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Abstract—The dynamic behavior of a 4.3 MW behind-the-
meter solar farm in California is modeled in response to grid-
induced disturbances using data-driven techniques. The proposed
modeling approach is data-driven and works solely based on the
micro-PMU measurements at the solar farm’s point of inter-
connection with the power. Accordingly, the proposed approach
does not require any prior knowledge about the physical elements
inside the solar farm. This allows applying the proposed methods
to existing solar installations by the grid operators. Three
methods are proposed based creating libraries of regression
models and examining the similarities across recorded events
and disturbances. The performance of the proposed methods are
demonstrated by using real measurements and case studies.

Index Terms—Dynamic response, solar farm, data-driven
model, micro-PMU measurements, model library, practical study.

I. INTRODUCTION

The growing penetration of solar power generation has
introduced new challenges in the operation of the power grid,
including the changes in the dynamic behavior of the power
system [1]. Importantly, the dynamic response of the inverter-
based resources (IBRs), such as solar farms, to disturbances
is often very different from the dynamic response of the
synchronous machines in traditional power plants [2]. This
calls for introducing new models that can accurately capture
the dynamic behavior of different types of solar farms in
response to disturbances in the power system.

When a disturbance happens in the power grid, it causes
some agitation in the operation of solar farms. Having knowl-
edge of the dynamics of such agitation as a function of the
disturbance is necessary for proper planing and operation of
the power system with the high penetration of solar generation.

Standards require compliance in the dynamic response of
the new installations of inverter-based resources, such as Rule
21 in California [3]. However, the existing solar installations
do not follow these rules. Understanding the dynamic response
of solar farms is important, whether old or new.

A. Technical Approach and Contributions

In this paper, we seek to address the following question:
How to model the dynamic response of solar farms using
sensor measurements at the point of common-coupling, i.e.,
without the need to instrument the solar farm itself? We an-
swer this question by developing a novel event-based method.
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Fig. 1. The 4.3 MW behind-the-meter solar farm in this study is connected
to a substation in Riverside, CA and it is monitored with a micro-PMU [4].

The analysis in this paper is based on real-world measure-
ments that are obtained at a large solar farm that is directly
integrated into a distribution substation; see Fig. 1. This solar
farm is behind-the-meter (BTM), i.e., it is not owned and
operated by the utility. However, it is monitored at the point of
interconnection by a micro-PMU at the distribution substation.

The modeling approach in this paper is data-driven. It works
by examining the dynamics of the solar farm when it responds
to external disturbances in the power system. We do not need
any prior knowledge about the physical components inside the
solar farm. We also do not need access to the measurements
inside the solar farm. The analysis in this paper is solely based
on the measurements by the micro-PMU at the point of inter-
connection that are captured during grid-induced disturbances.

Two different dynamic modeling approaches are proposed.
The first design is to develop a single dynamic model for the
solar farm. This design mainly serves as a baseline for our
second design, which is a multiple dynamic model. The latter
model includes a comprehensive library of models that are
developed and maintained through an active learning process.
That is, new models are added to the library as needed.

The resulting models are useful in practice. The proposed
method is applicable to the existing solar installations. The
models can also be used for future feasibility studies.

B. Literature Review

Two common approaches in dynamic response modeling in
power systems are precise physical modelling and equivalent
physical modelling [5] [6]. Precise physics-based models are
often heavy in computation complexity. Due to the high-
order of the non-linearity of the power electronics and control
components in solar farms, it is often not practical to include
many internal states and details in physics-based models [7].

As for the equivalent physical models, they were introduced
to reduce the complexity of the analysis. In [8], a PV station
was made to be the equivalent of a large-scale distributed



PV stations. A simplified version of a boost converter was
proposed in [9], the precision was satisfactory but the model
ignored its grid-connected dynamic characteristics. Equivalent
physical modeling is also considered by the Western Electricity
Coordinating Council (WECC) [10]. In general, equivalent
physical modeling may not reflect an accurate dynamic charac-
teristics due to the need to often ignore several internal states.

A recent alternative to the above physics-based approaches
is to use data-driven methods. There are methods that are hy-
brid, i.e., they combine measurements with equivalent physical
models, e.g., see [11]. In [12] the distributed PV stations were
clustered based on the dynamic affinity propagation.

One key advantage of data-driven dynamic modeling is that,
the real-world data that is obtained from the under-study solar
farm, naturally reflects the dynamic behavior of the system and
its characteristics. Therefore, stand alone data-driven models
can capture the real-world dynamic of the system well.

II. APPROACH AND DATA PREPARATION

The approach in this paper is data-driven. It involves the
analysis of events that are captured by the micro-PMU at the
point of common coupling (PCC) of the solar farm. In this
section, we explain how we use the events to establish an
input-output relationship for the dynamic behavior of the solar
farm. We also discuss how we do a pre-processing on the mea-
surements before we use them to develop the dynamic models.

A. Event-Based Approach

Recall from Section I that the analysis in this paper is based
on examining the events that are captured by the micro-PMU
in Fig. 1. There is already a rich literature to detect an event in
micro-PMU measurements, e.g., in [13]. Let £ denote the set
of all the events that are captured for the purpose of developing
the dynamic model of the solar farm. In general, we have:

E=8UG, (1

where S denotes the set of the events whose root cause is the
solar farm, and G denotes the set of the events whose root
cause is the rest of the grid. In this regard, the events in set
G act as external disturbances to the solar farm. Accordingly,
our focus in this paper is on the events in set G; and we seek to
model the dynamic response of the solar farm to such events.

Importantly, there are ways to distinguish the events that
belong to set G from the events that belong to set S. In this
paper, we assume that we use the method in [4].

Fig. 2 shows an example event that belongs to set G, i.e.,
an event that is an external disturbance to the solar farm. Four
different time series are shown in this figure for this event:

o Voltage at the PCC,

o Frequency at the PCC,

o Active power injection by the solar farm at the PCC,

« Reactive power injection by the solar farm at the PCC.
Throughout this paper, we use V, f, P, and @ to denote the
above four different types of measurements.

Since the event in Fig. 2 is an external disturbance, V' and
f act as inputs to the dynamic system of the solar farm. In

(@ (b)

7200

IS
IR
o

9]
. :
S S7180 45853
o L=
> g
7160 455 <
60.04 48 5
) 5
TR e
S He002 43 ¢£3
o =
I 3
60 38 X
0 40 80 120 0 40 80 120
Samples Samples

Fig. 2. A real-world example of an event that in an external disturbance to
the solar farm: a) the two input time series; b) the two output time series.
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Fig. 3. The input-output relationship in the dynamic system of the farm.

response to the external disturbance in these two inputs, the
solar farm experiences an agitation in its active power injection
and reactive power injection to the power grid. Therefore, P
and @ act as outputs of the dynamic system of the solar farm.
In this regard, the input-output model of the solar farm as a
dynamic system can be presented as shown in Fig. 3.

For each event 7 € G, i.e., for each external disturbance, we
denote the time series corresponding to event ¢ as follows:

Vi= Vi, Vi)
Vi ’LI]T }Inputs 2)
fi = [fir,---, fiL,]
and -
P,=[P.,....PL
[P ) + ¢ Outputs 3)
Qi = [Qi,l?"':Qi,Li]

where L; denotes the length of the time series for event 1.

The purpose of this study is to obtain a dynamic model for
the solar farm based on the above event-based input-output
relationships at the solar farm. Once such dynamic model is
obtained, we can predict how the solar farm would respond to
any given external disturbance in the power grid.

B. Data Preparation and Preprocessing

In Fig. 2, we can observe two types of patterns in the
changes in the time series in this figure. On one hand, we
observe some fluctuations in the measurements that are present
even before the external disturbance occurs. On the other
hand, we observe some (more significant) changes in the
measurements that are caused by the external disturbance. Im-
portantly, only the latter type of changes in the measurements
are relevant to the dynamic response of the solar farm. In this
regard, the continuous fluctuations that we observe in all the
four time series are not related to our analysis; and they need
to be filtered out. In fact, these high-frequency fluctuations
act as noise as far as our analysis is concerned. Therefore, we
remove these fluctuations by applying a low-pass filter to the
measurements. Furthermore, we normalize all the four time
series to the range between O to 1. These two changes in the
measurement data are part of our pre-processing task.



[CY (b)

1 1
E
) 3
Sos 05 %
S Pre-Event Post-Event ) g
> 3
0 o <
1 1 5
[
2 0.5 0.5 _g
g 5
i 3
0 0
0 40 80 120 0 40 80 120
Samples Samples

Fig. 4. The time series in Fig. 2 after pre-processing.

Fig. 4 shows the time series of the same event in Fig. 2,
but after applying the pre-processing steps. Notice that the
continuous fluctuations are no longer present. The dynamic
behavior of the system is now much more clear.

IITI. PROPOSED DYNAMIC MODELS

In this section, we present three different data-driven ap-
proaches to develop dynamic models to mathematically cap-
ture the event-based input-output relationship in Fig. 3.

A. Single Model

In this section, we assume that a single model is capable
of capturing the dynamic response of the solar farm under all
the events in set G, i.e., under every external disturbance that
we have observed. To construct this single dynamic model, we
make use of the measurement time series and linear regression.

In this section, we employ the Autoregressive Moving Aver-
age eXogenous (ARMAX) model and estimate its parameters:

A(q~Mylk] = Blq~"ulk] + C(q~)elk], @)

where L L
Alg ) =1+aq +-+anq ™

Blg ) =big t + -+ byg ™ (5)
Clg ) =crg '+ +eng
Here, u[k] denotes the vector of input samples and y[k] denotes

the vector of output samples. Here the “samples” are the
combined measurement samples of all the events in set G:

ulk] =[V,; fi], ylk]=[P;Qi], Yieg. (6

The length of vector u[k] is n, and the length of vector y[k]
is n,. Notation e[k] is the vector of white noise. Notations
A(g™1), B(¢1), and C(q™!) are polynomials of delay oper-
ator qil, with polynomial orders n,, ny, and n., respectively.

We estimate the parameters of the ARMAX model by
using the prediction-error method and the polynomial orders
specified as [n, np ne ng|, where ny is the input-output
delay. The model properties include estimation covariances
(parameter uncertainties) and the goodness of the fit between
the estimation results from the model and the measured data.
We denote the resulting ARMAX model as

ARMAX(G). @)

All the events in set G are used to develop the above model.

B. Multiple Models with a Model Selection Mechanism

For each event i € G, let us obtain one ARMAX model,
denoted by ARMAX(i) that is obtained based on V; and
f; as inputs, and P; and Q; as outputs. Accordingly, we
develop a library of |G| dynamic models, where |G| denotes
the cardinality of set G. Such library can be expressed as

ARMAX(i), Vi€g. ®)

Note that, unlike in Section III-A, where we used all the events
in set G to develop one ARMAX model as in (7), here we use
each event in set G to develop a separate ARMAX model;
thus, developing multiple ARMAX models as in (8).

For each event i € G, let us also obtain a nonlinear
ARMAX model, denoted by NL-ARMAX(7). A nonlinear
ARMAX model uses nonlinear polynomials, see [14] for more
details. Accordingly, we can add another |G| dynamic models
to the library of dynamic models as follows:

NL-ARMAX(i), Vi€ g. )

For the rest of this section, we develop a mechanism to decide
which one of the dynamic models in (8) and (9) should be used
to estimate the dynamic response of the solar farm.

Suppose, we seek to estimate the dynamic response of the
solar farm to a given test event j. We define a similarity index
between the input time series associated with event j and the
input time series associated with an event 4 in set G:

Sij = f([Vl fz]a [V] fj])v

where f(X,Y) is a function that evaluates the similarity
between two time series vectors X and Y.

We consider two choices for function f(X,Y). The first
choice is the Dynamic Time Warping (DTW) function, which
is an elastic similarity measure that optimally warps time series
vector X and time series vector Y in a way that accumulates
error of alignments is minimized. This accumulated error is
obtained by conducting dynamic programming [15]:

(10)

fDTW(XaY) = D(X,Y) = Dm,n; (11)

where we recursively apply the following:

Dv,w =
(Xv - Yw)2 + min{Dv,w—ly Dv—l,wa Dv—l,w—l}- (12)

Parameters m and n are the lengths of vectors X and Y, D, 4,
is the similarity between entry v of vector X and entry w of
vector Y. The initial condition is Dq 1 = (X1 — Y1)

The second choice for function f(X,Y) is the Pearson
correlation (PC). It is obtained as follows [16]:

o (X = X) (Vi - Y)
Vi (X - X)2(Y; - V)2
o o (13)
where X and Y are the mean over the entries of vectors X and

Y. Pearson correlation is invariant under separate changes in
location of the entries and the scales of the two time series.

fPC(XvY) = p(X,Y) =



Either one of the above two similarity indexes can be used
to identify the event in set G that is most similar to the testing
event of interest. Accordingly, we can obtain the dynamic
model corresponding to the select most similar event such that
we can estimate the dynamic response of the test event.

In this paper, we use both fprw(X,Y) and fpc(X,Y).
Suppose iprw and ipc denote the most similar events in the
event library, compared to the test event j, based on the DTW
and PC similarity indexes, respectively. We have:

ipTW = argmax forw ([Vi £],[V; £5]), (14)
1€
iPC = argmax fpc ([Vz fz], [Vj fj]) . (15)

i€G

If iptw = ipc, then the choice of the event from the library
is clear; because we would choose i* = iprw = ‘pc.
However, if iptw # ipc, then we would check the output of
the test event j that is estimated based on ARMAX(iprw),
NL-ARMAX (iprw), ARMAX(ipc), and NL-ARMAX(ipc),
then we would choose the model that causes the least
maximum violation of the normalization bounds O and 1;
which we had discussed as part of the pre-processing task
in Section ILB. In this regard, suppose y; prw[k] denotes the
estimated output that is obtained by applying the dynamic
model ARMAX (iprw) to the input time series corresponding
to the test event j. The violation of the normalization bounds
by the estimated response y; prw[k] can be obtained as

I';prw = mgx { [Z/j,DTW[k} - 1]+7 [0 - yj,DTw[k]]+} , (16)

where notation [-]* in (16) is defined as [z]T = max{0,z}.
We similarly define I'; pc as the violation of the normalization
bound if we use ARMAX(ipc); define I'; prw,ni as the viola-
tion of the normalization bound if we use NL-ARMAX (iptw);
and define I'; pc N1 as the violation of the normalization bound
if we use NL-ARMAX (ipc). In order to obtain the model that
we should use, we check the following minimization:

min{ I'jprw, I'jpc, I'jprwne, I'j pe,NL } (17)

For example, if I';prw is the minimum, then we use
ARMAX (iprw) to estimate the response of the solar farm
to test event j. This concludes the process of obtaining the
dynamic response when using multiple dynamic models.

To improve the modeling accuracy, we also check our esti-
mated response with the observed response of the solar farm
once the corresponding measurements are obtained. Accord-
ingly, if the error in the estimation of the dynamic response
based on ARMAX(:*) is above an folerated threshold, we can
choose to add the test event to the training data set G. This
will help us improve our model in the future. The summary
of the above steps is given in Fig. 5 in form of a flowchart.

C. Combined Library of Models

Interestingly, there can be a trade-off between the course-
grained single model approach in Section III-A and the gran-
ular multiple model approach in Section III-B. The multiple

Training Data Set (After Preprocessing)

Obtain |G| different ARMAX models
as in (8) and |G| different
NL-ARMAX models as in (9).

|

Use (11), (13), (14) and (15)
to obtain iprw and ipc.

}

Use the criteria in (17) to choose a
model among ARMAX (iprw), ARMAX (ipc),
NL-ARMAX((iprw), NL-ARMAX (ipc) .

l

Use the selected model
to estimate the
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Fig. 5. The flowchart of the process to obtain the dynamic response of the
solar farm based on using multiple models; and updating the model library.

model approach works well for the majority of the test events.
However, occasionally, it may demonstrate a less accurate
result than the single model. This may happen only when there
is high dissimilarity between the test event j and all the events
that are available in the training set G. In such cases, the single
model approach may result in a accurate dynamic response.
In this section, we capture the above trade-off by combining
the use of the single model approach in Section III-A and
the multiple model approach in Section III-B. Suppose y; g [k]
denotes the estimated output that is obtained by applying the
single dynamic model ARMAX(G) in (7) to the input time
series corresponding to the test event j. Similar to the analysis
in the (16), we can obtain the maximum violation of y; g[k]
with respect to the normalization bounds O and 1 as follows:

mac{ [0k~ 1], [0~ w64 7).

Accordingly, we choose ARMAX(G) over the multiple mod-
els, if the above violation is less than the minimum in (17).

(18)

IV. CASE STUDIES

In this section, we use 450 real-world events, which are all
external disturbances, to test the performance of the proposed
methods. A total of 400 events are used for training, i.e., to
form set G. The remaining 50 events, labeled from 401 till
450, are used for testing. In all case studies we use n, = 2,
ny = 3, and n, = 1. We use the Root Mean Square Error
(RMSE) in estimating each output of the solar farm, in terms
of active power and active power, by using each model.

1) Results for the Single Model: Fig. 6 shows the results
for the single dynamic model. We can see that the estimation
error can vary significantly. On average, RMSE is 0.42507 to
estimate the time series of the reactive power and 0.44189 to
estimate the time series of the active power.
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Fig. 6. The estimation errors of the single model for the test events.

2) Results for the Multiple Models: Fig. 7 shows the results
for the multiple dynamic models. The estimation error is
significantly reduced (i.e., improved) compared to the results
in Fig. 6. On average, RMSE is 0.36813 to estimate the
time series of the reactive power and 0.24266 to estimate the
time series of the active power. Therefore, on average, the
performance has improved by 13.4% and 45.1%, respectively.

3) Results for the Combined Models: By comparing the
results in Fig. 6 and Fig. 7, we can see that, although the
approach based on multiple models is generally much better
than the approach based on a single model, there are a number
of cases where the single model leads in better results. This
supports our argument in Section III-C that it can be beneficial
to combine the two approaches. The results are shown in
Fig. 8. On average, RMSE is 0.23077 to estimate the time
series of the reactive power and 0.18565 to estimate the time
series of the active power. Thus, on average, the performance
has further improved by 37.3% and 23.5%, respectively.

It is worth noting that, the better estimation of the reactive
power is due to the strong relationship between the the voltage
and the reactive power exchange from the solar farm.

V. CONCLUSIONS

In this study, the dynamic behavior of a real-world behind-
the-meter solar farm in California was modeled in response
to grid-induced disturbances using data-driven techniques.
Three data-driven approaches were proposed: a single dynamic
model approach, a multiple dynamic model approach, and a
combined approach. The key was to build a library of dynamic
models that are trained based on real-world events that act as
external disturbances to the solar farm’s dynamical system.
The performance of the proposed method was demonstrated
by using real-world case studies. The results in this paper have
potential practical applications for the integration of inverter-
based resources, including for system-wide planning and op-
eration and for evaluating the interconnection requirements.
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