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Abstract— In this paper, we propose a novel optimization-
based pre-equalization filter (PEF) design for multiple-input
single-output (MISO) direct-sequence ultra-wideband (DS-UWB)
systems with pre-Rake combining. The key feature in our design
is that we explicitly take into account spectral mask constraints
which are usually imposed by telecommunications regulation and
standardization bodies. This avoids the need for an inefficient
power back-off, which is necessary for existing pre-equalizer
and pre-Rake designs that are designed solely based on average
transmit power constraints. Simulation results confirm that the
proposed PEF design leads to significant performance gains over
UWB PEF structures without any explicit spectral mask consid-
erations. Furthermore, the use of multiple transmit antennas is
shown to provide substantial combining gains compared to single-
antenna transmitter structures. We also investigate the impact of
certain system and optimization parameters on the performance
of the proposed PEF design.

Index Terms— Multiple antennas, ultra-wideband communi-
cation, pre-equalization, pre-Rake combining, spectral mask
constraints, semi-definite programming.

I. I NTRODUCTION

Ultra-wideband (UWB) is an emerging spectral underlay
technology for high-rate short-range transmission, e.g.,for
wireless personal area networks (WPANs). Due to their ex-
tremely large bandwidth, UWB systems can resolve even
dense multipath components such that Rake combining can be
used at the receiver to significantly reduce the negative impacts
of fading in the received signal [1]. However, for many UWB
applications, the receiver is a portable device with limited
signal processing capabilities, making the implementation of
Rake combiners with a sufficiently large number of fingers
challenging in practice.

To overcome this problem, a promising approach is to move
computational complexity from the receiver to the more pow-
erful transmitter (e.g., an access point). In this regard,pre-Rake
combiningcan be used [2]–[4]. Pre-Rake combining exploits
the reciprocity of the UWB radio channel, which has recently
been confirmed experimentally in [5]. Ideally, with pre-Rake
combining at the transmitter, channel estimation, diversity
combining, and equalization are avoided at the receiver, and a
simple symbol-by-symbol detector can be used [3], [6].

However, pre-Rake combining has some serious drawbacks.
In particular, for thelong channel impulse responses (CIRs),
which are typical for UWB applications, it may entail a rela-
tively high error floor if simple symbol-by-symbol detection is
applied at the receiver [2]. To remedy this problem, while still
keeping the receiver simple,pre-equalizationcan be used at
the transmitter to effectively decrease the residual intersymbol
interference (ISI) at the receiver [7], [8].

Most of the previous works on pre-Rake and pre-equalizer
design for UWB systems (e.g. in [2]–[9]) include side con-
straints to limit the overall (average) transmit power. However,
prior studies do not include constraints to limit thepower
spectral density(PSD) of the transmitted UWB signals. This
can severely affect the overall system performance, as mostof

the telecommunication regulation bodies, e.g., the US Federal
Communications Commission (FCC), impose restrictedspec-
tral masksto limit UWB interference on incumbent legacy
narrowband receivers. In such a setting, the existing UWB
pre-filtering techniques can be far from optimal in practice, as
they require an appropriatepower back-offso that the spectral
masks are not violated.

In this paper, we propose a novelpre-equalization filter
(PEF) design for direct-sequence (DS) UWB systems [10],
which explicitly takes into account spectral mask constraints.1

In particular, we consider the multiple-input single-output
(MISO) case and show that multiple transmit antennas can be
used efficiently to provide substantial combining gains at the
receiver. This is a very appealing feature, given that spectral
mask regulations are usually very tight, i.e., the received
signal power should be maximized by all means.2 We first
formulate an elaboratenon-convexoptimization problem with
the PEF coefficients being the optimization variables. We then
employ asemi-definite relaxationtechnique, which allows us
to find a close-to-optimal PEF design. Our simulation results
confirm that our proposed PEF scheme leads to significant
performance gains over competing schemes without spectral
mask considerations. To the best of our knowledge, this work
is the first to explicitly consider spectral mask constraints for
pre-filter design in DS-UWB systems.3 We note that the PEF
designs in this paper are significantly different from previous
work in the literature on UWBpulse-shapingwith spectral
mask considerations, e.g. in [13], which does not address pre-
equalization or residual ISI limitation.

Paper Organization: The remainder of this paper is orga-
nized as follows. The system model under consideration is
presented in Section II. We then formulate the PEF opti-
mization problem in Section III. An efficient algorithm to
solve this optimization problem is provided in Section IV.
Simulation results are given in Section V and, finally, the paper
is concluded in Section VI.

Notation: E{·}, [·]T , (·)∗, [·]H , ℜ{·}, ⌈·⌉, δ(·), and ∗
denote statistical expectation, transposition, complex conju-
gation, Hermitian transposition, the real part of a complex
number, the ceiling function, the Dirac delta function, and
linear convolution, respectively. AlsoX(ejω) , F{x[k]} =
∑∞

k=−∞ x[k]e−jωk, X(jΩ) , F{x(t)} =
∫ +∞

−∞
x(t)e−jΩtdt,

Φxx(ejω),F{φxx[τ ]}=
∑∞

τ=−∞ φxx[τ ]e−jωτ , andφxx[τ ] ,

E{x[k]x∗[k − τ ]} denote thediscrete–timeFourier transform,
the continuous–timeFourier transform, the PSD, and the au-

1The PEF design techniques proposed in this paper could be easily extended
to impulse-radio-based UWB (IR-UWB) systems [11] as well.

2For example, the FCC spectral mask for outdoor UWB transmissions in
the 3.1-10.6 GHz band is as low as−41 dBm/MHz, corresponding to an
overall transmission power of just73.3 µW given a system bandwidth of
1 GHz. Because of these limitations, it is indispensable to capture as much
signal energy at the receiver as possible.

3The current paper constitutes an extension of our earlier work [12], which
focused on the single transmit-antenna case.
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Fig. 1. Block diagram of a MISO DS-UWB system with pre-equalization
and pre-Rake combining (M transmit antennas and one receive antenna).

tocorrelation function, respectively. Depending on the context,
x[k] represents either a sequence or thekth element of a
sequence. Finally,diag(·) denotes a block-diagonal matrix.

II. SYSTEM MODEL

Consider the discrete-time complex baseband model of a
(single-user) MISO DS-UWB system [10] withM transmit
antennas and a single receive antenna, as depicted in Fig 1.
Throughout this paper, we denote the symbol duration byTs

and the chip duration byTc =Ts/N , whereN is thespreading
factor.

Transmitter Structure: At the transmitter, a train of inde-
pendent and identically distributed (i.i.d.) data symbolsa[n]∈
{±1} is first up-sampled by the spreading factorN to yield

ã[k] =

{

a[n], if k = N n,
0, if k 6= N n. (1)

At transmit antennam (1 ≤ m ≤ M ), the up-sampled data
sequencẽa[k] is then filtered with a PEFfm[k] of lengthLf .
We will optimize the PEFsf1[k], ..., fM [k] for minimization
of the amount of residual ISI at the receiver in Sections III and
IV. The filter output signal at transmit antennam is obtained
as

vm[k] , fm[k] ∗ ã[k] =

Lf−1
∑

l=0

fm[l]ã[k − l]. (2)

The resulting sequencevm[k] is filtered once more by a (real-
valued) spreading sequencec[k], which is normalized such that
∑N−1

k=0 |c[k]|2 = 1, and a pre-Rake filtergm[k] of length Lg.
The resulting transmitted sequencesm[k] is given by

sm[k] = vm[k] ∗ g̃m[k] =

∞
∑

i=−∞

vm[i]g̃m[k − i], (3)

where

g̃m[k] , c[k] ∗ gm[k] =

N−1
∑

i=0

c[i]gm[k − i] (4)

includes the combined effects of the pre-Rake filtergm[k]
and the spreading sequencec[k]. Here, we do not impose
any restrictions onc[k] or gm[k]. If a spreading sequence is
not applied, e.g. as in [2], [3], [5], we simply havec[0]=1
and c[k]=0, 1≤k<N . In general,gm[k] depends on the
corresponding UWB CIRhm[k] (associated with themth
transmit antenna), which has lengthLh.4 In this paper, we

4For simplicity, we assume that the UWB CIRshm[k], 1 ≤ m ≤ M , all
have the same lengthLh. In the case of unequal CIR lengths,Lh represents
the maximum length, and shorter CIRs are padded with zeros.

assume that anall-pre-Rake(also calledtime-reversal) filter
is employed at each transmit antennam, i.e.,

gm[k] , h∗
m[Lh−k−1] (0≤k< Lg, Lg =Lh). (5)

Channel Model: The equivalent baseband discrete-time CIR

hm[k] , gT (t) ∗ hm(t) ∗ gR(t)|kTc
(6)

associated with themth transmit antenna contains the com-
bined effects of a square-root Nyquist transmit filtergT (t)
[10], the continuous-time CIRhm(t), and the receive filter
gR(t), sampled at chip intervalTc. For the wireless channel,
we adopt the proposed extension of the IEEE 802.15.3a
channel model [14], [15] to multiple antennas [16]. Conse-
quently, the passband versionh′

m(t) of the baseband CIR
hm(t) consists ofLc,m clusters ofLr,m rays and is modeled
as

h′
m(t) = ϑm

Lc,m
∑

l=1

Lr,m
∑

k=1

ξk,l,mδ(t − Tl,m − τk,l,m), (7)

whereTl,m is the delay of thelth cluster,τk,l,m is the delay of
the kth ray of thelth cluster,ξk,l,m is the random multipath
gain coefficient, andϑm models the lognormal shadowing.
In [14], [15], four parameter sets for the various channel
model (CM) parameters in (7) are specified. The resulting
channel models are known as CM1, CM2, CM3, and CM4.
They represent different usage scenarios and entail different
amounts of ISI. Measurements reported in [16] have confirmed
that while Tl,m, τk,l,m, and ρk,l,m are independent across
antennas, the lognormal termsϑm are mutually correlated.
Hence, we employ a Kronecker correlation model for the
UWB CIRs associated with different transmit antennas, as
suggested in [16].

Receiver Structure: The received sum signal

y[k] =

M
∑

m=1

Lh−1
∑

l=0

hm[l]sm[k − l] + wc[k], (8)

including chip-level additive white Gaussian noise (AWGN)
sampleswc[k] with varianceσ2

c =E{|wc[k]|2}, is filtered us-
ing the time-reversed spreading sequencec[N−1−k]. Then,
down-sampling at timesk = Nn + k0 is performed, where
k0 denotes the sampling phase. The resulting receiver output
signalr[n] can be expressed as

r[n] =

M
∑

m=1

∞
∑

l=−∞

bm[Nl + k0]a[n − l] + ws[n], (9)

where

bm[k] , fm[k] ∗ qm[k] =

Lf−1
∑

i=0

fm[i] qm[k − i] (10)

with overall CIR

qm[k] = g̃m[k] ∗ h̃m[k] =

Lg+N−2
∑

i=0

g̃m[i]h̃m[k − i], (11)

and

ws[n] =

N−1
∑

i=0

c[i]wc[N(n − 1) + k0 + i + 1] (12)
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Fig. 2. FCC spectral mask for UWB transmissions in outdoor environments.
A typical operational range for UWB systems is the 3.1-10.6 GHz band.

denotes the symbol-level noise. Here,h̃m[k] includes the
combined effects of the channel filterhm[k] and the time-
reversed spreading sequencec[N−1−k]:

h̃m[k] , hm[k] ∗ c[N − 1− k] =

N−1
∑

i=0

c[i]hm[k + i− (N − 1)].

(13)
Note thatws[n] is also AWGN noise with variance

σ2
s , E{|ws[n]|2} = σ2

c

N−1
∑

i=0

|c[i]|2 = σ2
c . (14)

Since our goal is to design a UWB system withminimal
receiver complexity, no additional filtering is applied at the
receiver, and symbol decisions are made according to

â[n − n0] = sign{ℜ{r[n]}}, (15)

whereâ[n−n0] is the estimate fora[n − n0], n0 denotes the
decision delay, and sign{x} = 1 if x ≥ 0 and sign{x} = −1
otherwise. Note thatno equalizer is used at the receiver.

Next, we will optimize the PEFsfm[k] (m=1, ..., M ) with
respect to the following design goals:

• Obeying spectral mask limitations:Throughout the entire
operational bandwidthBs, the transmitted (sum) PSD
must obey spectral mask limitations that are imposed by
telecommunications regulation bodies in order to prevent
interference to incumbent legacy narrowband receivers.
As an example, the FCC spectral mask for outdoor
communications is shown in Fig. 2 [17].

• Focusing of channel energy:Since we assume thatno
equalizer is used at the receiver, most of the energy of
the overall CIRsqm[k] must be concentrated in asingle
channel tap. The amount of residual ISI must be strictly
limited, in order to avoid error floors.

• Limiting average transmit power:The overall average
transmission power of the MISO DS-UWB system must
be smaller than or equal to some upper limitPmax

(e.g. due to hardware limitations).

In the next section, we propose an elaborate optimization
framework for the design of efficient PEFs subject to the above
constraints. We will provide an algorithm to solve the resulting
optimization problem in Section IV.

III. PROBLEM FORMULATION

It is convenient to first rewrite (9) in vector form as

r[n] =

M
∑

m=1

(Bm fm)Ha[n] + ws[n], (16)

where
a[n] , [a[n] . . . a[n − Lt + 1]]T (17)

with
Lt , Lq + Lf − 1 (18)

and
Lq , ⌈(Lg + Lh + 2N − 3)/N⌉ (19)

being the lengths of the impulse response of the overall
system (including PEFfm[k]) and of the sampled overall CIR
qm[Nn + k0], respectively. Moreover, we have introduced the
definition

fm , [fm[0] . . . fm[Lf − 1]]H . (20)

Finally,Bm is anLt×Lf matrix, theith row of which is equal
to the (N(i − 1) + 1)th row of anLb × Lf column-circulant
matrix B̃m with vector

[bm[k0] bm[1 + k0] . . . bm[Lg + Lh − 1 + k0] 0T
Lf−1]

H

as its first column, where

Lb , Lg + Lh + Lf + 2N − 4 (21)

and 0Lf−1 denotes an(Lf −1) × 1 vector with all entries
equal to zero. We can rewrite (16) in a more compact form
according to

r[n] = (B f)Ha[n] + ws[n], (22)

where
B , [B1,B2, · · · ,BM ] (23)

is of sizeLt × MLf and

f ,
[

fT
1 , fT

2 , · · · , fT
M

]T
. (24)

Next, we study PEF design aspects.
Spectral Mask Constraints:We first note that our system

model is indiscrete–time, while the spectral mask is usually
defined incontinuous–time. Let Ω and ω denote the angular
frequency associated with the continuous–time and discrete–
time Fourier transform, respectively. We defineΩmin and
Ωmax as the minimum and maximum frequencies used by the
UWB system (e.g.,Ωmin = 2π×3.5 GHz andΩmax = 2π×4.5
GHz [10]). ThusBs =Ωmax−Ωmin denotes the total bandwidth
used by the designed UWB system. Also letm(Ω) denote
the imposed spectral mask. For example, in the case of the
FCC spectral mask we havem(Ω) = −41.3 dBm/MHz for
anyΩmin≤Ω≤Ωmax, cf. Fig. 2, where the radiated emissions
are measured using a resolution bandwidth of 1 MHz [17].
Therefore, we need to ensure that we obey the spectral mask
within every 1 MHz of occupied bandwidth. LetΩ1, . . . , ΩK

denoteK , Bs

1MHz + 1 discrete frequency levels which uni-
formly spread out over the bandwidthBs. Clearly, we have
∆ Ω = Ω2 − Ω1 = . . . = ΩK − ΩK−1 = 2π × 1 MHz.
For eachµ = 1, . . . , K it is required that the transmitted sum
power spectra obeys the spectral mask, i.e.,

M
∑

m=1

∫ ωµ+∆ω
2

ωµ−
∆ω
2

∣

∣

∣

∣

GT

(

j
ω

Tc

)∣

∣

∣

∣

2

Φsmsm
(ejω) d ω (25)

!
≤

∫ Ωµ+∆Ω

2

Ωµ−∆Ω

2

m(Ω) d Ω,
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whereωµ , Tc Ωµ [18, Ch. 1.7],∆ω , Tc ∆Ω, GT (j ω
Tc

) =

F{gT (t)}, andΦsmsm
(ejω) denotes the PSD for transmitted

signal sm[k]. Recall thatgT (t) is the transmit filter. We can
show that

Φsmsm
(ejω) =

∣

∣

∣
G̃m(ejω)

∣

∣

∣

2

Φṽmṽm
(ejω), (26)

whereG̃m(ejω) = F{g̃m[k]}. We also have

Φṽmṽm
(ejω) =

∣

∣Fm(ejω)
∣

∣

2
Φãã(ejω) =

∣

∣Fm(ejω)
∣

∣

2
, (27)

where Fm(ejω) = F{fm[k]} and Φãã(ejω) ≡ 1 due to the
i.i.d. assumption for the data symbolsa[n]. From (26)
and (27), and assuming that the spectral maskm(Ω) and
PSD |GT (j ω

Tc
)|2 Φsmsm

(ejω) are practically constant over
Ωµ − ∆Ω

2 ≤ Ω ≤ Ωµ + ∆Ω
2 and ωµ − ∆ω

2 ≤ ω ≤ ωµ + ∆ω
2 ,

respectively, for eachµ = 1, . . . , K inequality (25) becomes
M
∑

m=1

λm(ωµ)
∣

∣Fm(ejωµ )
∣

∣

2
≤ m(Ωµ), (28)

where

λm(ωµ) , Tc

∣

∣

∣
G̃m(ejωµ )

∣

∣

∣

2
∣

∣

∣

∣

GT

(

j
ωµ

Tc

)∣

∣

∣

∣

2

. (29)

Clearly, we can ensure (28) by tuning the coefficients in the
PEFsf1, ..., fM . The spectral mask constraints in (28) can be
written in vector form, using

∣

∣Fm(ejω)
∣

∣

2
= fH

m d(ω) dH(ω) fm, (30)

whered(ω) , [1 ejω ejω·2 . . . ejω·(Lf−1)]T . Therefore, the
spectral mask in (28) imposesK inequality constraints on the
PEFsf1, ..., fM as

M
∑

m=1

λm(ωµ) fH
m d(ωµ) dH(ωµ) fm ≤ m(Ωµ) (31)

(µ = 1, . . . , K). Note that the termsλm(ωµ), m = 1, . . . , M ,
are fixed for eachµ = 1, . . . , K as far as the design of the
PEFs is concerned. We can rewrite (31) in a more compact
form according to

fH D(ωµ) f ≤ m(Ωµ), (32)

where

D(ω) , diag
(

λ1(ω) d(ω) dH(ω), · · · , λM (ω) d(ω) dH(ω)
)

.
(33)

Energy Concentration:Since we assume thatno equalizer
is used at the receiver, it is required that for each received
symbol, most of the channel energy is concentrated in asingle
channel tap. Considering (16), letBm,pre denote the submatrix
of Bm consisting of the firstηpre rows. Also let Bm,post

denote the submatrix ofBm consisting of the lastηpost rows.
Here,ηpre andηpost are selected such thatηpre + ηpost +1 =
Lt, whereLt is as in (18). We can rewriteBm as

Bm =

[

Bm,pre

Bm,0

Bm,post

]

. (34)

Here, Bm,0 denotes the(ηpre+1)
th row of matrix Bm. We

can thus rewrite (16) as

r[n] =

M
∑

m=1

[

(Bm,0 fm)∗ a0[n] + (Bm,pre fm)H apre[n]

+ (Bm,post fm)H apost[n]

]

+ ws[n], (35)

wherea0[n],a[n−n0]=a[n−ηpre], apre[n], [a[n] . . . a[n−
ηpre−1]]T , andapost[n], [a[n−ηpre +1] . . . a[n−Lt +1]]T .
We can rewrite (35) in a more compact form according to

r[n] = (B0 f)∗ a0[n] + (Bpre f)H apre[n]

+ (Bpost f)H apost[n] + ws[n], (36)

where
B0 , [B1,0, · · · ,BM,0] , (37)

Bpre , [B1,pre, · · · ,BM,pre] , (38)

Bpost , [B1,post, · · · ,BM,post] . (39)

In order to achieve a low bit error rate (BER), we have to
concentrate most of the energy of the overall CIRB f in a
single high energy tapB0 f , while keeping the residual ISI
caused by the terms(Bpre f)

H apre[n] and(Bpost f)
H apost[n]

in (36) as small as possible. This introduces the following
constraint on the PEF coefficients:

fHBH
preBpref + fHBH

postBpostf ≤ α, (40)

whereα is a design parameter which imposes an upper bound
for the amount of residual ISI at the receiver. One possible
choice that leads to a desirable system performance (as shown
in Section V) is to setα = σ2

s in order to limit the residual
ISI to be less than or equal to the noise variance. We notice
that our design goal regarding the energy concentration in a
single tap can also be interpreted in terms of thesignal-to-
interference-plus-noise-ratio(SINR) for each symbol:

SINR ,
fHBH

0 B0f

fHBH
preBpref + fHBH

postBpostf + σ2
s

. (41)

Clearly, by maximizing the termfHBH
0 B0f , while limiting

fHBH
preBpref + fHBH

postBpostf , we can increase the SINR
and thus obtain a better (i.e., lower) BER.

Power Constraint:Further to the PSD constraints, we can
also limit the overallaveragetransmission power. By taking
similar steps as in [8, Appendix A], we can show that the
power constraint can be formulated as

M
∑

m=1

E{|sm[k]|2} = fH Υ f ≤ Pmax, (42)

where constantPmax > 0 represents the maximum transmis-
sion power. Moreover,

Υ , diag (Υ1, · · · ,ΥM ) , (43)

whereΥm, 1 ≤ m ≤ M , is a Hermitian Toeplitz matrix with
vector

[ϕm[0], ϕm[1], . . . , ϕm[(Lf − 1)]] (44)

in its first row, whereϕm[k], g̃m[k] ∗ g̃m[−k].
Optimization Problem:Combining our considerations re-

garding spectral mask, energy concentration, and average
transmit power, the proposed PEF design is obtained as the
optimal solution of the following optimization problem over
complex-valuedvector variablef :

max
f

fHBH
0 B0f

s.t. fH
(

BH
preBpre + BH

postBpost

)

f ≤ α

fH D(ω1)f ≤ m(Ω1)

...

fH D(ωK)f ≤ m(ΩK)

fH Υ f ≤ Pmax.

(45)
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Problem (45) is anon-concavequadratic maximization prob-
lem as the objective functionfHBH

0 B0f is not concave inf .
Thus, the standard gradient-based methods (cf. [19]) cannot
be used for solving it. Moreover, problem (45) has many
nonlinear constraints and is thus difficult to solve in closed-
form. Nevertheless, we can find aclose-to-optimalsolution
for optimization problem (45) using a semi-definite relaxation
technique, as we will explain in Section IV. In particular, we
arrive at asemi-definite programmingproblem, which can be
solved efficiently using, e.g., well-known software toolboxes
such as SeDuMi [20]. Based on the solution of the relaxed
optimization problem, a suitable algorithm will be devised
in Section IV, which is able to obtain near-optimal PEF
coefficients that offeralmost the same performance as the
optimal PEF coefficients resulting from the original problem
formulation (45), as will be shown in Section V.

Finally, we note that we could easily extend the above
considerations to the case where there is only a single PEF
f , [f [0], . . . , f [Lf −1]]H of length Lf that is shared by all
transmit antennas (e.g., for reasons of complexity). To this end,
we would have to replace the matricesB•, D(ω), andΥ in
(45) by effective matricesB•,eff ,

∑M

m=1 Bm,•, Deff (ω),
∑M

m=1 λm(ω)d(ω)dH(ω), and Υeff ,
∑M

m=1 Υm, respec-
tively [8], where ‘•’ stands for ‘0’, ‘ pre’ or ‘ post’. For reasons
of conciseness, we focus here on the problem formulation (45)
with a separate PEF for each transmit antenna. In Section V,
we will address the issue of complexity reduction from a
different viewpoint.

IV. SOLUTION OF OPTIMIZATION PROBLEM

In this section, we provide an algorithm to find a close-
to-optimal solution for optimization problem (45). We first
rewrite (45) in terms of an equivalent real-valued representa-
tion (since not all optimization solvers support complex-valued
variables) and then solve it by using semi-definite relaxation
and semi-definite programming techniques.

Real-valued representation:Recall that vectorf in optimiza-
tion problem (45) is complex-valued. Letx andy denote the
real and imaginary parts of vectorf . We thus have

f = x + j y. (46)

For notational simplicity, we define

z ,

[

x
y

]

. (47)

By using simple calculus, we can obtainreal-valuedmatrices
Φ0, Φpre, andΦpost of size2MLf ×2MLf from B0, Bpre,
andBpost, respectively, such that

fHBH
0 B0f = zTΦ0z, (48)

fHBH
preBpre f = zTΦprez, (49)

fHBH
postBpost f = zTΦpostz. (50)

We can also obtain real-valued matricesΓ(ωµ) from D(ωµ)
(µ = 1, ..., K) and a real-valued matrixΛ from Υ (all of size
2MLf × 2MLf ) such that

fHD(ωµ)f = zT Γ(ωµ)z, µ = 1, . . . , K, (51)

and
fH Υ f = zT Λz. (52)

We are now ready to rewrite problem (45) as the following
problem overreal-valuedvariables:

max
z

zTΦ0z

s.t. zT (Φpre + Φpost) z ≤ α,

zT Γ(ωµ) z ≤ m(Ωµ), µ = 1, . . . , K,

zT Λ z ≤ Pmax.

(53)

We note that problems (45) and (53) areequivalent. In fact,
their solutions can be converted into each other through the
relationship in (46). Problem (53) is a real-valued non-concave
quadratic maximization problem. Next, we will explain how
we can solve (53) with an acceptable accuracy.

Semi-definite Relaxation:We introduce a new real-valued
matrix W such that

W , z zT . (54)

Clearly, matrixW is positive semi-definite (i.e.,W�0) and
has unit rank. We also note that for any (2MLf × 2MLf )-
Hermitian matrixA, we have

zT A z = trace(A W) . (55)

Therefore, problem (53) is equivalent to

max
W�0

trace(Φ0 W)

s.t. trace((Φpre + Φpost) W) ≤ α,

trace(Γ(ωµ) W) ≤ m(Ωµ), µ = 1, . . . , K,

trace(Λ W) ≤ Pmax,

rank(W) = 1.

(56)

Problem (56) is still as difficult as problem (53), due to the
rank constraint rank(W) = 1.5 Therefore, wediscardthe rank
constraint in the next step and consider the followingrelaxed
optimization problem:

max
W�0

trace(Φ0 W)

s.t. trace((Φpre + Φpost) W) ≤ α,

trace(Γ(ωµ) W) ≤ m(Ωµ), µ = 1, . . . , K,

trace(Λ W) ≤ Pmax.

(57)

Problem (57) is asemi-definite programming(SDP) problem
[22]. SDP is a generalization oflinear programming(LP) over
matrices (rather than vectors as in LP). Several solvers, such
as SeDuMi [20] can efficiently solve the SDP problem in (57).
Next, we will explain how solving problem (57) can help us
to find close-to-optimal solutions for problem (56).

PEF Design Algorithm:Let W⋆ denote the optimal solution
for SDP problem (57). Clearly, if rank(W) = 1, then the
optimal solutionz⋆ for problem (56) can be obtained by using
eigenvalue decompositionof matrixW⋆. If rank(W)>1, then
we can still obtain a close approximation ofz⋆ (and also for
x⋆ andy⋆) by using the following steps which are based on
the recent results in [23], [24]:

• Step 1. Using eigenvalue decomposition, obtain matrix
U such thatW⋆ = U⋆ U⋆T :

W⋆ = V⋆T Σ⋆ V⋆ ⇒ U⋆ = V⋆T Σ⋆ 1

2 ,

whereV⋆ is aunitary matrix and matrixΣ⋆ is diagonal.

5The same problem structure has, e.g., also been encounteredin the context
of beamforming for multiple-antenna relays, see Problem (20) in [21].
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• Step 2.Using eigenvalue decomposition, obtain unitary
matrix Θ⋆ such thatΘ⋆T U⋆T Φ0 U⋆ Θ⋆ becomes
diagonal:

U⋆T Φ0U
⋆ =Θ⋆Ξ⋆Θ⋆T ⇒ Ξ⋆ =Θ⋆T U⋆T Φ0U

⋆Θ⋆,

whereΞ⋆ is a diagonalmatrix.
• Step 3.Let ζi, i = 1, . . . , 2MLf , be i.i.d. random vari-

ables taking values−1 and+1 with equal probabilities.
Also, let ζ = (ζ1, . . . , ζ2MLf

). We select

z⋆ =

[

x⋆

y⋆

]

=
1

κmax
U⋆ Θ⋆ ζ, (58)

where

κmax = max

{

max
1≤µ≤K

ζT Θ⋆T U⋆T Γ(ωµ) U⋆ Θ⋆ ζ

m(Ωµ)
,

ζ
T

Θ⋆T U⋆T ΛU⋆ Θ⋆ ζ

Pmax
,

ζT Θ⋆T U⋆T (Φpre + Φpost)U
⋆ Θ⋆ ζ

α

}

.

(59)

We can verify that for any random choice of vectorζ,
the obtainedx⋆ andy⋆ in (58) satisfy all the inequality
constraints in problem (53). We then simply set

f⋆ := x⋆ + j y⋆. (60)

Optimality Bound:Let fopt denote the optimal solution of
the PEF design problem in (45). We have

f⋆HBH
0 B0f

⋆ ≤ fH
optB

H
0 B0fopt ≤ trace(Φ0W

⋆) , (61)

where the last inequality is valid because problem (57) isless
restrictive than problem (45). From (61), theoptimality loss
when usingf⋆ instead offopt is upper-bounded as

fH
optB

H
0 B0fopt − f⋆HBH

0 B0f
⋆

fH
optB

H
0 B0fopt

= 1 −
f⋆HBH

0 B0f
⋆

fH
optB

H
0 B0fopt

≤ 1 −
f⋆HBH

0 B0f
⋆

trace(Φ0W⋆)
. (62)

By using the upper bound in (62), we have verified through
simulations that the optimality loss for the proposed design
algorithm is usually very small (see Section V). Thus, a
PEF design based on the coefficientsf⋆ hasalmost the same
performance as that achieved with the optimal coefficientsfopt.
Moreover, by following the analysis in [25], we can show that
the optimality loss isalwaysguaranteed to be less than 36%.

V. NUMERICAL RESULTS

In this section, we assess the performance of our pro-
posed PEF scheme via simulations and compare it with pure
pre-Rake combining (i.e.,without any pre-equalization) [3]–
[6], [9] and the symbol-level minimum-mean-squared-error
(MMSE) PEF scheme in [8]. For each transmitter structure,
we assume that all-pre-Rake combining according to (5) is
applied. Moreover, no equalizer is employed at the receiver,
as explained in Section II.

Unless stated otherwise, our simulation setting is as follows.
The operational bandwidth isBs = 1 GHz with Ωmin =
2π× 3.5 GHz andΩmax=2π× 4.5 GHz [10], i.e.,K =1001.
The spectral maskm(Ω) is assumed to be flat within this area
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Fig. 3. Bit error rate (BER) vs.1/σ2
n for the proposed optimal PEF scheme

(Lf = 5), the MMSE-PEF scheme [8] (Lf =10, with power back-off), and
pure pre-Rake combining [2] (with power back-off). The latter two schemes do
not take any spectral mask considerations into account. Allnumerical results
are for an operational bandwidth ofBs = 1 GHz and a spreading factor of
N =6.

(cf. Fig. 2). We set the filter length for the optimal PEFs to
Lf =5, the spreading factor toN =6, ηpre =ηpost =⌊Lt

2 ⌋, and
α=σ2

s . Throughout, we focus on transmitter structures with
one or two transmit antennas (M =1, 2). For a fair comparison
between the casesM = 1 and M = 2, we set the maximum
transmit power level toPmax = 1 in all cases (irrespective
of the number of transmit antennas). For brevity, we only
include simulation results for channel model CM1, where the
parameters are as in [14]. The results for CM2, CM3, and CM4
are similar, however. All simulation results have been obtained
based on 100 statistically independent channel realizations. In
the case of two transmit antennas (M =2), we assume that the
lognormal termsϑ1 and ϑ2 are correlated with a correlation
coefficient of0.86 [16].

Performance Comparison:In Fig. 3, the BER performance
of the designed PEF scheme is compared with pure all-pre-
Rake combining (‘No PEFs’) and the symbol-level MMSE-
PEF scheme (‘MMSE-PEFs’). In order to avoid violating
the spectral mask constraints in the case of pure pre-Rake
combining and the symbol-level MMSE-PEF scheme, we
have applied appropriate power back-offs for each channel
realization. Note that no power back-offs are needed for our
optimal PEF design, as we take the spectral mask into account
in the optimization procedure. First, we note that the proposed
optimal PEF scheme (as well as the symbol-level MMSE-
PEF scheme) offers significant combining gains when multi-
ple transmit antennas are employed, despite the rather large
correlation factor between the lognormal shadowing terms.
Moreover, we can see that our designed optimal PEF scheme
significantly outperforms pure pre-Rake combining as well as
the symbol-level MMSE-PEF scheme (even though twice the
filter length has been employed for the latter). Interestingly,
the performance of the MMSE-PEF scheme forM =1 (‘1Tx’)
is even slightly worse than the performance with pure pre-
Rake combining, which is due to less favorable power-back-
off factors in this example. ForM =2 (‘2Tx’), however, the
MMSE-PEF scheme outperforms pure pre-Rake combining,
as it tends to suffer from a smaller amount of residual ISI
and thus offers better combining gains. Still, the performance
of the MMSE-PEF scheme is relatively poor compared to the
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Fig. 4. Transmitted sum power spectrum of the transmitted UWB signals in
baseband representation within theBs = 1 GHz bandwidth for the proposed
optimal PEF scheme (Lf =5), the symbol-level MMSE-PEF design [8] (Lf =
10, with power back-off), and pure pre-Rake combining [2] (with power back-
off). The spreading factor was chosen asN =6. Note that only the optimal
PEFs obey the spectral mask without requiring any power back-off.

designed optimal PEFs (forM =2, the optimal PEFs offer
a gain of about4.1 dB at a BER of10−4), which is again
due to the power-back-off factors applied in the case of the
MMSE-PEF scheme. Concerning pure pre-Rake combining,
we can see that increasing the number of transmit antennas
does not help as much as in the case of the optimal PEF
scheme or the MMSE-PEF scheme. For example, ifM =4
transmit antennas are employed, the performance of pure pre-
Rake combining is still3.8 dB away from the performance of
the designed optimal PEFs withM =2 transmit antennas (at
a BER of10−4).

Obeying Spectral Mask:For the case ofM =2 transmit
antennas and a random channel realization, the sum power
spectra of the transmitted baseband UWB signals for the three
transmitter structures are shown in Fig. 4, where we again
applied suitable power-back-off factors in the case of purepre-
Rake combining and the symbol-level MMSE-PEF scheme.
For simplicity, we have normalized the spectral mask level to
one. We can see that our designed PEFs lead to a transmitted
sum power spectrum that fully obeys the spectral mask.
Moreover, at multiple frequencies, the resulting sum power
spectrum is close to the spectral mask limit or even touches
it. In comparison, the transmitted sum power spectra for pure
pre-Rake combining and the symbol-level MMSE-PEF design
look more ‘peaky’. In conjunction with the mandatory power-
back-off factor, this leads to comparatively low overall transmit
powers, as can be seen from the areas under the corresponding
transmitted sum power spectra. This explains the inferior
performance of pure pre-Rake combining and the symbol-level
MMSE-PEF design compared to the optimal PEFs.

Near-Optimality: Recall that the semi-definite relaxation
discussed in Section IV may lead to some loss in optimality in
our PEF design with respect to solving the original problem
(45). In general, it is difficult to obtain the exact loss of
optimality in each simulated scenario. However, inequality
(62) can help to obtain anupper boundon the loss of
optimality. Corresponding results are shown in Fig. 5 for
100 random channel realizations (both forM =1 andM =2
transmit antennas). We can see that our PEF design is very
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Fig. 5. Upper bound on the loss of optimality in our proposed PEF design
with respect to solving optimization problem (45). Here, the results for 100
random channel realizations are shown (Bs =1 GHz, Lf =5, N =6). The
upper bound is obtained based on inequality (62). We can see that in the
considered examples the PEF designs are always very close tothe optimum.

close to the optimum for all considered cases (less than 0.08%
loss). Hence, the PEF design based on the relaxed optimization
problem hasalmost the same performance as a PEF design
based on the original optimization problem (45).

Impact of the Spreading Factor:Fig. 6 shows the BER
performance of the designed optimal PEF scheme as a function
of the spreading factorN (both forM =1 andM =2 transmit
antennas). It can be seen that the BER performance improves
only slightly when the spreading factorN is increased beyond
N =6. Thus with regard to the effective data rate, which
drops linearly with the spreading factor,N =6 appears to
be a reasonable choice. On the other hand, the effective data
rate can be further increased by lowering the spreading factor,
which comes at the expense of a rather small performance
degradation, as long as we choose, say,N ≥4.

Complexity Reduction:Although we tackled the non-
convexity in optimization problem (45) by using a semi-
definite relaxation technique in Section IV, solving the re-
sulting semi-definite program can still be time consuming,
due to the large number of spectral mask constraints (e.g.,
K =1001 given a system bandwidth ofBs =1 GHz). Fig. 7
shows the BER performance of the optimum PEF design as a
function of the number of spectral mask constraints (in %)
included in the optimization procedure. The spectral mask
constraints are always placed at frequencies whichuniformly
spread out over the operational bandwidthBs. For example,
if only 10% of the constraints are included in the PEF design
optimization problem (45), these constraints are placed at
frequenciesµ1, µ11, . . . , µ991, µ1001. Clearly, in this case the
sum power spectrum of the transmitted signalsmayviolate the
spectral mask limit atother frequencies, e.g., atµ2, . . . µ10.
This requires applying an appropriatepower back-off, where
needed (similarly to the case of pure pre-Rake combining and
the symbol-level MMSE-PEF design). As a result, the BER
performance degrades when fewer constraints are included.
Interestingly though, this performance degradation is rather
graceful, as long as the number of spectral mask constraints
is not too small. For example, when including only 10% of
all spectral mask constraints, the resulting performance loss is
still negligible (both forM =1 andM =2 transmit antennas).
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Fig. 6. BER performance of the optimum PEF design as a function of the
spreading factorN (Bs =1 GHz, Lf =5, 1/σ2

n =9 dB).

This is due to the fact that the resulting sum power spectra
are usuallysmooth. On the other hand, a reduction from 100%
to 10% of spectral mask constraints will lead to a significant
reduction in computation time, which renders the proposed
PEF design more suitable for an implementation in practice.

VI. CONCLUSIONS

We proposed a novel optimization-based PEF design frame-
work for MISO DS-UWB systems with pre-Rake combining.
Unlike the previous work on pre-equalizer and pre-Rake filter
design in the existing literature, we explicitly took into account
the spectral mask constraints, which are usually imposed by
the telecommunications standardization and regulation bodies
around the world. As a result, our design avoids the need for an
inefficient power back-off, which is necessary for existingpre-
filter designs in order to conform the spectral mask constraints.
Simulation results confirmed that the proposed PEF design
leads to significant performance gains over PEF structures
without explicit spectral mask considerations. In particular, it
was shown to offer a close-to-optimal performance. The use
of multiple transmit antennas was shown to offer significant
combining gains, even in the presence of fairly large shadow-
ing correlations. The complexity of the scheme can be reduced
significantly by selecting only a (suitable) subset of all spectral
mask constraints within the operational bandwidth, which
usually comes at the expense of a rather small performance
degradation. Finally, we note that the PEF design has the
capability of adhering to spectral masks with arbitrary shapes,
although we have focused on a flat spectral mask throughout
this paper.
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