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Abstract— Distribution-level phasor measurement units (D-
PMUs), a.k.a., micro-PMUs, have received a growing attention in
recent years to support various applications in power distribution
systems. Many of the applications of micro-PMUs work based on
the analysis of events in the stream of synchrophasor measurements
to achieve situational awareness. A key step in almost every event-
based method in this emerging field is to classify the type of the
event, where classification can be done with respect to various
factors. However, if the task of event classification is compromised,
then an adversary can highly affect the perception of the utility
operator and undermine any event-based application that makes
use of the event classification results. In this paper, we explore a
new cyber-threat against data-driven event classification in micro-
PMU measurements. In particular, we model the poisoning attack
against support vector machine (SVM) as the method of event
classification; which has been used in practice to study distribution
synchrophasors. We apply the new attack model to an event
classifier that uses real-world micro-PMU data. In addition to
conducting vulnerability analysis, we also propose a novel attack
detection method which can detect and evaluate the changes in
the decision boundary of the SVM due to the poisoning attack.
The proposed attack detection method is also able to identify the
number of poisoned data points in the training dataset.

Keywords: D-PMUs, Micro-PMUs, event classification, cyber
attack, poisoning attack, attack model, attack detection, machine
learning, power distribution, distribution synchrophasors.

I. INTRODUCTION

A growing class of smart grid sensors are called distribution-
level phasor measurement units (D-PMUs), a.k.a., micro-PMUs.
They provide a continuous stream of GPS-synchronized voltage
and current phasor measurements. The typical reporting rate of
micro-PMUs is 120 phasor readings per second [1].

Many of the existing data-driven methods in the field of
distribution synchrophasors work based on the analysis and classi-
fication of events that are observed in micro-PMU measurements.
In this context, event classification may identify whether the
root cause of the event is in the under-study power distribution
feeder; or in the up-stream power transmission network [2].
Event classification may also involve identifying the type of the
event, such as transformer tap-changer operation, load switching,
capacitor bank switching, device malfunction, etc. [3]–[6].

Different methods have been developed in the literature
to conduct event classification in micro-PMU measurements.
Machine Learning (ML) methods are particularly popular in this
area; including supervised learning [7], [8] and unsupervised
learning methods [9], [10]. Once an event is classified, it can
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be used in various event-based applications, such as asset
monitoring [11], fault location [12], state estimation [13], etc.

In this paper, we are concerned with the potential vulnerability
of the event classification task in distribution synchrophasor
measurements to cyber-attacks. We are particularly interested
in addressing this open problem for the cases where event
classification is done by using machine learning techniques.

Generally speaking, most ML methods were not originally
developed to operate in an adversarial environment. If an attack
can compromise the learning stage in the development of an
event classifier, then it can undermine our ability to analyze the
events correctly. This in turn can prompt incorrect actions that
make use of the event classification results.

Accordingly, it is necessary to not only conduct a vulnerability
analysis of the attacks against event classification in micro-PMU
measurements, but also develop proper countermeasures.

A. Literature Review

Different types of attacks against PMUs have been investigated
in the literature, mainly in power transmission systems. Examples
in this area include: packet drop attacks [14], denial of service
(DoS) attacks [15], and GPS signal spoofing [16].

The literature on attacks against micro-PMU data and cyber-
security challenges in distribution system is still evolving. In
[17], [18], the authors developed new methods to detect false
data injection attacks against distribution system state estimation.
In [19], the authors developed a geometric method to model the
attacks against events in micro-PMU measurements. In [20], a
source authentication method is proposed to detect data spoofing
attacks in power distribution synchrophasor measurements. A
flexible Bayes classifier is proposed to train spatio-temporal
patterns of distribution systems data which can distinguish
attacked data from non-attacked ones [21]. In [22], micro-PMU
measurements are used by data-driven methods to detect data
integrity attacks against PV inverter sensors.

The studies in [17]–[22] do not discuss the attacks against
machine learning methods. They either are not related to machine
learning, as in [17]–[19], or use machine learning to detect the
attack, as in [20]–[22]. On the contrary, our focus is on the cases
where the target of the attack is a machine learning method that
conducts event classification based on micro-PMU data.

In practice, ML methods continuously train the learning model
components and parameters through new measurements, so as
to adapt to the changes in the system. However, this can open
up a new attack surface against such methods [23].

Outside the field of distribution synchrophasors, adversarial
attacks against ML-based frameworks have been studied in



computer science. The initial efforts were in the field of spam
filtering [24], showing that linear classifiers can be tricked by
few carefully-crafted changes in the content of spam emails,
without significantly affecting the readability of the spam
message. Attacks against ML systems can happen during testing
(evasion) or training (poisoning). In evasion attacks, the attacker
manipulates test data to have them misclassified, i.e., to evade
detection by the learning algorithm, e.g., see [25].

On the other hand, poisoning attack refers to manipulating
the training data, mainly by injecting adversarial points into
the training set, which changes the decision function of the
underlying classifier to compromise the result, c.f., [26], [27].

While the concept of adversarial attacks against ML in power
systems is fairly new, it has drawn some attention recently. The
studies in [28]–[30] have all focused on evasion attacks. To the
best of our knowledge, the only study on poisoning attacks in
power systems is done in [31], where the impact of poisoning
attacks against short term load forecasting is studied.

B. Summary of Technical Contributions

To the best of our knowledge, this paper is the first study to
analyze the vulnerability of event classification in micro-PMU
measurements to poisoning attacks in the field of adversarial
machine learning in power distribution systems. In addition
to formulating the attack, we use data from real-world field
measurements to identify most vulnerable feature scenarios.
Furthermore, we investigate the choice of kernels to achieve
more robust event classifiers in the presence of the poisoning
attack. Next, we develop a new attack detection method which
does not require access to any prior information on ground
truth. The performance of the proposed method is verified in
a case study. It is shown that a baseline method, that works
based on pre-filtering of the synchrophasor measurements using
spatial clustering is not capable of detecting the attack under the
same circumstances. Finally, this study also includes sensitivity
analysis and it also confirms how the proposed method can also
provide an estimate on the number of poisoned data points, in
addition to detecting the presence of the attack.

II. THREAT MODEL

Consider a power distribution feeder with two micro-PMUs,
e.g., as shown in Fig. 1. Suppose the synchrophasor measure-
ments are used to train an ML model for event classification.
In this section, we develop the model to conduct a poisoning
attack against the training of the event classification model.

A. Event Classification

For the sake of this study, we consider the machine learning-
based event classification method that was designed in [2] as
the target of possible poisoning attack. Importantly, this event
classification method has been implemented and tested in practice
by using real-world micro-PMU data to classify real-world
distribution synchrophasor events; therefore, it serves well for
the purpose of developing a realistic threat model.

The event classification method that was developed in [2] uses
a set of training power system events, that are already labelled
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Fig. 1: The basic setup in the event classification problem using the synchronized
measurements from a pair of micro-PMUs.

according to the field knowledge and utility event logs. The
events are assigned into two broad categories corresponding to
their root causes as shown in Fig. 1, as follows:

1) Class I: Events that are initiated from somewhere outside
of the under-study feeder, i.e., transmission system or other
distribution feeders; see the left-arrow in Fig. 1.

2) Class II: Events that are initiated from the under-study
power distribution system; see the right-arrow in Fig. 1.

A binary-SVM classifier is trained with the features that are
extracted from the micro-PMU measurements during each event.
For each training event i = 1, · · · ,m, let xi denote the vector
of extracted features X corresponding to event i; and let yi
denote the assigned label for event i. We define yi ∈ {−1, 1},
where yi = −1 indicates that the event belongs to Class I; and
yi = 1 indicates that the event belongs to Class II. In case
the training samples are linearly separable, we aim to find a
separating hyperplane in feature space as WTX + b = 0 to
separate the two classes, where W is the vector of coefficients,
and b is the intercept. In this paper, we also use non-linear
separation, i.e., we use φ(x), where φ takes an input feature X
and maps it into some other feature space, usually to a higher
dimensional space. The SVM model is trained by solving the
following primal optimization problem:

minimize
W,b,ζ

1

2
||W ||22 + C

m∑
i=1

ζi

subject to yi(W
Tφ(xi) + b) ≥ 1− ζi, (1)

ζi ≥ 0, i = 1, · · · ,m.

where ζi is a slack variable corresponding to training event i
to allow some samples to be at a distance ζi from their correct
margin boundary and C is a model tuning parameter.

B. Poisoning Attack

The objective of the poisoning attack is to compromise the
training data such that the trained SVM model in Section II-A
results in incorrect classification of events, i.e., to significantly
misplace the non-linear boundaries of the two classes. Here
we assume a white box attack, where the attacker has full
knowledge of the target classifier, including the training data,
the feature set, the learning algorithm, the objective function to
be minimized during training, and the parameters learned after
training the model. This aligns with the worst-case vulnerability
analysis, providing empirical upper bounds on the performance
degradation that may be incurred by the system under attack.



In practice, the attack could be achieved to a certain extent by
using a surrogate training set drawn from the same underlying
data distribution to approximate classifier function [32].

Poisoning refers to the process of manipulating the training
data, in which a number of specially crafted attack points are
injected into the training data set. The poisoning attack can
be formulated as a bi-level optimization problem in which
the outer optimization maximizes the attacker’s objective, i.e.,
hinge loss L in the case of SVM, while the inner optimization
amounts to learning the classifier, i.e., L corresponding to the
dual SVM learning problem, on the poisoned training data. Here,
the attacker’s goal is to find additional training sample (xp, yp),
to add into the training dataset Xtr to maximally decrease the
SVM’s classification accuracy. This can be expressed as

maximize
xp

L(Xval,Wp) (2a)

subject to Wp ∈ arg min
W

L(Xtr ∪ (xp, yp),W ), (2b)

where Xtr and Xval are the training data set and the validation
data set available to the attacker, respectively. The former, along
with the poisoning training sample (xp, yp), is used to train the
attacked SVM classifier, while the latter is used to evaluate the
performance of the trained model on untainted data, through
the loss function L(Xval,Wp). Notably, the objective function
implicitly depends on xp through the parameters in Wp of the
poisoned classifier. The hinge loss for SVM is expressed as

L(Xval,Wp) =
∑
i

max(0, 1− yi(Wp
Tφ(xi) + b)). (3)

The process to solve the bi-level problem in (2) is explained
in details in [32], [33]. It involves applying the gradient-ascent
method to the dual formulation of the SVM problem, as:

minimize
α

1

2

∑
i,j

αiQijαj −
∑
i

αi

subject to:
∑
i

αiyi = 0 (4)

0 < αi < C, i = 1, · · · ,m,

where Q is an m×m positive semidefinite matrix:

Qij = yiyj K(xi, xj) = yiyj φ(xi)
Tφ(xj). (5)

The function K(xi, xj) is the kernel. The terms αi are the dual
coefficients; and they are upper bounded by C.

From (2)-(5), the attacker selects the poisoning points by
solving the following revised optimization problem [33]:

maximize
xp

∑
i

(
−
∑
j

Qijαj − yib+ 1

)+

. (6)

III. VULNERABILITY ANALYSIS

The key in the vulnerability analysis of poisoning attacks is to
examine which features are more prone to cause misclassification
if a poisoning attack occurs; and which kernels are more robust
to prevent misclassification in the presence of poisoning attacks.
Importantly, the results may vary depending on each specific
classification problem in each field of research. In this paper,

Fig. 2: The decision boundaries of the event classifier during: (a) the original
training dataset; (b) the poisoned training dataset; (c) the test set being tested
on the original classifier; (d) the test set being tested on the poisoned classifier.

the specific classification problem of interest is the problem of
event classification in micro-PMU measurements. Therefore, in
this section, we conduct a vulnerability analysis based on the
real-world micro-PMU measurements that have been previously
studied in event classificaion in practice.

For each event, the features that are used in event classification
problem that we laid out in Section II-A include various
combinations of two synchronized data sequences D1, D2 ∈
{I, V, P,Q}, which come from micro-PMU 1 and micro-PMU 2,
respectively. Here, I, V, P, and Q denote the current magnitude,
the voltage magnitude, the active power, and the reactive power,
respectively. As in [2], we also consider the correlation between
the measurements of the four available data sequences from each
micro-PMU to construct some additional multi-stream features
corr(D1, D2); thus creating a total of 16 correlation features.

An example for the outcome of a poisoning attack against
event classification based on real-world micro-PMU data is
shown in Fig. 2. In this example, the features are corr(V1, Q2)
and corr(Q1, V2) with 16% poisoned data points in the training
dataset. Subscripts 1 and 2 stand for micro-PMU-1 and micro-
PMU-2, respectively. Here we use the radial basis function (RBF)
kernel with γ = 10 and C = 1. Parameter γ defines how far the
influence of a single training data point reaches, with low values
meaning far reaching and high values meaning close reaching.

Fig. 3 shows the vulnerability analysis based on real-world
data. We consider three scenarios which make use of the most
prominent features that are best capable of helping in event
classification in the absence of an attack:

• Feature Scenario 1: corr(Q1, I2) and corr(Q1, V2)
• Feature Scenario 2: corr(I1, I2) and corr(I1, V2)
• Feature Scenario 3: corr(V1, Q2) and corr(Q1, V2).

As we can see in Fig. 3, the least vulnerable feature scenario in
the presence of the poisoning attack is Feature Scenario 1. The
most vulnerable feature scenario is Feature Scenario 3.



(a) RBF kernel with  = 20, C= 10
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(b) RBF kernel with  = 10, C= 1

10% 20% 30%

Percentage of injected poisoning points

60%

70%

80%

90%

100%

(c) Linear kernel with C= 10

10% 20% 30%

Percentage of injected poisoning points

60%

70%

80%

90%

100%
(d) Linear kernel with C= 1

10% 20% 30%

Percentage of injected poisoning points

60%

70%

80%

90%

100%

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 i
n

 t
e

s
t 

s
e

t
Scenario 1

Scenario 2

Scenario 3

Fig. 3: Vulnerability analysis, in terms of the drop in event classification accuracy,
for the three predominant feature scenarios and different kernels.

Importantly, our analysis also shows that using RBF as the
kernel makes event classification more prone to error in the
testing dataset, than using the linear kernel. Using the linear
kernel with a lower C can provide a larger margin against the
poisoning attack. Thus, while using nonlinear kernel is desirable
in the absence of the poisoning attack, using linear kernel is
more robust in the presence of poisoning attack.

It is worth adding that, conducting the above vulnerability
analysis did not require using the raw measurements from the
micro-PMUs. The key was rather to only use the features that
are extracted from the raw measurements. In fact, we used the
exact same features that were extracted in [2]; therefore, we
were able to replicate the real-world event classification process
in [2] to conduct a realistic vulnerability analysis.

IV. ATTACK DETECTION METHOD

Based on the nature of the features in micro-PMU measure-
ments, we propose an attack detection method that does not
require access to any ground truth. This is important; because
the ground truth is usually not available to the utility in practice.
The rational and the details of this method are explained next.

A. Basic Mathematical Concepts

Before we can explain the attack detection method, we need
to first define some basic concepts. Suppose D denotes a subset
of the set of all available training data S. That is, we have:

D ⊂ S, (7)

where
S = {1, . . . ,m}. (8)

Clearly, if we use the data points in set D to train the event
classification model, then the obtained event classifier may not be
exactly the same as the event classifier that we obtain if we use all
the available training data points in set S . An example is shown
in Fig. 4. This example is constructed based on the poisoned
event classification model in Fig. 2(b). The event classifier that is
shown in Fig. 2(b) is the event classifier that is obtained by using
all the m = 250 training data points in set S . Now suppose we
construct set D by randomly dropping 40 training data points

Fig. 4: An example to obtain classifier difference: (a) a new classifier that is
obtained by dropping 40 data points from the poisoned data points in Fig. 2(b);
(b) the difference between the classifier in Fig. 2(b) and the new classifier.

in set S. The new event classifier that is trained by using the
data points in set D are shown in Fig. 4(a). If we compare the
classifier in Fig. 2(b), that is based on training data set S with
the classifier in Fig. 4(a), that is based on the training data set
D, we can obtain the classifier difference, as shown in Fig. 4(b).

In Fig. 4(b), the points in black are classified the same by
both classifiers; the points in blue are classified in Class I by
the initial classifier but in Class II by the new classifier; and the
points in red are classified in Class II by the initial classifier
but in Class I by the new classifier. Here, the initial classifier
refers to the classifier that is trained by using all the training
data points in set S; and the new classifier refers to the classifier
that is trained by using the data points in set D. Based on the
classifier difference that is shown in Fig. 4(b), we can define:

P (S,D) =
Blue Area + Red Area

Total Area
, (9)

which is between 0 and 1. A higher P (S,D) means a more
significant difference between the event classifier that is obtained
by using the training data points in set S and the event classifier
that is obtained by using the training data points in set D ⊂ S .

B. Attack Detection Problem Formulation

Next, we use the index that we defined in Section IV-A to
introduce the proposed attack detection method.

Based on the definition of set D in (7), let us define n as a
parameter that indicates how many training data points we may
randomly drop to create set D. For the example in Section IV-A,
we assumed that n = 40. We define set D as follows:

D = Set of all subsets of set S with m− n members. (10)

Clearly, set D is a subset of the super set (i.e., the set of all
subsets) S. From (10), set D includes all the subsets of set S
that can be created by dropping n training data points from the
m total available training data points.

For a given training data set S and a given n, we define

Γ = max
D∈D

P (S,D) (11)

as the maximum difference between the initial event classifier
based on the training data points in S and any possible event
classifier that is obtained by dropping n training data points.

In practice, Γ is never zero. However, if set S is clean, i.e.,
if none of the available training data points is poisoned, then Γ
is generally small. On the contrary, if set S is poisoned, i.e., if



some of the available training data points in set S are poisoned
to the extent that they have considerable impact on the resulting
model for the event classifier, then Γ is considerably large.

Accordingly, we detect a poisoning attack if we have:

Γ > δ, (12)

where δ is a detection threshold parameter. As we will see in
Section V, selecting δ is not challenging in practice; because
there is often a significant difference between Γ for a clean
training data set and Γ for a poisoned training data set.

It is worth noting that set D can potentially be a large set,
depending on the values of m and n. Therefore, in practice, one
may obtain Γ based on only a randomly selected subset of the
sets in D. This can reduce computational complexity. In fact,
this is exactly how we run our case studies in Section V.

V. CASE STUDIES: ATTACK DETECTION

In this section, we evaluate the accuracy of the proposed attack
detection method. We also compare the proposed method with
a baseline method that works based on pre-filtering and spatial
clustering. In addition, we conduct sensitivity analysis.

A. Attack Detection Accuracy
In this case study, we assume that m = 250 and n = 40. A

total of 16% of the training data is assumed to be poisoned. The
poisoning points are generated by using the code in [34]. Fig.
5 shows the value of P (S,D) for 100 random scenarios. In
each scenario, we create a new set D by randomly dropping n
training data points. We can see that, the classifier differences
are much higher for the poisoned case than for the clean case.
From (11), we obtain Γ = 0.054 for the poisoned case and
Γ = 0.014 for the clean case. Thus, there is a clear distinction
between the poisoned case and the clean case. As a result, the
proposed method can accurately detect the poisoning attack. In
this example, δ can be anywhere between 0.03 to 0.05. We will
further discuss the selection of the parameters in Section V-C.

B. Comparison with Baseline Method
In computer science, a popular approach to detect poisoning

attacks is pre-filtering [35], [36]. In this approach, the training
data set is examined before it is used in classification. On the
contrary, we take into consideration the outcome of the event
classifier training as the means to detect the poisoning attack.

We implemented the following pre-filtering technique as the
baseline method: DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) [37]. The goal here is to find clusters
of arbitrary shape to identify the presence of outliers in the
training data set; which are deemed to be the poisoning data
points. The results of applying DBSCAN to the real-world micro-
PMU event features data are shown in Fig. 6. As we can see,
this method identifies several outliers (black dots) and clusters
(colored circles) in the poisoned training set.

If we were to use DBSCAN to pre-filter the training data set,
then we would mark too many benign data points as outliers.
For example, notice how the benign data points are placed into
outlier clusters in the bottom red left corner in Fig. 6. Thus, as
far as the features in micro-PMU measurements are concerned,
DBSCAN is not the right tool to detect the attack.
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Fig. 5: Clear distinction between Γ for the poisoned dataset and Γ for clean
dataset. The proposed detection method can accurately detect the attack.

Fig. 6: The baseline method incorrectly clusters benign data points as outlier.

C. Sensitivity Analysis

Fig. 7(a) shows the sensitivity of obtaining Γ against the
number of randomly simulated cases, i.e., the size of the random
version of set D. As we can see, we reach saturation at about
300. This is very promising; because it suggests that a relatively
small number of random simulated cases is sufficient to obtain
Γ. Therefore, the proposed method is computationally tractable.

Fig. 7(b) shows Γ for different choices of n in percentages. As
expected, Γ increases as we randomly drop more training data
points; whether from the poisoned training set or from the clean
training set. Also, we can make two novel observations. First,
regardless of the choice of n, there is a clear distinction between
Γ for the poisoned case versus for the clean case. Therefore, the
proposed detection method is not sensitive to the choice of n.
Second, there is a breaking point in the slope of the red curve at
n = 16%. This is because, as we pass the number of poisoned
data points, which is 16%, the slope reduces to almost the same
slope as in the clean case. This is important; because we can
check the slope of the curve for the poisoned case to estimate
the number of poisoned data points in the training dataset.

VI. CONCLUSIONS

A new adversarial attack model, based on the concept of
poisoning attack, is introduced against machine learning-based
event classification in distribution synchrophasor measurements.
On one hand, vulnerability analysis is conducted; and it is
shown which features and kernels are more prone to deviate
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Fig. 7: Sensitivity analysis of the proposed method over two parameters: (a) the
number of random simulated cases in set D; and (b) parameter n.

event classification results in case of the attack, from adversarial
attackers’ or operators’ perspective. On the other hand, a novel
attack detection method is proposed that does not require any
ground truth level to detect the attack. The proposed method
is not sensitive to various parameters. Importantly, it can not
only detect the attack; but also estimate the number of poisoned
data points in the training data set. The results in this paper are
insightful to the field of smart grid cyber-security and they
can stimulate more future work; such as to examine other
machine learning platforms for event classification as the target
of the attack; or other data-driven applications of distribution
synchrophasor measurements, i.e., beyond event classification.
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