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Abstract— The emerging high-rate wireless personal area net-
work (WPAN) technology is capable of supporting high-speed
and high-quality real-time multimedia applications. In particular,
MPEG-4 video streams are deemed to be a widespread traffic
type. However, in the current IEEE 802.15.3 standard for media
access control (MAC) of high-rate WPANs, the implementation
details of some key issues such as scheduling and quality of
service (QoS) provisioning have not been addressed. In this paper,
we first propose a mathematical model for the optimal scheduling
scheme for MPEG-4 flows in high-rate WPANs. We also propose
an RL scheduler based on the reinforcement learning (RL) tech-
nique. Simulation results show that our proposed RL scheduler
achieves nearly optimal performance and performs better than
F-SRPT [1], EDD+SRPT [2], and PAP [3] scheduling algorithms
in terms of a lower decoding failure rate.

I. INTRODUCTION

In the past few years, ultrawide-band (UWB) technology has
received increasing attention in the wireless world. It provides
short-range connectivity, low transmit power levels, and high-
data rates, which make UWB to be the physical layer of
choice for high-rate wireless personal area networks (WPANs).
UWB-enabled WPANs can offer many new applications, such
as home entertainment, real-time multimedia streaming, and
wireless USB. In order to fully exploit UWB technology in
high-rate WPANs, upper layers, including the media access
control (MAC) layer, must be properly designed for high-rate
applications. Video transmission is one such application for
high-rate WPANs. Real-time video flows are delay-sensitive
and require quality of service (QoS) guarantee. However, in
the IEEE 802.15.3 standard for MAC [4], which is designed
for WPANs, details of scheduling and QoS support are left to
the developers. Consequently, in this paper, we aim to design
a scheduling algorithm for MAC layer to provide the required
QoS for video traffic.

In order to reduce bandwidth consumption, video traffic is
usually compressed with variable bit rate (VBR) encoders,
among which MPEG-4 is the most widely used. Similar to
other real-time traffic, MPEG-4 stream is delay sensitive, and
its frames are dropped at the receiver if their delay exceeds
the maximum tolerable delay. This is the base of job failure
rate (JFR) metric for evaluating the performance of MAC
schedulers. It is defined as the fraction of frames that fail to
meet their transmission deadlines ( and thus become useless).
However, MPEG-4 stream has a few unique characteristics
that make QoS support more challenging than other real-time
traffic. It has high burstiness, large peak-to-average ratio of
the frame sizes, and hierarchical structure with dependency
among its frames [3]. Therefore, a more accurate metric which

takes frame dependencies into account is required. We use
the decoding failure rate (DFR) criterion, which is defined
as the ratio of the total number of undecodable frames to
the total number of frames [5]. DFR can be viewed as an
objective measure of user-perceived degradation of quality.
Thus, it should be minimized for better QoS performance.

Recently, various MAC scheduling algorithms have been
proposed for high-rate WPANs [1]–[3], [6]–[11]. For impulse-
based UWB, scheduling problems can be formulated as rate
and power allocation problems. These problems can be mod-
eled as a joint optimization problem, so as to minimize the
total power consumption [8] or maximize the total system
throughput [10]. The concept of exclusion region is also
used for such schedulers [11]. On the other hand, with no
assumption on the type of physical layer, Mangharam et al.
proposed the fair shortest remaining processing time (F-SRPT)
scheduler [1]. SRPT schedules different jobs in the system in
the order of their remaining processing time, from the shortest
to the longest. F-SRPT is a variation of SRPT that maintains
fairness among flows with different data rates. In [2], the
earliest due date (EDD) method is used along with SRPT. Kim
and Cho proposed a scheduling algorithm designed for MPEG-
4 flows [3]. Each MPEG-4 frame type is scheduled with a
pre-assigned priority (PAP) in I , P , and B order. In [12],
we proposed a frame-decodability aware (FDA) technique to
improve the performance of scheduling MPEG-4 flows.

In this paper, we propose a novel scheduling algorithm
which minimizes the average DFR. The contributions of our
work are as follows:

• We formulate the scheduling of MPEG-4 flows in high-
rate WPANs as a Markov decision process (MDP) prob-
lem. The model takes into account the number and pattern
of MPEG-4 flows, and the hierarchical structure.

• Using reinforcement learning (RL), we find the optimal
(or near-optimal) scheduling policy defined by the MDP
model. The optimal policy minimizes the average DFR.

• Simulation results show that our proposed RL scheduler
reduces the average DFR by 42%, 49%, and 53% when
compared to EDD+SRPT [2], PAP [3], and F-SRPT [1]
schedulers, respectively.

The rest of the paper is organized as follows. In Section II,
we summarize IEEE 802.15.3 standard and the hierarchical
structure of MPEG-4 streams. In Section III, we present the
problem formulation and our proposed scheduling algorithm
for video traffic. Performance comparisons are given in Section
IV, and conclusions are drawn in Section V.



Fig. 1. GOP structure (N = 9, M = 3). The arrows indicate the direction
of decoding dependencies.

II. BACKGROUND

A. IEEE 802.15.3 MAC Standard

An 802.15.3 piconet is a wireless ad-hoc data communica-
tions system that allows a number of independent data devices
(DEVs) to communicate with each other. Within a piconet,
one DEV, called the piconet coordinator (PNC), is responsible
to provide basic timing, perform scheduling, manage QoS,
and control media access. The timing in a piconet is based
on superframes. Each superframe includes a contention free
period, the use of which is determined by the scheduling
decisions that PNC makes.

B. MPEG-4 Streams

An MPEG-4 stream consists of a sequence of compact
frames which can have three types: intra-coded (I), predic-
tive (P ), or bidirectional (B) frames. The type of frames
in the sequence is according to a predefined pattern called
group of pictures (GOP). This pattern is characterized by two
parameters (N,M), where N is the I-to-I frame distance,
and M is the I-to-P frame distance [13]. This pattern is
generally fixed for a given video sequence, and N is a multiple
of M . Different frame types are encoded using different
compression schemes. Therefore, I frames tend to be larger
(less compressed) than P and B frames, and P frames tend
to be larger than B frames. Furthermore, MPEG-4 streams
have a hierarchical structure, meaning that there are decoding
dependencies among the frames (see Fig. 1). For a frame to be
decodable at the receiver, all other frames that it depends on
must be available at the receiver. Otherwise, it is undecodable
[5]. As shown in Fig. 1, all the frames in a GOP depend on
the I frame in that GOP; therefore, if that I frame does not
meet its deadline, the whole GOP is undecodable.

III. OPTIMAL SCHEDULING ALGORITHM FOR VIDEO

TRAFFIC

In this section, we first formulate the problem of finding the
scheduling policy with minimum average DFR in the form of a
Markov decision process (MDP) with average reward criterion
[14]. We next relate the gain of the scheduling policy with the
average DFR that it yields. As a result of the linear relationship
between gain and average DFR, we use the reinforcement
learning (RL) techniques [15], [16] to determine the optimal
scheduling policy which minimizes the average DFR.

A. System Model

Consider a WPAN and let F denote the number of MPEG-4
flows. We denote F = {1, 2, . . . , F} as the set of all flows.
We assume that the deadline of all MPEG-4 frames is fixed,
and is equal to the frame inter-arrival time γ. The superframe
size η is also assumed to be fixed and less than γ. We denote
the GOP pattern of the flow i ∈ F by (Ni,Mi), where Ni and
Mi are defined in Section II-B. The GOP pattern of all the
flows is assumed to remain fixed during the flows’ lifetime.

To model the scheduling problem as an MDP, we need to
determine the corresponding decision epochs, system states,
actions, reward function, and state transition probabilities [14].
In our model, the scheduler makes a decision at the beginning
of each superframe, and determines which flows should be
scheduled in that superframe. For simplicity, we show the
decision epochs in terms of superframe size. For example,
the actual time of decision epoch n, which is the beginning
of nth superframe, is (n − 1)η. Therefore, the set of decision
epochs can be denoted as {1, 2, . . . , T}, for T < ∞.

For any flow i ∈ F , let li denote the length of the frames in
the queue (in bytes), di denote the number of full superframes
left until the arrival of the next frame1, and gi denote the
offset of the queued frame with respect to the beginning of
the frame’s GOP. We also set δi to 0 if the frame of flow i is
undecodable, and set to 1 otherwise. We define the set of all
possible system states as S. A state (l, d, g, δ) belongs to S if
and only if for all i ∈ F we have:

0 ≤ li ≤ Lmax
i , di ∈ {0, . . . , Dmax},

gi ∈ {0, . . . , Ni − 1}, δi ∈ {0, 1}, (1)

where Lmax
i is the maximum frame size of the ith flow,

and Dmax = �γ
η � is the maximum frame deadline in units

of superframe size η. In vector notation, we have l =
[l1 l2 · · · lF ], d = [d1 d2 · · · dF ], g = [g1 g2 · · · gF ],
and δ = [δ1 δ2 · · · δF ]. In order to find the value of δ based
on l, d and g, the scheduler incorporates the frame decodability
aware (FDA) technique which we proposed in [12].

Let A be the set of all possible actions and a =
[a1 a2 · · · aF ]. An action a = (a, ipartial) is a possible
action if and only if ipartial ∈ F ∩ {0} and for all i ∈ F , we
have:

ai ∈ {0, 1}, ai + aipartial ≤ 1, (2)

where ai is equal to 1 if the scheduler allocates enough channel
time to flow i so that it can fully transmit its frame. Otherwise,
it is equal to 0. The parameter ipartial is the flow that can only
transmit parts of its frame during the channel time that the
scheduler allocates to it. If no such flow exists, ipartial = 0.
Here we assume that in each superframe, the scheduler allows
at most one partial frame transmission, and the rest are full
frame transmissions. The inequality ai + aipartial ≤ 1 implies
that a frame cannot be both fully and partially transmitted
simultaneously.

1Since the maximum tolerable delay for MPEG-4 frames is the frame inter-
arrival time, di can alternatively be interpreted as the deadline of the frame
in the queue of flow i, in terms of superframe size.



At the beginning of each superframe, the scheduler chooses
an action depending on the current state. The chosen action
must satisfy a few constraints. First, the channel time required
to transmit scheduled frames should not exceed the superframe
length η:

F∑
i=1

tx(li × ai) ≤ η, (3)

where the function tx(·) gives the transmission time of its
argument. The simplest form of this function is tx(x) =
x/channel data rate. However, depending on the acknowl-
edgement policy, inter-frame spacing times, and maximum
MAC fragment size, this function may have a different form.

Second, all the scheduled flows must be eligible:

ai ≤ ei, ∀ i ∈ F , (4)

eipartial = 1, if ipartial �= 0, (5)

where ei denotes the eligibility of the flow i for being
scheduled. Flow i ∈ F is eligible (ei = 1) if it has a frame that
is not expired (di > 0) and is decodable (δi = 1); otherwise, it
is ineligible for being scheduled (ei = 0). Equation (4) implies
that ai = 0, if ei = 0. In other words, the ineligible flows are
never scheduled. After the scheduler makes its decision about
which frames should get fully transmitted in a superframe,
there may still remain some channel time in that superframe
that is not enough for full transmission of any unscheduled
frame. The amount of data that can be sent in this remaining
time is lpartial = tx−1(η −∑F

i=1 tx(li × ai)), where tx−1(·)
is the inverse of tx function, and gives the amount of data
that can be sent within a channel time equal to its argument.
The fact that lpartial is not enough for full transmission of any
eligible frame that is not scheduled, can be formally expressed
as the following constraint:

li > lpartial, ∀ i ∈ F , ei = 1, ai = 0. (6)

The idle channel time is allocated to the flow ipartial. If no
such flow exists, ipartial is set to 0. Consequently, the set of
possible actions in state s ∈ S, denoted by As, is the largest
subset of A, whose members satisfy all the constraints (3)–(6).
These constraints guarantee that the scheduler accommodates
as many eligible frames as possible. Note that As is stationary
and only depends on the system states.

Because of the hierarchical structure and inter-dependency
of MPEG-4 frames, some frames may be undecodable. We
should properly choose the reward function to take this into
account. We give a reward of one unit when a frame is
scheduled. On the other hand, if the deadline of a frame
expires, the scheduler receives a penalty (negative reward) of
W units, where W is the number of frames that depends on
the expired frame. Table I shows the number of dependencies
between GOP frames of an (N,M) MPEG-4 flow.

Let ci(s) be the state-dependent penalty (or cost) function
for flow i, and ci(s) =

(
Ni + (Mi − 1)

) · ei · U{di=1}, yi(gi) = I,
ei · U{di=1}, yi(gi) = B,(
Ni − 1 − ( gi

Mi
− 1)Mi

) · ei · U{di=1}, yi(gi) = P ,
(7)

TABLE I

NUMBER OF FRAME DEPENDENCIES FOR EACH MPEG-4 FRAME

Frame type Number of frames
I N + (M − 1)

Pk, k = 1, . . . , N
M − 1 N − 1 − (k − 1)M

B 1

where the function yi(g) : {0, . . . , Ni−1} → {I,B, P} maps
g to the frame types as follows:

yi(g) =




I, g = 0;
B, g mod Mi ≥ 1;
P, g mod Mi = 0 and g �= 0.

(8)

Furthermore, U{·} is the indicator function and is equal to
1 if its argument is true, and is 0 otherwise. The product
ei · U{di=1} indicates if the flow i has an urgent eligible frame.
Hence, the scheduler should receive ci(s) units of penalty if
it does not schedule flow i in the current superframe. As a
result, we can express the state- and action-dependent reward
that the scheduler receives at decision epoch n by:

r(s(n), a(n)) =
F∑

i=1

[
ai(n) − ci(s(n))(1 − ai(n))

]
. (9)

In order to show the merits of the reward function in
equation (9), we study the policy gain that it yields. The gain
of policy π under the average reward criterion is the average
accumulated reward [14]. In our model, the policy gain ρπ is
given by:

ρπ =
1
T

T∑
n=1

r(s(n), a(n))

=
1
T

F∑
i=1

(
T∑

n=1

ai(n) −
T∑

n=1

ci(s(n))(1 − ai(n))

)
.

(10)

The total number of frames for each flow is total frames =
total time

inter arrival time = ηT
γ . Furthermore, the terms

∑T
n=1 ai(n) and∑T

n=1 ci(s(n))(1 − ai(n)) in equation (10) are in fact the
total number of scheduled frames and the total number of
undecodable frames for each flow, respectively. In addition,
these two terms add up to the total number of frames for flow
i. Consequently, equation (10) can be rewritten as:

ρπ =
η

γ

F∑
i=1

( total scheduled − total undecodable
total frames

)

=
η

γ

F∑
i=1

(
1 − 2 × total undecodable

total frames

)

=
η

γ

F∑
i=1

(1 − 2 × DFRπ
i )

=
ηF

γ
− 2η

γ

F∑
i=1

DFRπ
i , (11)



where DFRπ
i denotes the decoding failure rate of flow i under

the policy π. Let DFR
π � 1

F

∑F
i=1 DFRπ

i denote the average
DFR under the policy π. Using equation (11), we have

DFR
π

=
1
2
− γ

2ηF
ρπ. (12)

Equation (12) shows that in our formulation, the average DFR
is a linear function of gain. Therefore, we conclude that:

arg max
π

ρπ = arg min
π

DFR
π
. (13)

Hence, an optimal (maximum) gain policy yields the optimal
(minimum) average DFR, which is what we aim to find.

To define the state transition probabilities, assume that at
superframe n, the system is in state s(n) and chooses the
action a(n). For the rest of this subsection, we describe how to
determine the system state at superframe n+1, s(n+1), which
depends on s(n), a(n) and new frame arrivals. We determine
the state transitions per flow. The whole system state is updated
by performing the same procedure for all the flows.

When di(n) ≥ 1, no new MPEG-4 frame will arrive for
flow i. The time left till the next arrival is reduced by one
superframe. If the flow is scheduled, its length will become
zero. And if it is partially transmitted, its length will reduce
as much as lpartial. Otherwise, the length remains unchanged.
The frame offset within GOP does not change. The value of
δi changes only when an I or P frame of flow i expires, or
when a new GOP starts, which is indicated by arrival of a new
I frame for flow i. None of these happens if di(n) ≥ 1. Thus,
if di(n)≥1, the state deterministically changes as follows:

di(n + 1) = di(n) − 1, (14)

li(n + 1) = li(n)(1 − ai(n)) − lpartialU{i=ipartial}, (15)

gi(n + 1) = gi(n), (16)

δi(n + 1) = δi(n). (17)

When di(n) = 0, it means that the frame in the queue
of flow i has expired, if it has not already been sent, i.e. if
li(n) �= 0. It also means that a new frame will arrive for flow i
within superframe n. Thus, when di(n) = 0, the state changes
with probability probi(l

new
i (n)) as follows:

di(n + 1) = dnew
i (n), (18)

li(n + 1) = lnew
i (n), (19)

gi(n + 1) = (gi(n) + 1) mod Ni, (20)

δi(n + 1) =




1, if yi(gi(n + 1)) = I,
0, if yi(gi(n)) = I, P , li(n) �= 0,
δi(n), otherwise,

(21)

where probi(·) is the frame size distribution probability of flow
i. Parameters dnew

i (n) and lnew
i (n) denote the deadline and

length of the newly arrived frame for flow i, in superframe n.

B. Algorithm Implementation: RL Scheduler

Since the frame size distribution may not be available a
priori and the state space is huge, we use reinforcement
learning (RL) to determine the optimal policy. An algorithm

Initialize the superframe number n = 0, action values R(s, a) = 0 for
all s ∈ S and a ∈ As, cumulative reward CM = 0, and the average
reward ρ = 0. Superframe size is η. Suppose that the system starts in
state s.

while n < MAX STEPS do
1) Calculate exploration probability pn and learning rate µn using

the DCM method.
2) With probability 1 − pn, choose the greedy action a ∈ As that

maximizes R(s, a); otherwise, choose a random exploratory action
from the set {As \ a}.

3) Execute the chosen action. Let the system state at the next
superframe be s′, and the immediate received reward be r(s, a).

4) Calculate the target value Rtar(s, a) =

(1− µn)R(s, a) + µn
{
r(s, a)− ηρ + max

a′ R(s′, a′)
}

5) if a greedy action was chosen in step 2, then
Update CM ← CM + r(s, a) and ρ← CM/nη;

else, go to Step (2).
6) Update the action value representation based on the approximation

error Rtar(s, a)−R(s, a).
7) Go to the next superframe, i.e., update n← n + 1 and s← s′.

Fig. 2. Pseudo-code of the RL scheduler.

for average reward RL called SMART (Semi-Markov Average
Reward Technique) [17] is used to find the optimal gain policy.
This algorithm calculates the value of taking action a in state
s, denoted by R(s, a), which is a measure of the action’s
appropriateness. The higher the action value, the better the
action is and the more it is favored by the scheduler. In order
to accrue a lot of rewards, the scheduler should be greedy.
In other words, at each superframe, it should choose the
action with maximum value. However, the scheduler should
occasionally deviate from the greedy manner (i.e., perform
exploration) in order to search for potentially better actions.

When the state space is large, as in our MDP model, it
requires a more compact representation for the state space.
This will lead to a reduction of memory requirement and
an increase of the convergence rate for RL. For large state
space, it may be possible to aggregate similar states with a
slight degradation in accuracy. Furthermore, depending on the
learning problem, there may exist some features in the state
and action, that can fully capture the important aspects of
system that influence the learning process. We take advantage
of aggregation within S as well as features to form a compact
representation of the state space [18]. Similarly, an action value
representation is required for generalizing among the value of
similar actions. We use the sparse distributed memory for this
matter [19], [20].

Using SMART, we determine the scheduling policy that
achieves the minimum average DFR. We call this scheduler
as the RL scheduler. The pseudo-code of the RL scheduler is
given in Fig. 2. The exploration probability and the learn-
ing rate decay are based on Darken-Chang-Moody (DCM)
search-then-converge procedure [21]. Using DCM method, the
exploration probability and learning rate at superframe n are
given by p0/[1 + ( n2

pr+n )] and µ0/[1 + ( n2

µr+n )], respectively.
The parameters p0, pr, µ0, and µr are constants. The structure
of our proposed RL scheduler is illustrated in Fig. 3.

The implementation of proposed scheduler requires a sig-
naling scheme to pass the required info from DEVs to the



Fig. 3. Structure of the RL scheduler.

PNC. For example, it can use the signaling method proposed
in [22] which is compatible with the 802.15.3 standard.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheduling algorithm. In the simulation model, each iteration
(i.e., simulation run) lasts 500 s. The superframe size is
η = 8 ms; thus, each iteration consists of 500/0.008 = 62500
superframes (i.e., decision epochs). The parameters p0 and
µ0 of the DCM scheme algorithm depend on how fast the
scheduler can learn the optimal policy. We set p0 = µ0 = 0.1
and pr = µr = 1010, as it gives the RL scheduler enough
time to explore and find the optimal policy without too many
iterations. We end the simulation when both the learning rate
and exploration probability fall below 0.005.

The rest of the simulation parameters are as follows. The
channel data rate is 100 Mbps, the number of MPEG-4
flows varies from 2 to 10. The GOP pattern of the flows is
(12, 3), and their mean data rate is 8 Mbps. Moreover, the
frame inter-arrival time is 1/30 s, maximum tolerable delay
is 1/30 s, and maximum MAC fragment size is 2048 bytes.
We use the average DFR as the performance metric. For F-
SRPT, EDD+SRPT, and PAP scheduling algorithms we use the
performance that is already improved by the FDA technique
described in our previous work [12].

Fig. 4 compares the average DFR achieved by RL,
EDD+SRPT, PAP, and F-SRPT algorithms when the number
of MPEG-4 flows varies from 2 to 10. We can see that RL
scheduler performs better than the others regardless of the
number of MPEG-4 flows. The relative reduction of average
DFR is up to 42%, 49%, and 53% for EDD+SRPT, PAP, and
F-SRPT scheduler, respectively. This improvement can also be
translated to system capacity enhancement. Suppose that the
acceptable user perceived quality is equivalent to the average
DFR being less than 5%. Thus, the capacity of the system
can be defined as the number of MPEG-4 flows that can be
admitted to the system, while the average DFR is less than
the maximum allowable value of 5%. Using this definition,
the system capacity is 7 flows for the conventional schedulers,
as opposed to 8 flows for the RL scheduler. Consequently, in
this example, the RL scheduler increases the system capacity
by 14.3%.

The start time of different flows in the system affects
the burstiness of traffic load, and thus influences the overall
performance. In order to show this fact, we assume that the
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Fig. 4. Comparison of RL scheduler and other schedulers when the number
of MPEG-4 flows varies from 2 to 10.
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Fig. 5. Effect of time separation on average DFR. The RL scheduler has the
smallest average DFR for all φ.

start times of flows are separated by φ seconds. In other words,
flow i starts at time iφ [1]. Fig. 5 compares the average DFR
achieved by RL, F-SRPT, EDD+SRPT, and PAP scheduling
algorithms when φ varies from 1 to 30 ms. The number of
MPEG-4 flows is equal to 9. We can see that our proposed RL
scheduler performs better than the other three for all values
of φ. Furthermore, the performance of RL scheduler is less
sensitive to φ.

To evaluate the optimality of the RL algorithm, we consider
the special case of interest which is when φ = 0, i.e., when
all the flows in the system start at the same time. In [18],
we show that for this case, the SRPT scheduler is the optimal
scheduler. Fig. 6 compares the average DFR achieved by RL
algorithm with the optimal case when the number of MPEG-4
flows varies from 2 to 10. We can see that in all cases, RL
scheduler provides nearly optimal performance.

As mentioned in Section III, the policy gain and DFR have
a linear relationship. We can verify the validity of equation
(12) as follows. First, the estimated average DFR is calculated
by substituting the policy gain ρ in equation (12). Second,
the exact average DFR is measured by counting the number
of scheduled frames. Fig. 7 compares these two values. As
one can see, DFR in equation (12) under-estimates the exact
average DFR, because the gain is only updated when the
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Fig. 6. Comparison of RL scheduler and optimal scheduler for φ = 0. RL
scheduler is nearly optimal in this case.
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Fig. 7. Comparison of the exact and estimated DFR (F = 9).

scheduler takes a greedy action. However, both greedy and
exploratory actions affect the exact average DFR. Over time,
with more iterations, as the RL scheduler learns the optimal
policy and the exploration probability decays, the exact and
estimated average DFR converge together. This result verifies
the fact that the optimal gain policy yields the minimum
average DFR.

V. CONCLUSIONS

In this paper, we presented an MDP model for scheduling
MPEG-4 flows in high-rate WPANs. The model takes into
account the number, hierarchical structure, and pattern of
MPEG-4 flows. Using an RL technique called SMART, we
proposed a practical algorithm that can lead to finding optimal
(or near-optimal) schedules based on the MDP formulation.
Simulation results show that our proposed RL scheduler is
nearly optimal and performs better than some other scheduling
algorithms including F+SRPT [1], EDD+SRPT [2], and PAP
[3] regardless of the number of MPEG-4 flows and the value
of the time separation parameter.

A high-rate WPAN should be able to support a variety of
applications with different QoS requirements. We focused on
the video traffic class in this paper. Integrating our proposed

scheme with a more versatile scheduler that can handle and
recognize different traffic types is part of our future work.
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