to each other.

Therefore, the following condition is imposed on the similarity of prototypes:

λ(hi,hj) ≤











1− 1
K − 1 , K ≥ 3

0.5, K = 2
(14)

for any pair of memory locations hi and hj. K is the minimum number of prototypes that we

aim to be activated for a feature vector. In other words, we want to have at least K prototypes in

a sphere of radius β centered at any encountered feature vector. As a result, K and β determine

the minimum density of prototypes along the scheduler’s trajectory in the state space. The more

the density, the more prototypes we have, and the more accurate the approximation will be. The

dynamic prototype addition algorithm has the following rules:

Rule 1: If fewer than K prototypes are activated by the input feature vector x, add x to the set

of prototypes, if its addition does not violate the condition (14).

Rule 2: If after applying Rule 1, the number of active prototypes (i.e., |Hx|) is K0 < K, then

(K −K0) prototypes are randomly added within the neighborhood of x. The neighborhood of

x is the set of all feature vectors that are similar to it, i.e., {z | λ(x, z) > 0}. Condition (14) is

enforced when adding new prototypes. The value of a newly added prototype is set to the value

of the function Q̂ evaluated at that prototype according to equation (12).

For discussion on how random selection of prototypes can give good approximation, see [33].

Successful application of this algorithm to RL tasks can be found in [30].
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C. RL Scheduler

Since we use average reward optimality criterion, SMART [24] is a suitable model-free

learning algorithm to find the optimal gain policy. Using SMART, we determine the scheduling

policy that achieves the minimum average DFR. We call this scheduler as the RL scheduler. The

pseudo-code of the RL scheduler is given in Fig. 3. At superframe n = 0, i.e., when the RL

scheduler begins operating, cumulative reward CR and average reward ρ are both set to 0. The

cumulative time CT is the duration over which CR is accumulated. We approximate the Q-value

of actions with Kanerva coding. The set of prototypes of Kanerva coding is also empty at the

beginning. After initialization, the RL scheduler makes scheduling decisions at the beginning of

each superframe based on the following procedure. It first determines the exploration probability

and the learning rate based on Darken-Chang-Moody (DCM) search-then-converge procedure

[34]. Using DCM method, the exploration probability and learning rate at superframe n, i.e., qn

and µn, are given by q0/[1+( n2

qr+n
)] and µ0/[1+( n2

µr+n
)], respectively. The parameters q0, qr, µ0,

and µr are constants. Afterwards, with probability 1− qn, the RL scheduler chooses the greedy

action; with probability qn, a random exploratory action (i.e., any action other than the greedy

one) is chosen. In Step 3 in Fig. 3, the RL scheduler executes the chosen action and calculates

the immediate reward (see equation (7)) and the next system state s′. In Step 4, the scheduler

updates the set of prototypes according to Rule 1 and Rule 2 of Section IV-B. The weights of

the prototypes are updated in Step 5. This update is the same as equation (13). In Step 6, the

cumulative reward and average reward are updated only if a greedy action was chosen. Finally,

in Step 7, the scheduler goes to the next superframe and repeat the same procedure again. Fig. 4

illustrates the structure of our proposed RL scheduler.

V. MODEL EXTENSION

In the previous subsections, we assume that the deadline of all video frames is fixed, and is

equal to the inter-arrival time of a frame, i.e., γ. In this section, we describe how to extend our
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proposed model and relax the fixed deadline assumption. We consider the general case where

the deadline for each flow i is equal to Γi ≥ γ. In particular, we assume that:

Γi = Jiγ, ∀Ji ∈ {1, 2, . . .}, i = 1, . . . , F. (15)

Clearly, this require the queue of flow i needs to hold up to Ji frames. To incorporate the

extended deadline model in (15) into our problem formulation, we need to modify the state,

action, and reward models in our RL scheduler design. First, consider the set of system states

in (1). If (15) holds, then set S becomes:

S ,

{

s = (l,d, g, δ) | ∀ i ∈ F , 1 ≤ j ≤ Ji, 0 ≤ li,j ≤ txi(L
max
i ),

di,j ∈ {0, . . . , D
max
i }, gi,j ∈ {0, . . . , Ni − 1}, δi,j ∈ {0, 1}

}

. (16)

Here l , [l1,1 · · · l1,J1
lF,1 · · · lF,JF

], where li,j denotes the channel time required by the j th frame

in the queue of flow i, in milliseconds. the vectors d, g, and δ can be obtained similarly. On

the other hand, the value Dmax
i , ⌊Γi

η
⌋ = ⌊γJi

η
⌋, is the maximum frame deadline in units of

superframe size η.

Similarly, we can extend the set of all possible actions to be as follows:

A =
{

a , (a1,1, · · · aF,JF
, p, q) | p ∈ F ∩ {0}; 1 ≤ q ≤ Ji ai,j ∈ {0, 1}, ∀ i ∈ F ,

j ∈ {1, . . . , Ji}; apq = 0 if p 6= 0
}

, (17)

where aij is equal to 1 if the scheduler allocates enough channel time to flow i so that it can

fully transmit its j th frame. Given the action set A, at each epoch, the extended scheduler should

choose an action depending on the current state. Clearly, the channel time required to transmit

all scheduled frames for all flows should not exceed the length of the superframe. This requires

replacing (3) with the following extended constraint:

F
∑

i=1

Ji
∑

j=1

(ai,j · li,j) ≤ η. (18)
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We notice that if Γi = γ for all flows i = 1, . . . , F , then the constraint in (18) simply reduces

to (3). After transmitting all the scheduled frames, the remaining time can be calculated as:

lpartial = η −
F
∑

i=1

Ji
∑

j=1

(ai,j · li,j) ≤ η. (19)

Next, consider the reward model. We can write the state-dependent cost function as follows:

ci,j(s) =























(

Ni + (Mi − 1)
)

· ei,j · U{di,j=1}, if yi(gi,j) = I,

ei,j · U{di,j=1}, if yi(gi,j) = B,
(

Ni − 1− (
gi,j

Mi
− 1)Mi

)

· ei,j · U{di,j=1}, if yi(gi,j) = P .

(20)

Note that yi( ), Mi and Ni do not have j index because they are indeed defined in per flow

basis. We can also extend the reward function to be as follows:

r(s(n), a(n)) =
F
∑

i=1

Ji
∑

j=1

[

ai,j(n)− ci,j(s(n))(1− ai,j(n))

]

. (21)

Given the reward function above, we can rewrite the policy gain to be:

ρπ =
1

T

T
∑

n=1

r(s(n), a(n))

=

F
∑

i=1

(

∑T
n=1

∑Ji

j=1 ai,j(n)−
∑T

n=1

∑Ji

j=1 ci,j(s(n))(1− ai,j(n))

T

)

. (22)

In this case, the total number of frames for each flow is total frames = total time
inter arrival time

= ηT

γ
.

Furthermore, the terms
∑T

n=1

∑Ji

j=1 ai,j(n) and
∑T

n=1

∑Ji

j=1 ci,j(s(n))(1− ai(n)) in (22) are in

fact the total number of scheduled frames and the total number of undecodable frames for each

flow, respectively. In addition, these two terms sum up to the total number of frames for flow

i. Consequently, after reordering the terms, the policy gain in (22) becomes exactly the same

as that in (9). Therefore, (10) also still holds and an optimal (maximum) gain policy yields the

optimal (minimum) average DFR, which is what we aim to find in presence of the extended

model.

Next, we extend the state transitions model to the general case when the deadline Γi for flow i

is as in (15). At superframe n, the system is in state s(n) and chooses the action a(n). The next
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state s(n + 1) depends on s(n), a(n) and new frame arrivals. We determine the state transitions

per flow, i.e., we show how the state variables relate to each flow change. The whole system

state is updated by performing the same procedure for all the flows.

When di,1(n) ≥ 1, no new video frame will arrive for flow i. Thus, the remaining time until

the next arrival is reduced by one superframe. If any frame of a flow is scheduled, its length

will become 0. And if it is partially transmitted, its length will reduce by lpartial. Otherwise,

the length remains unchanged. The frame offset within GOP also does not change. The value

of δi,j changes only when an I or P frame of flow i expires, or when a new GOP starts, which

is indicated by arrival of a new I frame for flow i. None of these happens when di,1(n) ≥ 1.

Hence, if di,1(n) ≥ 1, then for each j ∈ {1 . . . Ji}, the state deterministically changes as follows:

di,j(n + 1) = di,j(n)− 1, (23)

li,j(n + 1) = li,j(n)(1− ai,j(n))− lpartialU{i=p and j=q}, (24)

gi,j(n + 1) = gi,j(n), (25)

δi,j(n + 1) = δi,j(n). (26)

When di,1(n) = 0, it means that the first frame in the queue of flow i has expired, if it has

not already been sent, i.e., if li,1(n) 6= 0. It also means that a new frame will arrive for flow i,

within superframe n. We shift the frames in the queue (getting rid of the head frame) and add

the new frame to the tail of the queue. We denote the deadline and channel time requirement of

the newly arrived frame for flow i within superframe n by dnew
i (n) and lnew

i (n), respectively.

Let probi(l
new
i (n)) denote the probability that the channel time request of flow i is lnew

i (n).

Thus, when di,1(n) = 0 ,the state changes with probability probi(l
new
i (n)) as follows:

di,Ji
(n + 1) = dnew

i (n), (27)

li,Ji
(n + 1) = lnew

i (n), (28)

gi,Ji
(n + 1) = (gi,Ji

(n) + 1) mod Ni. (29)
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We notice that the exact model for δi,J(n + 1) depends on the considered scenario. It is very

difficult (if possible) to provide a general closed-form model for δi,J(n+1) for extended deadline

model. On the other hand, for each j ∈ {2, · · · , J} we have:

di,j−1(n + 1) = di,j(n), (30)

li,j−1(n + 1) = li,j(n), (31)

gi,j−1(n + 1) = gi,j(n), (32)

δi,j−1(n + 1) = δi,j(n). (33)

Given the extended models in (15)-(33), our proposed RL algorithm can be used to obtain the

optimal solutions for the general case when the deadlines are indeed arbitrarily for each flow.

VI. PERFORMANCE EVALUATION AND COMPARISONS

In this section, we evaluate the performance of our proposed scheduling algorithm. We use the

real MPEG-4 trace of Jurassic Park movie with GOP pattern of (N = 12, M = 3) [35]. The frame

rate is 30 frames per second. The average rate of each flow is 8 Mbps. In the simulation model,

each iteration (i.e., simulation run) lasts 500 s. The superframe size is η = 8 ms; thus, each

iteration consists of 500/0.008 = 62, 500 superframes (i.e., decision epochs). The parameters p0

and µ0 of the DCM scheme algorithm depend on how fast the scheduler can learn the optimal

policy. We set p0 = µ0 = 0.1 and pr = µr = 1010, as it gives the RL scheduler enough time to

explore and find the optimal policy without too many iterations. We end the simulation when

both the learning rate and exploration probability fall below 0.005.

The rest of the simulation parameters are as follows. The channel data rate is 100 Mbps,

the number of MPEG-4 flows varies from 2 to 10. The maximum tolerable delay for MPEG-4

frames is 1/30 s and maximum MAC fragment size is 2048 bytes. We use the average DFR as

the performance metric. For F-SRPT [5], EDD+SRPT [6], and PAP [2] scheduling algorithms

we use the performance that is already improved by the FDA technique described in [13].
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Fig. 5 compares the average DFR achieved by RL, EDD+SRPT, PAP, and F-SRPT algorithms

when the number of MPEG-4 flows varies from 2 to 10. We see that RL scheduler performs better

than the others regardless of the number of MPEG-4 flows. The relative reduction of average

DFR is up to 42%, 49%, and 53% for EDD+SRPT, PAP, and F-SRPT scheduler, respectively.

The start time of different flows in the system affects the burstiness of traffic load, and thus

influences the overall performance. In order to show this fact, we assume that the start times of

flows are separated by φ seconds. In other words, flow i starts at time iφ [5]. Fig. 6 compares

the average DFR achieved by RL, F-SRPT, EDD+SRPT, and PAP scheduling algorithms when

φ varies from 1 to 30 ms. The number of MPEG-4 flows is equal to 9. We can see that our

proposed RL scheduler performs better than the other three for all values of φ. Furthermore, the

performance of RL scheduler is less sensitive to φ.

To evaluate the optimality of the RL algorithm, we consider the special case of interest which

is when φ = 0, i.e., when all the flows in the system start at the same time. In [14], we show

that for this case, the SRPT scheduler is the optimal scheduler. Fig. 7 compares the average

DFR achieved by RL algorithm with the optimal case when the number of MPEG-4 flows varies

from 2 to 10. We can see that in all cases, RL scheduler provides nearly optimal performance.

Table III shows that reduction of the average DFR can also be translated to system capacity

enhancement. Suppose that the acceptable user perceived quality is equivalent to the average DFR

being less than 5%. Thus, the capacity of the system can be defined as the number of video

flows that can be admitted to the system, while the average DFR is less than the maximum

allowable value of 5%. Using this definition, the system capacity is 7 flows for the conventional

schedulers, as opposed to 8 flows for the RL scheduler. Consequently, in this example, the RL

scheduler increases the system capacity by 14.3%.

As mentioned in Section III, the policy gain and DFR have a linear relationship. We can

verify the validity of equation (10) as follows. First, the estimated average DFR is calculated by

substituting the policy gain ρ in equation (10). Second, the exact average DFR is measured by
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counting the number of scheduled frames. Fig. 8 compares these two values. As one can see,

DFR in equation (10) under-estimates the exact average DFR, because the gain is only updated

when the scheduler takes a greedy action. However, both greedy and exploratory actions affect

the exact average DFR. Over time, with more iterations, as the RL scheduler learns the optimal

policy and the exploration probability decays, the exact and estimated average DFR converge

together. This result verifies that the optimal gain policy yields the minimum average DFR.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we formulated the scheduling of video flows in high-rate WPANs as an MDP

problem. This model incorporates the decodability information extracted by the FDA technique.

It also takes into account the number and pattern of video flows, and their hierarchical structure.

The solution to this MDP problem is the optimal scheduling policy that minimizes the average

DFR. Using compact state space representation and function approximation, we simplified the

MDP problem in order to solve it with RL. Our proposed RL scheduler is the solution given by

an RL technique called SMART. Simulation results showed that when FDA technique is applied

to the F-SRPT and EDD+SRPT schedulers, there are up to 61% and 60% reduction in DFR,

respectively. Results also showed that the RL scheduler reduces the average DFR by 42%, 49%,

and 53% when compared to EDD+SRPT, PAP, and F-SRPT schedulers, respectively.

With the variety of applications that a high-rate WPAN should be able to support, it will

serve different classes of traffic with different QoS requirements. We focused on the video

traffic class in this paper. Therefore, extending the RL scheduler which can handle and recognize

different traffic types is part of our work. This is possible by defining proper reward function

and modifying the state space model. In the new setting, the scheduler can be designed to

achieve the best overall performance based on a combination of different rewards and costs.

Moreover, the issue of fairness among the scheduled video flows is also a critical point, which

is not considered in this paper. Another direction for future work is to account for fairness by



31

formulating the problem as an MDP with constraints that enforce the fairness criterion. Using

fuzzy logic for function approximation can also be of interest. Furthermore, it is possible to

accommodate more flows into the system if we can take concurrent transmissions into account

using time domain spreading (TDS) as well as frequency domain spreading (FDS) techniques.

Finally, it is possible to extend our model to incorporate the impact of jitter by framing the

arrival time probabilistically, rather than deterministically.
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Fig. 1. Superframe structure. The presence of CAP is optional. The number, duration and order of the CTAs and MCTAs can

vary from one superframe to another.

Fig. 2. GOP structure (N = 9, M = 3). The arrows indicate the direction of decoding dependencies.
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TABLE I

LIST OF NOMENCLATURE.

Notation Parameter definition

A Action set in MDP model.

a Action vector in MDP model.

ai Binary action for flow i.

B Bidirectional frame.

Dmax maximum frame deadline in units of superframe size η.

di Number of full superframes left until the arrival of the next frame.

ei A binary variable to denote the eligibility of flow i being scheduled.

F Number of video flows.

F Set of video flows.

gi Offset of the frame in the queue of flow i, with respect to the beginning of the frame’s GOP.

hk The kth prototype in Kanerva coding.

I Intra-coded frame.

Lmax
i

Maximum frame size of flow i.

li Channel time required by the frame in the queue of flow i, in milliseconds.

lpartial Remaining channel time.

Mi I-to-P frame distance of the ith video flow.

Ni I-to-I frame distance of the ith video flow.

P Predictive frame.

p The flow which can only transmit parts of its frame during a scheduling period.

S State space in MDP model.

s State vector in MDP model.

Ω Set of feature vectors.

β Activation radius in Kanerva coding.

δi Binary variable for flow i.

η Size of a superframe.

γ Inter-arrival time.

λ( ) Similarity function.

ρπ Policy gain given the use of policy π.

txi(x) Channel time that flow i requires to send x bits of data.



36

TABLE II

NUMBER OF FRAME DEPENDENCIES FOR EACH VIDEO FRAME

Frame type Number of frames

I N + (M − 1)

Pk, k = 1, . . . , N

M
− 1 N − 1 − (k − 1)M

B 1

TABLE III

QUANTITATIVE COMPARISON AMONG RL SCHEDULER AND CONVENTIONAL SCHEDULERS. THE MINIMUM AVERAGE DFR

GIVEN BY F-SRPT, EDD+SRPT, AND PAP IS USED FOR COMPARISON.

Number of Flows F 6 7 8 9 10

Minimum Average DFR (%) 1.5 4.0 7.2 10.7 14.4

RL Average DFR (%) 0.9 2.3 4.4 7.2 10.5

Absolute Reduction (%) 0.6 1.7 2.8 3.4 3.9

Relative Reduction (%) 42 42 38 32 27
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Initialize the superframe number n = 0, cumulative reward CR = 0, cumulative time CT = 0, and the average

reward ρ = 0. In addition, the set of prototypes is initialized as the empty set. The Superframe size is η.

Suppose that the system starts in state s.

while n < MAX STEPS do

1) Calculate exploration probability qn and learning rate µn using the DCM method.

2) With probability 1−qn, choose the greedy action a ∈ As that maximizes Q̂(f(s,a)); otherwise, choose

a random exploratory action from the set {As \ a}.

3) Execute the chosen action. Let the system state at the next superframe be s
′, and the immediate received

reward be r(s,a).

4) Apply Rule 1 and Rule 2 of Section IV-B to the feature vector x = f(s,a).

5) Update the weight of the prototypes according to:

wi ← wi + µn

λi
∑

k∈Hx

λk

{

[

r(s,a) − ηρ + max
a
′

Q̂(f(s′,a′))
]

− Q̂(f(s,a))

}

, ∀i ∈ Hx

6) if a greedy action was chosen in Step 2, then

Update CT ← CT + η;

Update CR← CR + r(s,a) and ρ← CR/CT ;

else go to Step (2).

7) Go to the next superframe, i.e., update n← n + 1 and s← s
′.

Fig. 3. Pseudo-code of the RL scheduler.

Fig. 4. Structure of the RL scheduler.
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Fig. 5. Comparison of RL scheduler and other schedulers when the number of video flows varies from 2 to 10.
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Fig. 6. Effect of time separation on average DFR. The RL scheduler has the smallest average DFR for all φ.
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Fig. 7. Comparison of RL scheduler and optimal scheduler for φ = 0. RL scheduler is nearly optimal in this case.
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