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Abstract—Solar distribution feeders are commonly used in
solar farms that are integrated into distribution substations.
In this paper, we focus on a real-world solar distribution
feeder and conduct an event-based analysis by using micro-
PMU measurements. The solar distribution feeder of interest is a
behind-the-meter solar farm with a generation capacity of over 4
MW that has about 200 low-voltage distributed photovoltaic (PV)
inverters. The event-based analysis in this study seeks to address
the following practical matters. First, we conduct event detection
by using an unsupervised machine learning approach. For each
event, we determine the event’s source region by an impedance-
based analysis, coupled with a descriptive analytic method. We
segregate the events that are caused by the solar farm, i.e., locally-
induced events, versus the events that are initiated in the grid,
i.e., grid-induced events, which caused a response by the solar
farm. Second, for the locally-induced events, we examine the
impact of solar production level and other significant parameters
to make statistical conclusions. Third, for the grid-induced events,
we characterize the response of the solar farm; and make
comparisons with the response of an auxiliary neighboring feeder
to the same events. Fourth, we scrutinize multiple specific events;
such as by revealing the dynamics to the control system of the
solar distribution feeder. The results and discoveries in this study
are informative to utilities and solar power industry.

Index Terms—Solar distribution feeder, PV farm, data-driven
study, micro-PMU measurements, event-based analysis, event
source location, event characterization, dynamic response.

I. INTRODUCTION

As the penetration of solar power generation continues to
grow, system operators confront new challenges. Some of
these challenges are introduced either by the power system
events which have impact on solar farms; or by locally
generated events that cause power quality issues due to the
sharp drop and spike in solar power production [1].

To recognize these events and analyze their signatures and
impacts, micro-PMU measurements can be of great value;
given their high reporting rate of 120 phasor measurements
per second; and their synchronization capability. Availability
of such data has enabled high-resolution event analysis by
using data mining and machine learning techniques [2], [3].

A. Approach and Scope of Analysis

The study in this paper is about a real-world solar distri-
bution feeder that is integrated into a distribution substation.
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This solar distribution feeder is a large behind-the-meter solar
farm, which is monitored by a micro-PMU at the distribution
substation. We conduct an event-based analysis of the micro-
PMU measurements and report and discuss our discoveries.

The events are first detected by an unsupervised machine
learning method. Next, we conduct the following analysis:

1) For each captured event, we seek to first answer the
following fundamental question: is the event caused by
the solar farm, i.e., is it locally-induced? or is it initiated
in the grid, which consequently caused a response by the
solar farm, i.e., is it grid-induced? Our answer to this
question is based on an impedance-based method that is
applied to the differential phasor representation of each
event, coupled with a signature inspection method.

2) Regarding the locally-induced events, we seek to under-
stand their engineering implications. We observe that the
majority of the locally-induced events happen during the
low production periods of the solar farm. Furthermore,
the events during the low production periods demon-
strate more significant change in power factor.

3) Regarding the grid-induced events, we characterize the
response of the solar distribution feeder to such events.
We also make comparisons with the response of an
auxiliary neighboring feeder to the same events.

4) We scrutinize multiple specific events that are particu-
larly informative; such as by revealing the control system
dynamics of the solar distribution feeder. The behavior
of the solar farm is explained by the smart inverter
control levels via dissecting two use cases.

The results in this study are insightful to utilities and solar
power industry. They also provide new insight on the applica-
tion of micro-PMU measurements in the study of behind-the-
meter solar distribution feeders.

B. Literature Review

Power quality events that are associated with PV inverters
in power distribution systems have been previously studied,
such as in [4]–[7]. Some studies, such as in [4], use real-
world measurements, while some others, such as in [7], use
computer simulations. More importantly, all these prior studies
have focused on typical load-serving feeders, with varying
PV penetration levels. In fact, to the best of our knowledge,
this paper is the first data-driven event-based study of solar
distribution feeders by using micro-PMU measurements.



In terms of the relevant data-driven methodologies, machine
learning techniques have been already used in [2], [8]–[10]
in order to detect power quality events in power distribution
feeders. However, the previous studies have been concerned
with load-serving distribution feeders. Therefore, while we
used the same deep learning architecture as in [2] for event
detection in this paper; we had to train the model with different
data from a real-world solar distribution feeder.

Several studies have discussed identifying the source loca-
tion of events in power distribution systems, e.g., in [11]–[13].
Here, our concern is only on whether the source of the event
is the solar farm itself; or the source of the event is the grid.
In case of the latter, the solar farm still responds to the event.

II. BACKGROUND AND METHODOLOGY

The test site in this study is a solar distribution feeder that is
dedicated to integrate about 200 PV inverters in a 4 MW solar
farm into a distribution substation. The solar farm is behind-
the-meter; however, a micro-PMU is available at the feeder-
head at the distribution substation that provides us the voltage
and current phasor measurements of this solar distribution
feeder. This feeder does not have any load and all its solar
power production is injected into the distribution substation.

There is another micro-PMU that monitors a nearby feeder
that contains a mix of major PV generation and major load.
This auxiliary neighboring feeder is sometimes a net load and
sometimes a net generator during the period of our analysis.
Our focus in this study is not on this auxiliary neighboring
feeder. However, in one part of our study, we use the syn-
chronized micro-PMU measurements at this auxiliary feeder to
better understand the behavior of the solar distribution feeder.

Next, we briefly overview the three key methodologies that
we plan to use for our various analysis in this paper.

A. Event Detection

The first step in our analysis is to detect the events from the
micro-PMU measurements. This is a challenging task because
events are inherently infrequent, unscheduled, and unknown.
Hence, there is no prior knowledge about their types and time
of occurrence. Accordingly, in this paper, we used an unsu-
pervised deep learning model from our previous work in [2],
which implements Generative Adversarial Network (GAN)
models. There are two main components in the event detection
model; namely the generator and and the discriminator; which
play a min-max game over the following function:

V (G;D) =Ex � pdata(x)[log(D(x))]+

Ex � pz(z)[log(1�D(G(z)))];
(1)

where V is the objective function, G is the generator, D is the
discriminator, pdata(x) is teh distribution of the real samples,
and pz(z) is the noise probability distribution function.

For the GAN model, the optimal value of the min-max game
over V (G;D) in (1) must satisfy the following two conditions:

� C1: For any fixed G, the optimal discriminator D� is:

D�
G(x) =

pdata(x)

pdata(x) + pg(x)
: (2)

� C2: There exists a global solution such that:

min(max
D

(V (G;D)))() pg(x) = pdata(x): (3)

where pg(x) is the distribution of the generated sample by the
generator and D�

G is the optimal value for the output of the
discriminator.

The model in [2] was trained for load monitoring; there-
fore, we used the micro-PMU measurements from the solar
distribution feeder to train new GAN models for the purpose
of event detection at the solar distribution farm. See [2] for
more detail.

The dataset under study consists of measurements from both
PMUs for a period of ten days. A total of 229 events are
detected at the solar distribution feeder; out of which 88 events
are of interest because they happened during solar production.
A total of 215 events are detected at the auxiliary neighboring
feeder, which 87 of them happened during solar production of
the solar distribution feeder.

B. Event Region Identification

In reference to the location of the micro-PMU, an event
occurs either in the upstream or in the downstream of the
micro-PMU. The former is a locally-induced event; while the
latter is a grid-induced event. To determine the source region
of the event, we apply the following two different methods:

1) Impedance-based Method: For each event, we can cal-
culate the equivalent impedance, denoted by Z, that is seen
in the differential mode in the upstream of the micro-PMU:

Z =
�V

�I
=
V post � V pre

Ipost � Ipre (4)

where Ipre and V pre are the current and voltage phasors that
are seen in the steady-state condition right before the event
starts; and Ipost and V post are the current and voltage phasors
that are seen during the steady state condition right after the
event settles down. Both �V and �I are differential phasors
[13], [14]. Our focus is on the resistive component of the Z.
In particular, the event is considered to be locally-induced if

RealfZg > 0; (5)

otherwise, the event is considered to be grid-induced [13]. We
will use the impedance-based method in Section III.

2) Comparison with Auxiliary Measurements: This method
takes advantage of the synchronized micro-PMU measure-
ments from the auxiliary neighboring feeder. By comparing
the signatures of an event on both feeders, i.e., the solar
distribution feeder and the auxiliary neighboring feeder, we
can determine that the event is grid-induced if it creates similar
signatures on the voltage measurements on both feeders. If the
event is seen only on one feeder and there is no major signature
on the other feeder, then it is a locally-induced event [15]. We
will use the combination of the two methods in Section IV.



C. Event Dynamic

Some of the events that are captured in this study can reveal
the dynamic behavior of the solar farm’s control system. The
control systems of the inverters on a solar distribution feeder
are highly convoluted. To dissect the event dynamics, we use
the following four general control components [16]:

� Current regulation loop is the fastest loop that controls
the injected currant by each inverter to the grid.

� Voltage regulation loop is slower than the current regu-
lation loop. It provides the setpoint for the current regu-
lation loop; upon changes in inverter terminal voltage.

� Maximum Power Point Tracking (MPPT) optimizes the
utilization of input power for maximum power output.
For an individual inverter, this is the slowest controller.

� Plant-level controller maintains the scheduled voltage and
power factor (PF) of the system by coordinating the set
points of individual inverter voltage or reactive power.
Plant-level control speed is coordinated with the controls
of individual inverters and is normally slower.

During an event, the major disturbances are mostly con-
trolled by faster controls; while minor disturbances are mainly
controlled by the plant-level controller response. Based on the
above control components, two use cases are scrutinized in
Section V.

III. ANALYSIS OF LOCALLY-INDUCED EVENTS

In this section, we study locally-induced events, make sta-
tistical conclusions, and discuss representative example events.

A. Event Correlation with PV Production Level

Our analysis of the captured locally-induced events reveals a
relationship between event occurrence and the solar production
level. In particular, we have observed that the majority of the
locally-induced events occur during low production period.

It is worth clarifying that what we refer to as event in the
micro-PMU data is very different from the regular fluctuations
in the solar production level that are due to the changes in
solar irradiance. This point is explained in Fig. 1. Here, we
show two example events, denoted by Event 1 in Fig. 1(a)
and Event 2 in Fig. 1(b). These two events are much smaller
in magnitude and much shorter in duration compared to the
typical fluctuation in solar production level. These kinds of
events are captured only by the installed micro-PMU. They
cannot be captured by regular meters. The solar production
level is 9.2% during Event 1 and 14.8% during Event 2.

Fig. 2 shows the scatter plot for all the captured events
that are identified as locally-induced. Here the focus is on the
events with RealfZg > 0, see the methodology in Section
II-B1. There is an inverse correlation between the production
level and the number of events, which can be expressed as an
exponential decay function, as presented in (6) and Fig. 2(a).

y = a:xb + c; (6)

where x and y are the production level and the real part of the
impedance Z that we defined in (4). Parameters a, b, and c are
obtained through curve fitting as 850, �1, and 50, respectively.

Fig. 1. Two sample locally-induced events: (a) Event 1 shortly after
production starts; (b) Event 2 occurs around noon on a cloudy day.

Fig. 2. Locally-induced events on the solar distribution feeder: (a) exponential
decay relation between production level and number of events; (b) inverse
correlation between the PV production level and the number of events.

As shown in Fig. 2(b), about 70% of the locally-induced
events happened when the solar production was at %30 or
less. That means, either more control actions took place at
the solar farm during low production periods; or the control
actions are more impactful during such periods and therefore
their signatures are more visible. In either case, these results
highlight the importance of monitoring the operation of the
solar distribution feeder during low production periods.

A closer look of Events 1 and 2 is provided in Fig. 3. For
Event 1 in Fig. 3(a), we can obtain �V = 238:6 + 1789:5j
and �I = �1:835� 1:934j. From (4), we have: RealfZg =
425:37. Therefore, from (5), we can conclude that Event 1 is a
locally-induced event. For Event 2 in Fig. 3(b), we can obtain
�V = 2:8 � 29:5j and �I = �0:363 � 1:561j. From (4),
we have: RealfZg = 17:57. Thus, from (5), we can conclude
that Event 2 is also a locally-induced event.

B. Changes in Power Factor

We further observed that, not only the majority of the
locally-induced events occurred during low production peri-
ods, but also the events that occurred during low production
periods demonstrated more significant changes in power factor




