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Abstract—Convergence bidding, a.k.a., virtual bidding, is a
market mechanism that is used by several Independent System
Operators (ISOs) to increase market efficiency in electricity
markets by closing the gap between the day-ahead market (DAM)
prices and the real-time market (RTM) prices. However, some
recent reports by ISOs have questioned whether convergence
bids (CBs) act as intended. Motivated by such reports, this
paper provides a methodology to identify under what conditions
a CB results in price divergence, instead of price convergence.
The analysis is done in nodal electricity markets and factors
such as transmission line congestion are investigated. It is proved
that, under some transmission lines congestion configurations,
price convergence is guaranteed. In contrast, there are certain
transmission lines congestion configurations that can result in
price divergence when CBs are submitted at certain nodes. It is
also explained how the aggregate impact of multiple CBs may lead
to decrease (or increase) in the price gap at each bus. Importantly,
the analysis in this paper also covers the stochastic case, where
we obtain the probability of price convergence (or divergence)
when we are uncertain about some system parameters.

Keywords: Nodal electricity market, price gap, convergence
bidding, transmission line congestion, virtual bidding.

NOMENCLATURE

Day-Ahead Market:

p Vector of all bids of any type
x, y Vectors of physical demand and supply bids
v, w Vectors of demand and supply CBs
K Incidence matrix for p to x
Φ, Ψ Incidence matrices for p and x to system buses
V, W Incidence matrices for v andw to system buses
D̄ Index matrix for congested transmission lines
π, µ, λ Locational, shadow, and reference prices

Real-Time Market:

z Vector of physical supply bids
l Vector of actual demands at time of operation
Θ, Ω Incidence matrices for z and l to system buses
R̄ Index matrix for congested transmission lines
σ, η, δ Locational, shadow, and reference prices

Other Parameters:
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c Vector of transmission line capacities
∆ Vector of price differences: π − σ
S Shift factor matrix of the network
α, β Coefficients of the cost or utility functions
n Price Difference Sensitivity vector
Π Overall CB Sensitivity Matrix

Abbreviations:
ISO Independent System Operator
DAM Day-Ahead Market
RTM Real-Time Market
CB Convergence Bid
VB Virtual Bid
LMP Locational Marginal Price
FERC Federal Energy Regulatory Commissions
FTR Financial Transmission Right
PJM Pennsylvania, Jersey, Maryland ISO
SCED Security-Constrained Economic Dispatch
OPF Optimal Power Flow
KKT Karush-Kuhn-Tucker

I. INTRODUCTION

In a typical two-settlement wholesale electricity market,
generation and load entities can participate in both the day-
ahead market (DAM) and the real-time market (RTM), cf.
[1]–[4]. Ideally, there should be little or no gap between the
price in the DAM and the prices in the RTM. Otherwise, some
generators may practice market power and withhold a portion
of their capacities to gain more profit from the opportunity to
arbitrage between the DAM and RTM [5]–[7].

A. Convergence Bidding

To reduce the price gap, Convergence bids (CBs), a.k.a.,
Virtual bids (VBs), was introduced to electricity markets and
become a part of the Federal Energy Regulatory Commissions
(FERC) standard market design [5], [8]. Similar to physical
bids, CBs have two types: demand and supply. A demand
(supply) CB is a bid to buy (sell) energy in DAM without any
obligation to consume (produce) energy. If the CB is cleared
in DAM, then the bidder is charged (credited) at the DAM
price and credited (charged) at the RTM price. Therefore, the
difference between the earning in RTM (DAM) and the cost
in DAM (RTM) will be paid to the bidder. The process of
clearing CBs and the related payment is outlined in Fig. 1.

From FERC’s and ISOs’ perspective, if participants make
profit through CBs, it must automatically help closing the price
gap [5]: if DAM price tends to be higher than RTM price,



2

Convergence Bidder

Cleared CB

ISO

Day-Ahead Market 

Optimization

Real-Time Market 

Optimization

Physical Bids

Price

Difference

Payment 

Calculation

RTM Price

DAM Price

Bids Payments

Fig. 1. Outline of the process of clearing convergence bids.
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Fig. 2. The expected impact of profitable supply CBs on price convergence.

convergence bidders will seek to profit by placing supply CBs
which decrease the DAM price by increasing supply in the
DAM. This increase in supply CB and decrease in DAM price
could also reduce the amount of physical supply committed
and scheduled in the DAM, which would tend to increase
RTM price. Fig. 2 outlines how a profitable CB is expected to
improve price convergence between DAM and RTM. In this
scenario, supply CBs could help improve price convergence
by reducing DAM price and increasing RTM price. A similar
argument can be made for placing a demand CB when DAM
price tends to be lower than RTM price [9].

B. The Issue

There are recent ISO reports raising concerns about CBs,
questioning whether they perform as expected. In fact, it is
generally difficult for ISOs to analyze how CBs may have
affected price convergence and market efficiency [10]–[12].
For example, here is a related quote from the California
ISO 2015 Annual Report on Market Issues and Performance
[10]: “However, the degree to which convergence bidding has
actually increased market efficiency has not been assessed. In
some cases, virtual bidding may be profitable for some market

participants without increasing market efficiency significantly
or even decreasing market efficiency.” Here is another quote
from the PJM 2015 Report on Virtual Transactions in Energy
Markets [11]: “In considering when and to what degree virtual
trading offers benefits to PJM markets, it is important to
account for these distinctions before definitively concluding
that the generally accepted principles of market efficiency as
demonstrated by trading in other financial and commodity
marketplaces hold equally well to PJMs energy markets.” The
above PJM report later added the following note: “The multiple
facets of virtual transactions must be understood in order
to understand how market rules can be further enhanced to
maximize the usefulness of virtual transactions.”

The above quotes exemplify the current state of uncertainty
and debate about the impact of CBs in electricity market
industry. This paper seeks to identify and explain some of
the root causes for such observations by ISOs.

C. Related Literature

Despite the fact that CBs are widely adopted by ISOs, there
is limited literature on addressing the issues related to CBs in
electricity markets. The common approach so far has been
to use historical market data from different ISOs to conduct
statistical analysis on market prices in long-term [13]–[16].

As for the few studies that take a rather analytical approach
to CBs, so far, most of them have focused on cases where the
CBs are somewhat abused, either by a market player, e.g.,
when submitted strategically in conjunction with Financial
Transmission Rights (FTR)s [17]–[20], or by an adversary,
e.g., in a cyber-physical attack [21]. In contrast, in this paper,
the focus is on investigating CBs when they are used as
intended, yet they may demonstrate counter-intuitive results.

There are studies on selecting CBs to maximize the profit for
the market participant, e.g., by using optimization or learning
techniques, c.f. [22]–[24]. The common assumption is that the
market participant does not affect the prices in the market,
because these studies are not concerned with any such impact.

There are a few recent studies that have pointed out the
complexities around CBs in electricity markets and the fact
that CBs in electricity markets cannot be evaluated in the same
way that they are assessed in other markets [10]–[12], [25].
However, so far, no prior study has provided any analytical
method to explain such complexities and their root causes.

D. Summary of Contributions

Motivated by these recent observations, in this paper, we
study the conditions under which a CB (or a group of CBs)
results in price convergence or price divergence in a nodal
electricity market. The analysis in this paper is not data-driven;
it is instead based on looking at the basic formulation of CBs
in nodal electricity markets in order to study how they impact
on the DAM and RTM prices. The structural analysis in this
paper is in fact from the view point of the ISO, because the ISO
is concern about the overall impact of CBs and efficiency of
market. This is one of the main differences between this study
and the majority of the existing studies in the literature that
often look at the concept of convergence bidding from the view
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Fig. 3. The simple power network that is studied in this section.

point of the market participant. Thus, our goal is to answer the
following simple yet fundamental question: does convergence
bidding in electricity markets always act as intended and result
in converging the prices of the DAM and RTM, just like in a
typical commodity or financial market? Our results are along
the line with the recent ISO reports as quoted in Section I.B.
The contributions in this paper are summarized as follows:

• This paper investigates the structural characteristics of
CBs in nodal electricity markets, considering network
topology, location of CBs, nodal prices, and specially
the congestion status of transmission lines. Note that,
transmission line congestion is one of the main differ-
ences between electricity markets and other commodity
and financial markets. We start off with three insightful
representative test cases, to show that, depending on the
extent and location of transmission line congestion, the
outcome of a CB at a bus in a nodal electricity market
can create price converge or price divergence at that bus.

• A sensitivity analysis based on a closed-form model, is
conducted to explain how the prices in the DAM and
RTM are affected by CBs; and subsequently why and
under what exact underlying topological and grid opera-
tional conditions, placing CBs result in price divergence.

• Insightful sufficient conditions and their engineering im-
plications are also discussed. In particular, it is proved
that if the power system does not experience any trans-
mission line congestion at DAM or RTM, then any prof-
itable CB always helps the system reduce the price gap
between DAM and RTM. More importantly, it is shown
that the price convergence by profitable CBs is also
almost guaranteed if the set of congested transmission
lines in RTM is a subset of or equal to that in DAM.

• In order to address uncertainty, most importantly in the
amount of load and renewable generation, a scenario-
based stochastic analysis is proposed in this paper. The
probability distribution of the rate of convergence be-
tween the DAM and RTM prices under the random
scenarios is calculated and the results are investigated.

• Finally, a framework is provided to explain how the
overall, i.e., aggregate impact of multiple CBs may lead to
price convergence or divergence at each bus. This frame-
work is general, and can be used in both deterministic and
stochastic studies of CBs in nodal electricity markets.

The conference version of this paper was published in [26].
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Fig. 4. The DAM price π and the RTM price σ at Bus 2 versus the cleared
energy of a supply CB at the same bus: (a) Example 1, (b) Example 2.

II. MOTIVATION VIA EXAMPLES

In this section, we present three toy examples to demonstrate
the fundamental concepts that we seek to investigate in this
paper. All three examples are based on the three-bus network
in Fig. 3. Generators G1 and G3 participate in both the DAM
and RTM, while generator G2 participates only in the RTM. In
all cases, a supply CB is placed at bus 2. Cost functions for all
generators is in form of 0.5αix2i +βixi. The price components
of the supply bids submitted to the DAM are α1 = 0.3, β1 = 3,
α3 = 0.8, and β3 = 8. The price components of the supply
bids submitted to the RTM are α1 = 1.8, β1 = 10, α2 =
1.7, β2 = 5, α3 = 0.1, and β3 = 14. The reactance for all
transmission lines is 0.1 Ω and their resistance is negligible. In
Examples 1 and 2, the demand entity at Bus 2 submits a self-
schedule demand bid at 75 MWh to the DAM and its actual
demand in the RTM turns out to be 90 MWh. In Example 3,
we use the wind generation data from [27] and the load data
from [28] to generate 150 scenarios for the net load.

Example 1 - No Congestion: Suppose all transmission
lines have infinite capacity; thus, no transmission line can be
congested. Accordingly, LMP is the same at all buses. If no
CB is submitted to the market, i.e., when the CB is zero, then
the cleared market prices in the DAM and RTM are obtained
as π1 = π2 = π3 = $20.72 and σ1 = σ2 = σ3 = $14.67.
Consider the diagrams in Fig. 4(a). As we increase the size of
the supply CB at bus 2, the prices in the DAM increase while
the prices in the RTM decrease; thus, resulting in convergence
between the market prices. This is what is intended for a CB.

Example 2 - Congestion: Next, suppose the capacity of
the transmission line between buses 1 and 2 is 47 MW. In the
absence of CBs, no line is congested in the DAM and π1 =
π2 = π3 = $20.72. However, the transmission line between
buses 1 and 2 is congested at the RTM. Accordingly, the RTM
LMPs will be σ1 = $10.29, σ2 = $19.03, and σ3 = $14.66.
Consider the diagrams in Fig. 4(b). As we increase the size
of the supply CB at bus 2, the prices in both the DAM and
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Fig. 5. The probability distribution of the rate of convergence between the
DAM and RTM prices under the random scenarios in Example 3.

RTM decrease; however the rate of decreasing is higher for the
prices in the DAM. Thus results in divergence in the market
prices. This is the opposite of what is intended for a CB.

Example 3 - Stochastic Parameters: The observations that
we made in Examples 1 and 2 are fundamental. In particular,
even if the parameters of the system are stochastic, we can
still observe both price convergence and price divergence. To
see this, suppose generator G2 at bus 2 is replaced with a
wind farm and a load, which together form a random net
load that follows a scenario-based probability distribution. The
minimum, maximum and average of the net load is 2.05 MWh,
94.11 MWh, and 63.44 MWh, respectively. The average net
load is used in the DAM and the actual scenarios are used in
the RTM. The capacity of the line between buses 1 and 2 is 40
MW. Suppose the supply CB at bus 2 is fixed at 0.1 MWh. Fig.
5 shows the probability distribution for the rate of convergence
between the DAM and RTM prices, where a negative value
indicates price divergence. The rate of convergence is the
price gap before and after the presence of the CB. In this
example, price convergence occurs at 70% probability and
price divergence occurs at 30% probability.

All the above numerical results, as well as the case studies
in Section V, are obtained by solving the corresponding market
optimization problems using CPLEX in MATLAB. The simu-
lations are done on a PC with Intel Xeon CPU @3.80GHz and
16 GB RAM. Each case study may require solving multiple
market optimization problems. For instance, in Example 3,
there are 150 random scenarios. For each scenario, there are
four market optimization problems, i.e., for the DAM and the
RTM; and also for before and after placing the CB. Thus, a
total of 600 = 150 × 4 market optimization problem were
solved in order to obtain the results in this example. For each
optimization problem, the number of iterations are less than 15
and the average total CPU time is less than 400 milliseconds.

III. SENSITIVITY ANALYSIS OF DAY-AHEAD AND
REAL-TIME MARKET PRICES TO CONVERGENCE BIDS

The toy examples in Section II suggest that there might
be some structural characteristics in nodal electricity markets
that affect the impact of CBs on such markets. The first step
to understand these characteristics is to analyze the sensitivity
of the DAM and RTM prices with respect to the CBs.

A. System Model to Clear Convergence Bids

In this paper, an offer-based nodal electricity market is
considered for the DAM and RTM models, which is cleared

by Security-Constrained Economic Dispatch (SCED). Since
our goal is to investigate how CBs affect the price gap,
other aspects such as start-up and shut-down costs are not
considered. Thus, there is no binary variable in the market
model; accordingly, the SCED problem is converted to DC
Optimal Power Flow (OPF). Here, we mean to show that, even
in a simplified core market clearing model, price divergence
can indeed happen. In the market clearing process, the supply
and demand bids represent the cost and utility functions for the
supply and demand entities, respectively. These functions take
quadratic forms, i.e., 0.5αix2i + βixi. Note that, αi is greater
than for supply bids and less than zero for demand bids. Each
bid comprises coefficients αi and βi as well as the minimum
and maximum range for generation or consumption.

Based on the submitted bids, ISO solves the below OPF
problem which is formulated in matrix form [9], [14], [29]:

min 0.5 pT Ap + bT p (1a)

s.t. 1T p = 0 : λ (1b)

− c ≤ S Φ p ≤ c : µ−,µ+ (1c)

pmin ≤ p ≤ pmax (1d)

where the optimization variables are cleared energy of phys-
ical and virtual supplies and loads in the system, as follow:

p ,
[
x y v w

]T
. (2)

In (1), we maximize the social welfare of the system (i.e.,
minimize the negative social welfare). The objective function
comprises the cost functions of generators minus the utility
functions of loads. In (1), A is a matrix of the diagonal
quadratic coefficients in the DAM bids. It comprises α and
−α for all supply and demand bids in the DAM, respectively.
Note that, both physical and convergence bids are taken into
consideration, as shown in the below equation:

A =


αi .. .. .. ..
.. −αi .. .. ..
.. .. .. .. ..
.. .. .. αi ..
.. .. .. .. −αi


→ supply
→ demand

→ supply
→ demand

(3)

Also, b is the vector of all linear coefficients in the DAM bids:

b =


βi
−βi
..
..
βi
−βi


→ supply
→ demand

→ supply
→ demand

(4)

Constraint (1b) guarantees power balance between generation
and demand. Constraint (1c) represents power flow equations
and enforces transmission line capacities. In this constraint, Φ
is the binary vector, connecting the generator and load indices
to the system nodes. Thus, Φp is the power injection at nodes.
Also, S is the shift factor matrix of the network. Constrain (1d)
is to clear all bids within their submitted power range. The
Lagrange multipliers in (1b) and (1c) provide the reference
and shadow prices, respectively, to obtain the LMPs as:

π = λ1− STµ (5)
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where µ = µ+−µ−. Note that, since the shift factors for all
transmission lines with respect to the reference bus are always
zero, for the reference Bus i, we have πi = λ.

The RTM market clearing optimization problem in presence
of convergence bids can also be formulated as [9], [14], [29]:

min 0.5 zT C z + dT z (6a)

s.t. 1T z + 1T x = 1T l : δ (6b)
− c ≤ S(Ψ x + Θ z−Ω l) ≤ c : η−,η+ (6c)

zmin ≤ z ≤ zmax (6d)

where the optimization variables are the entries of vector z.
Despite their structural similarities, there are two key dif-

ferences between the DAM optimization problem in (1) and
the RTM optimization problem in (6). First, as in practice, the
RTM optimization problem in (6) is based on only physical
bids but not convergence bids [9], [29], [30]. Second, due
to the nature of the RTM, the physical demand bids are not
allowed, instead, the constant loads are replaced, which are
obtained from the ISO forecast algorithms, c.f. [31]. Therefore,
the power balance constraint in (6b) includes only physical
supply bids on its left-hand side and the forecasted load on
its right-hand side. Also, note that, the physical supply bids
cleared in the DAM appear as constant in the RTM.

The RTM LMPs are obtained similar to the DAM LMPs as

σ = δ1− STη. (7)

Although CBs do not appear in the RTM clearing process,
because they do affect the cleared physical supply bids in the
DAM, they indirectly have impact on the LMPs of the RTM.

Note that, the focus in this paper is on the following:

∆ , π − σ, (8)

which is the difference between the LMPs in the DAM and
the RTM. We are concerned with whether such difference de-
creases or increases at each bus under different CB scenarios.

B. Closed-Form Sensitivity Analysis

Given the mechanism of clearing CBs in Section III-A, next,
we present a theorem to show how the cleared energy of a CB
can affect the price gap at the bus where the CB is placed.

Theorem 1. Consider a CB at Bus i. Without loss of gen-
erality, suppose Bus i is the reference bus and the CB is a
profitable supply bid, whose cleared energy bid is denoted by
vi. (a) The price gap ∆i = πi − σi at Bus i is a piecewise
linear function of the cleared CB vi. (b) The slope of such
function, i.e., the right-sided partial derivative, is obtained as

∂∆i

∂vi
=
∂πi

∂vi
− ∂σi

∂vi
=
−1

1T h
− 1

1T e
1

1T h
(1T K̂h− rK̂h)

= − 1

1T h
1

1T e
(1T e + 1T K̂h− rK̂h),

(9)

where
h , Λ1−ΛXT (XΛXT )−1XΛ1, (10)

e , Γ1− ΓYT (YΓYT )−1YΓ1, (11)

r , 1TΓY(YΓYT )−1R̄SΨ̂, (12)

and Λ, Γ, K̂, X, Y, R̄, and Ψ̂ are constant matrices that depend
on cleared bids and admittance and congestion status of lines.

The proof of Theorem 1 is given in the appendix A. This
theorem can be rephrased also to explain the impact of placing
profitable demand CBs by replacing vi with −wi.

The expression in equation (20) can be used to explain
how the difference between the DAM and RTM prices would
change as a function of vi. In fact, if ∆i > 0 in the absence
of the CB, then a supply CB at Bus i reduces the price gap
at that bus if and only if ∂∆i/∂vi < 0. For instance, in
Example 1 in section II, if the supply CB is within the range
[0, 5] MWh, then ∆2 = 6.05 and ∂∆i/∂vi = −0.31 < 0;
Therefore, placing a supply CB at that bus closes the price
gap. In contrast, in Example 2, we have ∆2 = 1.69 and
∂∆i/∂vi = +0.33 > 0, which results in price divergence.

In summary, the impact of a CB on the LMP at the bus
where the CB is placed depends on the coefficient shown in
equation (9), which may enforce convergence (desirable) or
divergence (undesirable) between the DAM and RTM prices.
Therefore, compared to the impact of CBs in commodity
and financial markets, the impact of CBs in nodal electricity
markets is significantly more complicated that can sometimes
create counter intuitive results. Such complex issues are the
root causes for the concerns that are raised by multiple ISOs
on CBs performance, as we mentioned in Section I.B.

Next, we will further investigate the results in Example 2
in Section II to understand under what operational conditions
placing a CB results in price convergence or divergence.

C. Further Analysis on Theorem 1

Recall from Section I that some ISOs, such as the California
ISO, have clearly indicated their assumption/expection that if
a CB participant makes profit off of submitting a CB, then it
must help closing the price gap. Mathematically speaking, this
can be expressed as one of the following two cases:

• If ∆i > 0, then the supply CB at Bus i is profitable.
Accordingly, ISOs expect that ∂∆i/∂vi ≤ 0, such that
the CB helps reducing the price gap.

• If ∆i < 0, then the demand CB at Bus i is profitable.
Accordingly, ISOs expect that ∂∆i/∂wi = −∂∆i/∂vi ≥
0, such that the CB helps reducing the price gap.

Consequently, ISOs always presume that ∂∆i/∂vi is less
than zero. This idea is based on a financial common sense that
increasing (decreasing) a supply CB leads to deficit (surplus)
demand in DAM and surplus (deficit) demand in RTM, which
in turn decreases (increases) the DAM price and increases
(decreases) the RTM price. However, such seemly common
sense does not always hold in nodal electricity markets. For
example, as we saw in Example 2 in Section II, ∂∆i/∂vi > 0.

Corollary 1. For any Bus i, if the DAM price πi is initially
higher than the RTM price σi, i.e., ∆i > 0 , then a supply
CB at Bus i results in price divergence if and only if:

rK̂h ≥ 1T e + 1T K̂h. (13)
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Proof. Since Λ is a diagonal positive semidefinite matrix:

1T h = ‖Λ0.51−Λ0.5XT (XΛXT )−1XΛ1‖22 ≥ 0 (14)

Similarly, we can prove that 1T e ≥ 0. From these, and also
due to equations (9) and (13), we conclude that ∂∆i/∂vi > 0.
With this in mind, and since ∆i > 0, if a supply CB is placed
at Bus i, then the DAM and RTM prices diverge at Bus i.

The above Corollary can be used to indicate whether or not
placing a CB at a bus results in price convergence at that bus.
Interestingly, from (14) and (37) we always have ∂πi/∂vi ≤
0, even though we may not always have ∂∆i/∂vi ≤ 0. In
other words, what the ISOs expect is partly true; that is,
increasing a supply (demand) CB at a bus decreases (increases)
the DAM price at that bus. However, the impact of CBs on
RTM prices, i.e., the sign of ∂σi/∂vi, may vary depending
on how 1T K̂h and rK̂h may stand compared to each other.

Corollary 2. If neither DAM nor RTM experience congestion,
then placing a profitable CB at a bus is guaranteed to result
in convergence between the DAM and RTM prices at that bus.

Proof. Since the power grid is not congested in both markets,
we have D̄ = R̄ = 0. From this, together with the definition of
X and Y in (35) and (40), we have X = Y = 0. By substituting
these terms in (10), (11), and (12), we conclude that

h = Λ1, e = Γ1, r = 0. (15)

By substituting the above terms in (13), we have

1T e + 1T K̂h = 1TΓ1 + 1T K̂Λ1 ≥ rK̂h = 0. (16)

where the inequality is due to Λ and Γ being diagonal positive
semi-definite matrices and K̂ comprising basis vectors.

The above Corollary explains the price convergence in
Example 1. Note that, if the grid is not congested in either
market, then the electricity market turns into a typical two-
settlement financial market, in which CBs always reduce the
price gap and enhance market efficiency. As we see next,
transmission line congestion is a key factor to determine
whether a CB can create price convergence or divergence.

Corollary 3. Suppose all marginal, i.e., price-maker, bids in
the DAM are of type physical supply. Also, suppose the set
of all congested transmission lines in the RTM is a subset
of or equal to the set of all congested transmission lines in
the DAM. In this case, the CBs are always help the market
efficiency by reducing the price gap between DAM and RTM.

Proof. Since the set of congested transmission lines in RTM
is a subset of that in DAM, we can construct matrix R̄ using a
subset of the rows in matrix D̄, i.e., R̄ = ΥD̄. Also, since all
marginal bids in the DAM are assumed to be of type physical
supply, we have K̂ = I and Ψ̂ = Φ̂−i. Therefore, we have

1T K̂h = 1T h (17)
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Fig. 6. An example for a transmission line congestion configuration that
satisfies the conditions in Corollary 3. Congested lines are shown in black.

and

rK̂h = rh
= (1TΓY(YΓYT )−1ΥD̄SΦ̂−i)

× (Λ1−ΛXT (XΛXT )−1XΛ1)

= 1TΓY(YΓYT )−1Υ

× (XΛ1− XΛXT (XΛXT )−1XΛ1) = 0.

(18)

After substituting (17) and (18) in (13), we have:

1T e + 1T K̂h = 1T e + 1T h ≥ rK̂h = 0, (19)

where the inequality is due to 1T h ≥ 0 and 1T e ≥ 0.

Fig. 6 shows an example of a transmission line congestion
configuration that satisfies the condition in Corollary 3. There
are three congested transmission lines in the DAM and two
congested transmission lines in the RTM. Importantly, the set
of congested transmission lines in the RTM is a subset of
the set of congested transmission lines in the DAM. Thus,
from Corollary 3, profitable CBs are guaranteed to help close
the price gap between the DAM and RTM in the situation in
this example. Note that, the condition in Corollary 3 does not
hold in Example 2 in Section II; therefore, Corollary 3 sheds
lights on why we observed price divergence (instead of price
convergence) between the DAM and RTM in Example 2.

Interestingly, the conditions in Corollary 3 often do hold in
practice, at least in the current market conditions. For instance,
the current demand bids are almost solely price-taker [31].
Also, the total cleared demand and supply CBs are currently
only a small portion (∼12%) of the cleared physical supply
bids [10]. Therefore, most marginal bids are currently of type
physical supply. This may explain why the ISOs have not yet
encountered severe undesirable divergence in practice, even
though they have already observed some traces of such results
that have raised concerns, see Section I. However, many ISOs,
such as in California, have reported plans to increase the limits
on CBs, e.g., see [9]. If that happens, it may eventually lead
to conditions where the use of CBs can create major price
divergence, which may lead to severe market efficiency issues.

To summarize, Fig. 7 shows the sufficient conditions; ex-
plained in Corollaries 1, 2, and 3; to cause price convergence
or price divergence when a CB is cleared at a bus. The
conditions dependent highly on transmission line congestion
configuration in both DAM and RTM. Accordingly, as a first
step, a market operator may use the sufficient conditions in
Corollary 2 and Corollary 3 to see if a CB improves the
price gap in the market by simply checking the transmission
lines congestion configuration of DAM and RTM. If not, the
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Fig. 7. Summary of the Corollaries 1, 2, and 3 to guarantee price convergence
or price divergence when a CB is placed in the electricity market.

market operator may then use the condition in Corollary 1
to check whether a CB may cause price convergence or even
price divergence between the DAM and RTM.

IV. EXTENDED ANALYSIS

The analysis in Section III provided us with a set of tools
to investigate the impact of placing a CB on creating price
convergence/divergence at the bus where the CB is placed.
These tools can be used to further expand our analysis to also
address the more general cases, as we discuss in this section.

A. Overall Impact Analysis

In practice, several CBs can be placed at different buses.
Placing a CB at a bus influences the prices not only at the
bus where it is placed but also at other buses. The collective
impact of the CBs at different buses determines the overall
convergence or divergence properties at each bus.

Theorem 2. Consider a CB at bus i. Without loss of generality,
suppose the CB is a profitable supply bid (∆i > 0), whose
cleared energy bid is denoted by vi. The bus price gap vector
is a piecewise linear function of the cleared CB vi and the
slops of such vector function, denoted by ni, are obtained as

ni ,
∂∆

∂vi
=
∂π

∂vi
− ∂σ

∂vi
, (20)

where
∂π

∂vi
=

[
−1T

D̄S

]T
H−1

[
1
0

]
(21)

∂σ

∂vi
=

[
1T

−R̄S

]T
E−1

[
1T

RSΨ̂

]
K̂Λ

[
1T

−X

]T

H−1

[
1
0

]
(22)

and

H ,
[

1T

X

]
Λ

[
1T

−X

]T
, E ,

[
1T

Y

]
Γ

[
1T

−Y

]T
. (23)

The proof of Theorem 2 is given in Appendix B. This
theorem can be used to explain the impact of a CB on the
difference between the DAM and RTM prices at all buses.
Specifically, vector ni expresses the sensitivity of the price
gap vector to a cleared CB submitted at Bus i in the market.

The subscript is added to the sensitivity vectors to indicate
the bus at which the CB is submitted. For instance, row j of
vector ni, denoted by nj

i , refers to the sensitivity of the price
gap at Bus j once a CB is placed at Bus i. Note that, Theorem
2 is a generalization of Theorem 1 in Section III.

First, consider Example 1 in Section II. From the analysis
in Theorem 2, one can show that placing the supply CB at
Bus 2 results in the following price gap sensitivity vector:

n2 =
[
−0.31 −0.31 −0.31

]T
. (24)

Note that, since no transmission line is congested in Example
1, neither in DAM nor RTM, the CB has an identical impact
on LMPs at all buses. In fact, in Example 1, placing a CB at
any bus can result in reducing the price gap at all buses.

Next, consider Example 2 in Section II, where we observed
price divergence. From Theorem 2, placing a supply CB at
Bus 2 results in the following price gap sensitivity vector:

n2 =
[
−0.95 +0.33 −0.31

]T
. (25)

Since ∆ > 0, only a negative entry in matrix n2 indicates price
convergence at the bus corresponding to that entry. A positive
entry indicates price divergence. Therefore, from (25), placing
a CB at Bus 2 in Example 2 results in decreasing the price
gap at buses 1 and 3, but increasing the price gap at Bus 2.

The overall CB sensitivity matrix for all CBs is obtained as

Π = [∂∆i/∂vj ]i,j (26)

This matrix, together with the incidence matrices V and W,
can be used to analyze the overall impact of all CBs at each bus
under various network operating condition. For instance, for
small identical deviations of all CBs, whether of type supply or
demand, the entries of the vector Π(V−W) indicate whether
the DAM and RTM prices converge or diverge at each bus. In
this case, if ∆ > 0, then any negative (positive) entry indicates
price convergence (divergence) in the corresponding bus.

CBs can cause price convergence at some buses, and price
divergence at some other buses. The final overall outcome
of the market is a balance between the convergence and
divergence forces caused by different cleared CBs. It is natural
for ISOs to want to know how and why such balance is shaped.
They may also want to know which CBs are creating the
divergence forces to possibly block them. The above analysis
provides ISOs with proper tools to address all these challenges.

B. Stochastic Analysis

Recall from Section II that the observations that we made in
the deterministic cases in Examples 1 and 2 can be made also
in the stochastic case in Example 3. Similarly, the analysis
in Sections III and IV are also applicable to the case where
certain parameters of the power grid or market are random.

Suppose the randomness in load and generation levels are
captured using S random scenarios and the probability for
each random scenario s is φs, where s = 1, . . . , S. Under
each scenario s, the price gap in (8) is obtained as

∆s , π − σs. (27)
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Fig. 8. The IEEE 14-bus standard system that is studied in Section V.

TABLE I
THE PRICE DATA OF IEEE 14-BUS SYSTEM WITHOUT CB.

Bus πi ($) σi ($) ∆i ($)
1 38.76 28.82 + 9.94
2 41.43 30.52 +10.91
3 42.93 35.45 + 7.48
4 44.21 39.64 + 4.57
5 45.08 22.56 +22.52
6 44.79 28.35 +16.44
7 44.37 36.55 + 7.82
8 44.37 36.55 + 7.82
9 44.45 34.93 + 9.52
10 44.51 33.81 +10.70
11 44.64 31.15 +13.49
12 44.76 28.87 +15.89
13 44.74 29.27 +15.47
14 44.58 32.47 +12.11

Note that, superscript s appears only for the RTM price σ,
because, in practice, the uncertainty is most considerable in
the real-time market. Nevertheless, the analysis would be the
same if we also add superscript s also to the DAM price π.

Next, we apply the analysis in Theorem 1, and obtain the
change in the price gap at bus i under random scenario s as

∂∆s
i/vi, (28)

using mathematical expressions similar to (7)-(10), where in
each case the notations are updated according to realization of
the random parameters under random scenario s.

As in Example 3, the key concern here is to figure out
the probability for the DAM and RTM prices to converge (or
diverge). The probability of price convergence is obtained as

S∑
s=1

φsI (∂∆s
i/∂vi > 0, ) , (29)

where I(·) is the indicator function, which is 1 if the inequality
holds or 0 otherwise. The probability of price divergence is

S∑
s=1

φsI (∂∆s
i/∂vi < 0, ) . (30)

A similar analysis can also be done for the overall impact
assessment in Section IV.A; where for each random scenario
s, we obtain the overall CB sensitivity matrix for all CBs as

Πs = [∂∆s
i/∂vj ]i,j . (31)
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Fig. 9. Price difference sensitivity at different buses to a CB at the same bus.
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Fig. 10. The changes in price difference at different buses caused by placing
supply CBs at buses 1, 2, and 3 (v1= 5 MWh, v2= 1 MWh, v3= 1 MWh).

The probability of price convergence and the probability of
price divergence can then can calculated at each bus using
similar formulations as in (29) and (30), respectively.

V. ADDITIONAL CASE STUDIES

This section provides additional case studies based on the
IEEE 14-Bus test system, as shown in Fig. 8, c.f. [32]. Only
active power of loads and generators is considered. The trans-
mission lines resistances are neglected. Suppose generators
G1, G2 and G3 participate in the DAM and their supply bids
are α1 = 0.4, β1 = 14, α2 = 0.5, β2 = 12, α3 = 0.3, and
β3 = 17. Generators G6 and G8 participate in the RTM and
their supply offers are α6 = 0.9, β6 = 15, α8 = 0.8, and
β8 = 18. It is assumed that the capacity of transmission lines
between buses 1 and 5 and buses 4 and 5 are 31 MW and
23 MW, respectively. Furthermore, it is assumed that 80% of
the loads is cleared in the DAM by submitting self-schedule
demand bids. The remaining 20% of the loads are cleared in
the RTM. In the absence of CBs, the LMPs of the DAM and
RTM and the price differences are as in Table I. In this case,
the line between buses 1 and 5 is congested in the DAM and
the line between buses 4 and 5 is congested in the RTM.
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As shown in Table I, the DAM price π is greater than the
RTM price σ in all buses. Therefore, submitting supply CBs
are always profitable, thus justified, for an independent market
participant. Fig. 9 shows the sensitivity of the price gap at each
bus to the supply CB submitted at that bus. We can see that,
the sensitivity of the price difference is positive at Bus 5, i.e.,
∂∆5/∂v5 > 0, but negative at other buses, i.e., ∂∆i/∂vi < 0,
for all i 6= 5. At Bus 5, the sensitivity of DAM and RTM
prices to a CB at Bus 5 are -0.73 and -1.0 respectively; thus
the overall sensitivity of price gap to the CB is +0.27 > 0.
Therefore, as we place a supply CB at Bus 5, the prices in both
the DAM and RTM decrease; however the rate of decreasing
is higher for the price in the DAM. Therefore, placing a supply
CB at Bus 5 causes divergence across the DAM and the RTM
prices at Bus 5. In fact, the condition for price divergence in
Corollary 1 holds at this bus. This is an interesting observation,
as it confirms that the analysis in this paper can be applied to
larger networks with several buses and transmission lines.

Next, suppose three supply CBs are placed at buses 1, 2 and
3. The supply CBs at buses 1, 2, and 3 are 5 MWh, 1 MWh,
and 1 MWh, respectively, i.e., v1 = 5, v2 = 1, v3 = 1. Fig.
10 shows the impact of each CB on the price difference at
buses 1 to 14. The change in price gap caused by each CB is
distinguished using a different color. The overall change in the
price gap at each bus is the summation of all three changes.
For example, consider the bars at Bus 1. The largest change
in price is caused by v1. The second largest change in price is
caused by v2. The smallest change in price is caused by v3.
However, all changes are on the negative side. That means, all
the three CBs result in price convergence at Bus 1.

An interesting observation is that the supply CB at Bus 1
increases the price gap at Bus 4 and also at Bus 7, 8 and 9;
such increase is only partially compensated by the supply CB
at Bus 2 and Bus 3 for the price gap at bus 4. Thus, the overall
impact of the CBs is to create price divergence at Bus 4. In
contrast, the increase in price gap at Bus 7, 8 and 9 caused
by the CB at Bus 1 is fully compensated by the supply CB at
Bus 2 and Bus 3. The overall impact of the CBs is to create
price convergence at Bus 7. From Fig. 10, the price divergence
that is caused by a CB at a bus can be compensated by the
price convergence that is caused by a CB at another bus. In
such cases, the overall impact of all CBs could be to decrease
or increase the price gap. Of course, if the overall impact of
CBs is to create price divergence at a bus, then the ISO may
choose to remove those CBs that are counter productive and
cause an increase (instead of a decrease) in the the price gap.

Last but not least, we study the stochastic case by consid-
ering S = 100 random scenarios for two uncertain net loads
at buses 4 and 13. The minimum, maximum and average net
load at bus 4 is 14.12 MWh, 52.96 MWh, and 38.24 MWh,
respectively. These numbers at bus 13 are 3.98 MWh, 14.95
MWh, and 10.8 MWh, respectively. For each random scenario
s, we obtain the diagonal entries of matrix Πs in (31), i.e., the
price sensitivity at each bus when the CB is placed at the same
bus. We also calculate the probability of price convergence by
using the expression in (29). At bus 5, the probability of price
convergence when a CB is placed at this bus is only 40%. This
may suggest that the ISO should not allow placing a CB at

this bus. At all other buses, price convergence is guaranteed.

VI. CONCLUSIONS

Based upon intuitive case studies and mathematical analysis,
this paper explained how and why the structural character-
istics of the power grid can affect the performance of CBs
in nodal electricity markets. First, a fundamental sensitivity
analysis was done to explain how the prices in the DAM and
RTM are affected by CBs. Closed-form sensitivity models
were obtained with respect to factors such as transmission
line congestion configuration. Accordingly, it was investigated
under what conditions and to what extent the outcome of CBs
would be price convergence (desirable) or price divergence
(undesirable). It was proved that, if no transmission line
is congested, then any profitable CB helps the system by
decreasing the price gap between DAM and RTM. It was also
proved that, if the set of congested transmission lines in RTM
is a subset of that in DAM, then the price convergence is
still guaranteed by profitable CBs. For the stochastic case, the
probability of price convergence (or divergence) was obtained
when we are uncertain about some system parameters. Finally,
a methodology was presented to explain how the aggregate
impact of multiple CBs may increase or decrease the price gap
between DAM and RTM at each bus. The results in this paper
can enhance our understanding of CBs in nodal electricity
markets. They can also help ISOs explain some of their recent
observations, such as what we quoted in Section I.

APPENDIX

A. Proof of Theorem 1

Since Bus i is taken as the reference bus, the price gap at
Bus i is obtained as ∆i = λ − δ. Let v−i denote the set of
all supply CBs other than vi. We can now define:

p−i ,
[
x y v−i w

]T
(32)

as the optimal solution of the problem in (1) other than vi.
We also define A−i, b−i, pmin

−i , pmax
−i , and Φ−i by removing

row i and/or column i from A, b, pmin, pmax, and Φ.
Suppose we decompose vector p−i into vector p̄−i for

entries that are binding by one or both of the two constraints
in (1d) and vector p̂−i for entries that are not binding by
any of these two constraints. Similarly, we define Ā−i, Â−i,
b̄−i, b̂−i, p̄min

−i , p̂min
−i , p̄max

−i , p̂max
−i , Φ̄−i, and Φ̂−i. We also

decompose vector µ into vector µ̄ for the Lagrange multipliers
corresponding to the binding constraints in (1c). Suppose D̄
denotes a row-reduced identity matrix, i.e., an identity matrix
with the same size of matrix S after we eliminate its rows
that correspond to the non-binding transmission line capacity
constraints. We also define µ̂ as the Lagrange multipliers
that are not binding by any of the transmission line capacity
constraints. We can show that the convex optimization problem
in (1) is equivalent to the following problem [33], [34]:

min
p̂−i

0.5 p̂T
−i Â−i p̂−i + b̂

T

−i p̂−i (33a)

s.t. 1T p̂−i + 1T p̄−i + vi = 0 : λ (33b)

D̄S (Φ̂−i p̂−i + Φ̄−i p̄−i) = D̄c : µ̄, (33c)
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where vi and p̄−i are fixed at their optimal values but p̂−i

is variable. The objective function in (31a) includes the terms
that depend on p̂−i. Because Bus i is the reference bus, SΦp =
SΦ−ip−i. Also, only those line capacity constraints that are
binding at the optimal solution of problem (1) are used here.

Because (33) is a convex quadratic program, it can be solved
by equivalently solving its KKT conditions [33], [34], which
is a system of linear equations over p̂−i, λ and µ̄:

Λ−1p̂−i + b̂−i =

[
1T

−X

]T [
λ
µ̄

]
(34a)[

1T

X

]
p̂−i = n−

[
1
0

]
vi. (34b)

where
X , D̄SΦ̂−i, Λ , Â

−1

−i , (35)

n ,
[

−1T p̄−i

D̄c− D̄S Φ̄−i p̄−i

]
. (36)

The coefficients in (34) do not change as long as the binding
constraints do not change at the solution of problem (1). If a
binding constraint becomes unbinding or vice versa, then some
or all matrices Λ, b̂−i, X, and n may change, but keeping the
relationship between variables, i.e., λ and vi, linear. Thus, the
overall relationship is piecewise linear. From (34), we have:

∂λ/∂vi = −1/1T h. (37)

where h is defined in (10) in Section III.B.
The analysis of the RTM prices is similar. We can first show

that problem (6) is equivalent to the following problem:

min
ẑ

0.5 ẑT Ĉ ẑ + d̂
T

ẑ (38a)

s.t. 1T ẑ + 1T z̄ + 1T x̂ + 1T x̄ = 1T l : δ (38b)

R̄S(Ψ̄ x̄ + Ψ̂ x̂ + Θ̄ z̄ + Θ̂ ẑ−Ω l) = R̄c : η̄, (38c)

where x̂ = K̂p̂−i and x̄ = K̄p̄−i. Again, since (38) is a convex
quadratic program, it can be solved by equivalently solving its
KKT optimality conditions, which in this case are a system
of linear equations over ẑ, δ and η̄. The linear coefficient of
δ as a function of vi is obtained as

∂δ

∂vi
=

∂δ

∂p̂−i

.
∂p̂−i

∂vi
=

1

1T e
1

1T h
(1T K̂h− rK̂h) (39)

where
Y , R̄SΘ̂, Γ = Ĉ

−1
, (40)

and e and r are as in (11) and (12). Since λ and δ are both
piecewise linear function of vi, their difference, i.e., ∆i is also
a piecewise linear function of vi. The slope of such function
is derived as in (9) by subtracting (39) from (37). �

B. Proof of Theorem 2

From equation (5), the linear coefficient of DAM price
function π with respect to CB vi can be obtained as

∂π

∂vi
=
∂λ

∂vi
1− (D̄S)T

∂µ̄

∂vi
. (41)

Then, by replacing λ and µ̄ from the KKT conditions of the
DAM optimization in (34), we can achieve ∂π/∂vi. Similarly,
at RTM the below equation can be derived from (7):

∂σ

∂vi
=

(
∂δ

∂p̂−i

1− (R̄S)T
∂η̄

∂p̂−i

)
∂p̂−i

∂vi
. (42)

Finally, ∂σ/∂vi can be obtained as shown in equation (22)
by using equation (42) and replacing ∂p̂−i/∂vi and ∂δ/∂p̂−i

from KKT conditions of DAM and RTM, respectively. �
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