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Abstract—Convergence bidding (CB), a.k.a., virtual bidding
(VB), is a market mechanism facilitated by Independent System
Operators (ISOs) in wholesale electricity markets to help lower
the gap between the prices in the day-ahead market (DAM) and
those in the real-time market (RTM). In this paper, we seek to
answer two questions: 1) how can a strategic market participant
maximize its profit when submitting CBs? 2) how can such
strategically placed CBs affect the price gaps? Answering these
questions is not straightforward but the results are insightful. The
bidding problem in this context is a bi-level optimization, where
the upper-level is about maximizing the profit for the convergence
bidder and the lower-level is the economic dispatch problem. By
solving the formulated bidding problem, we investigate the impact
of strategic CBs on the DAM and RTM locational marginal
prices (LMPs) under various practical scenarios. We demonstrate
the scenarios under which a strategic CB, whether on its own,
or when it is submitted jointly with a physical demand or
physical supply bid, can or cannot work as intended, and result
in decreasing or increasing the price gap in nodal electricity
markets. We also examine how the performance of strategic
CBs can be affected by uncertainty in demand or generation
bids as well as physical contingencies in the power system, such
as transmission line tripping. Special cases, such as net-zero
convergence bidding are studied. The long-term performance
of strategic convergence bidding is investigated. The above and
other market implications are discussed in multiple case studies.

Keywords: Convergence bids, virtual bids, strategic bidding, nodal
prices, price gap, market efficiency, price divergence.

NOMENCLATURE

N set of all buses
L set of all transmission lines
t Index of hour-based time slot
d Superscript for the day ahead market
r Superscript for the real time market
g Superscript for the generation resources
l Superscript for the demands
b Superscript for the convergence bids
+/− Superscript for increased/decreased generation
n,m Subscript indicating the nodes
k Subscript indicating the scenarios
j Subscript indicating the resources
H Susceptance of the network lines
C Capacities of transmission lines
∆ Difference between actual and cleared demand
M A sufficiently large number
c Cost of convergence bid
a Price bid component
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P Cleared MWh in the market
θ Voltage angle of the buses
ρ The probability of scenarios
λ Market cleating price
µ Dual variables corresponding to the inequality

constraints of market participants
β Dual variables corresponding to the inequality

constraints of transmission network lines
. / . Indicates the minimum/maximum bound
X A vector containing the left hand side of all

inequality constraints in (1c)-(1f) or (2c)-(2e)
Y A vector containing the dual variables of all

inequality constraints in (1c)-(1f) or (2c)-(2e)
z A vector containing the binary variables

I. INTRODUCTION

A. Background and Motivation

The term convergence bid (CB) is used by the California
ISO to refer to a class of financial bids that can be submitted to
the ISO’s day-ahead market (DAM), without involving phys-
ical power generation or power consumption [1]. Other ISOs
also use similar bidding concepts that are sometimes referred
to as virtual Bid (VB), such as in the PJM Interconnection [2].
These financial/virtual supply and demand bids settle first at
the DAM and accordingly charged or credited to the market
participants based on the locational marginal prices (LMPs)
in the DAM; and subsequently liquidated with the opposite
sell/buy position based on the LMPs in the RTM.

From the viewpoint of ISOs, CBs are introduced to achieve
price convergence, i.e., to reduce the price gap between DAM
and RTM. Price convergence across DAM and RTM is an
important indicator of a robust and optimal electricity market
[3]–[5]. As explained in [6], price convergence improves the
efficiency of the day-ahead commitment and energy schedules,
reduces the cost of hedging, allows for efficient settlement of
Financial Transmission Right (FTRs), and makes it advanta-
geous for parties to utilize the liquidity provided in the market.
ISOs expect convergence bidders to provide highly competitive
pressure to arbitrage between the markets and achieve price
convergence. Therefore, in an ideal electricity market, there
should be little or no gap between the prices in the DAM
and the prices in the RTM. CBs may also help by increasing
the competition in electricity markets which traditionally have
problem with the low number of market participants [7].

Any financial entity that meets the financial credit require-
ments of the ISO is eligible to submit CBs. This provides a
wide range of investors with new and major opportunities to
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participant in electricity markets without owning or operating
any physical asset. Of course, the owners and operators of
physical assets too may submit CBs in any bus - and not just
the buses where their assets are located - to hedge against
volatility in RTM LMPs or for speculative purposes.

Thus, in this paper, we seek to answer a series of questions
related to CBs in nodal markets: (1) How can a convergence
bidder strategically submit its bids to maximize its own profit?
(2) What if such convergence bidder also owns physical assets
that submit physical demand and supply bids? (3) What is the
impact of strategic CBs on the market? (4) How can a CB at
a bus or a group of coordinated CBs at multiple buses, affect
LMPs at difference buses, in terms of decreasing (desired) or
increasing (not desired) the price gap between the DAM and
RTM prices? (5) What is the impact of uncertainty?

B. Literature Review

The literature on convergence bidding can be broadly di-
vided into four groups. First, there are studies that focus
on evaluating how CBs may have affected the existing ISO
markets since they started adopting CBs. For example, a
statistical analysis on how CBs have affected the prices in
the CAISO market is presented in [8]. The effect of CBs in
presence of fast ramping constraints in the current CAISO
market is also studied in [4]. A critical analysis of the CB
incidents that are adopted by PJM is also done in [9].

Second, there are studies that discuss how convergence
bidding has the potential to correct the wrong schedules in
deterministic markets. For example, the potential for major in-
efficiencies of deterministic day-ahead scheduling is discussed
in [10], [11]. It is showed that convergence bidding, together
with some self-scheduling by large slow-start conventional
generators, may overcome these inefficiencies. In another re-
lated study in [12], the authors show that deterministic system
operation with convergence bidding approximates the results
of stochastic system operation, under certain assumptions,
helping to correct the wrong deterministic schedules.

Third, there are studies that focus on the fundamental char-
acteristics of CBs to analytically investigate the impact of CBs
on the market. For example, in [13], [14] the authors studied
how the network topology and transmission line congestion
can influence the impact of CBs in nodal electricity markets.
In [15]–[17], the authors examine how CBs may enhance
market efficiency or help prevent price spikes or market power.
Analytical studies of CBs also include the work in [18]–[21],
where the authors showed that convergence bidders can ma-
nipulate the Financial Transmission Rights (FTR) auctions in
electricity markets for their own benefit. Furthermore, in [22],
the authors have developed an analytical model to characterize
convergence bidding under imperfect market competition and
restricted entry in arbitrage.

Fourth, there are also studies that are concerned with de-
veloping strategies for convergence bidders to maximize their
profit. Given the purely financial nature of CB, the common
assumption in this line of work is that CBs are small and
do not have any major impact on the market prices. That
is, the (implicit) assumption is that the convergence bidder

is price taker. Thus, the focus has been on issues such as
price prediction and stochastic learning to optimally place CBs
under different risk management considerations, c.f. [23], [24].

Even though the study in this paper involves the formulation
of the strategic convergence bidding, the scope of this paper
is somewhat in between the studies in the third and the fourth
group of papers that we listed above. On one hand, a key
assumption in our analysis is that CBs are large enough to
have impact on market prices. Therefore, our formulations
involve not only the convergence bidding optimization but
also the underlying market optimization problems. As a result,
the analysis in this paper is fundamentally different from the
strategic convergence bidding methods in the forth aforemen-
tioned group of papers. On the other hand, by solving the
formulated convergence bidding problem we investigate the
impact of strategic CBs on the market; with a viewpoint
different from those in the third aforementioned group of
papers. For example, unlike in analytical models in [18]–[20],
[22], our focus here is on nodal electricity markets; therefore
our analysis of strategic convergence bidding includes placing
CBs in multiple locations. Other aspects that have not been
previously investigated, but covered in this paper, include joint
bidding with physical demand bids and physical supply bids
as well as physical contingency in the power grid.

Last but not least, the related literature also includes the rich
body of work on strategic bidding for various physical assets,
such as for generation companies [25], [26], demand entities
[27]–[29], as well as batteries and microgrids [30]–[32].

C. Summary of Contributions

The main contributions of this work can be listed as follows:

1) To the best of our knowledge, this is the first paper that
provides the formulation and a methodology to solve
the problem of strategic convergence bidding in nodal
electricity markets. After identifying the main practical
components in this problem, the bidding problem is
mathematically formulated as a bi-level profit maximiza-
tion problem. The initial problem is then transformed
into a tractable mixed-integer linear program (MILP).

2) Multiple special cases are discussed and reflected in the
problem formulation, such as joint bidding with physical
assets, coordinated bidding at different locations, net-
zero CBs, and convergence bidding with the social
objective of closing the price gaps. The implication of
each special case is studied. The long-term performance
of strategic convergence bidding is also investigated.

3) We then asses the impact of optimal convergence bid-
ding on the performance of nodal electricity market.
Some of the insightful observations include: First, con-
sidering convergence bidding will not necessarily close
the gap between the DAM and RTM prices. Second,
physical assets may strategically loose money on their
CBs to increase profit on their physical asset. Third,
the possible adverse impact of strategies leveraged by
convergence bidders to increase their profit on the price
convergence of the RTM and DAM is illustrated.
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Fig. 1. The main components in the strategic convergence bidding problem.

II. STRATEGIC CONVERGENCE BIDDING
PROBLEM FORMULATION

Consider a convergence bidder that submits CBs in a whole-
sale electricity market aiming to maximize its own profit. The
process and its main components are shown in Fig. 1. In this
paper, our focus is on two-settlement electricity markets, such
as those operated by CAISO and PJM. In these markets, DAM
is cleared a day before the operating day. The DAM prices are
determined and the generators and demands are scheduled. The
awarded supply and demand CBs are also determined. Once
the actual demand is revealed in the time of operation, the ISO
balances the actual demand with the supply from the cleared
generators in the DAM plus the supply bids in the RTM. Thus,
it implements another market optimization taking the RTM
supply bids into account, which determines the RTM prices.
ISO then calculates the payment to convergence bidders based
on the awarded CBs as well as the price difference between
DAM and RTM. If the DAM price is higher (lower) than the
RTM price, then supply (demand) CBs are profitable. Next,
we explain the detailed models for the components in Fig. 1.

A. Market Model

1) Day-Ahead Market: Market participants can commit to
buy or sell wholesale electricity one day before the operating
day. Once ISO collects all the supply, demand and convergence
bids, it solves the following optimization problem:

min
∑
t

[ ∑
j∈N g,d

ag,dj [t]P g,d
j [t] −

∑
j∈N l,d

al,dj [t]P l,d
j [t]

+
∑
i∈N b

ab,di [t]P b,d
i [t]

]
, (1a)

s.t.

P g,d
j [t]− P l,d

j [t] + P b,d
i [t] =∑

m|(n,m)∈L

Hnm(θdn[t]− θdm[t]), : λdn[t], ∀t, n (1b)

0 ≤ P g,d
j [t] ≤ P g

j [t], : µg,d
j [t], µg,d

j [t], ∀t, j (1c)

0 ≤ P l,d
j [t] ≤ P l

j [t], : µl,d
j [t], µl,d

j [t], ∀t, j (1d)

− P b
i [t] ≤ P b,d

i [t] ≤ P b
i [t], : µb

i [t], µ
b
i [t], ∀t, i (1e)

− Cnm ≤ Hnm(θdn[t]− θdm[t]) ≤ Cnm,

: βd
nm[t], βd

nm[t], ∀t, (n,m), (1f)

where, P g,d, P l,d, P b,d and θd are the primal decision vari-
ables. The dual variable for each constraint is shown on
the right side of the colon symbol. Note that, ab,d which
is the decision variable of the convergence bidder, acts as a
parameter in the DAM optimization problem. The objective
function (1a) is the cost of energy offered by the producers,
minus the revenue from supplying demand, plus the cost
resulted from the convergence supply (demand) bids in each
market interval. Equation (1b) enforces the day ahead power
balance at each bus. Constraints (1c)-(1e) represent the limits
of the power offered by the generation units, the bounds of
the demand and the CBs, respectively. Note that, −P b

refers
to the maximum amount of the demand CB. Constraint (1f)
imposes the capacity limits of each transmission line.

2) Real-Time Market: In the RTM, the differences between
day ahead commitments and the actual real time demand
is balanced. The RTM is performed just minutes before the
actual power delivery of each producer, where the increased
or decreased energy volume of each generator is determined
to maintain the real time demand and supply balance of the
system. The deviations of the actual generation and load from
what were scheduled in the DAM are then settled at the
RTM price. The RTM optimization problem considering the
different scenarios at each time slot can be written as:

min
∑
k

 ∑
j∈N g,r

ag,r+jk [t]P g,r+
jk [t]− ag,r−jk [t]P g,r−

jk [t]

 (2a)

s.t.

P g,d
j [t]− P l,d

j [t]−∆jk[t] + P g,r+
jk [t]− P g,r−

jk [t] =∑
m|(n,m)∈L

Hnm(θrnk[t]− θrmk[t]), : λrnk[t], ∀k, n (2b)

0 ≤ P g,r+
jk [t] ≤ P g

j [t]− P g,d
j [t]

: µg,r+
jk [t], µg,r+

jk [t], ∀k, j (2c)

0 ≤ P g,r−
jk [t] ≤ P g,d

j [t] : µjk
g,r−[t], µg,r−

jk [t], ∀k, j (2d)

− Cnm ≤ Hnm(θrnk[t]− θrmk[t]) ≤ Cnm,

: βr
nmk[t], βr

nmk[t], ∀k, (n,m), (2e)

where, P g,r+, P g,r− and θr are the primal decision variables.
The dual variables are also shown. The objective function (2a)
minimizes the total cost of redispatching energy. Equation (2b)
enforces the real time power balance at each bus. The actual
demand is deviated by the random variable ∆ from the cleared
demand P l,d in the DAM. Constraints (2c)-(2d) represent the
limits on the allowable deviation of the power generations in
the real time from the day ahead schedule. Constraint (2e)
imposes the capacity limits of each transmission line.

Since the DAM is cleared prior to the RTM, the deci-
sion variables P g,d, P l,d in problem (1) act as parameters
in problem (2). Also note that, only the cleared physical
supply P g,d and the cleared physical demand P l,d appear in
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the power balance constraint (2b). This constraint does not
include the cleared CBs. This is because, in practice, CBs’
position is zeroed-out in the RTM process; because the RTM
optimization is solely based on the actual generation and the
actual consumption. It is worth adding that, although CBs
do not explicitly appear in the RTM optimization problem,
they do affect the schedule of physical resources at the DAM;
therefore they do indirectly affect the RTM prices.

Since CBs must be decided one-day ahead of RTM, the
main source of uncertainty here is in the RTM. RTM includes
uncertainty since it is very close to the time of operation.
Therefore, the randomness is taken to account only in RTM.

B. Optimal Convergence Bidding Problem

Suppose the convergence bidder of interest can submit both
supply and demand CBs at some pre-determined nodes i =
1, . . . , I . Randomness is modeled by scenarios k = 1, . . . ,K.
For the convergence bidder to maximize its own profit, it must
solve the following optimization problem:

max
∑
t

∑
i∈N b

[
λdi [t]−

∑
k

ρkλ
r
ik[t]

]
× P b,d

i [t]

s.t Market Optimization Problems (1), (2). (3)

where, P b,d
i is positive for a supply CB and negative for a

demand CB. The objective function in (3) is the payment
(or charge) to the convergence bidder, which is obtained by
multiplying the cleared CBs, i.e., P b,d, determined in the
DAM, to the difference between the nodal DAM clearing price
λd and the expected nodal RTM clearing price λr.

The optimization problem in (3) incorporates all the com-
ponents in Fig. 1. This problem is a bi-level program, where
the DAM optimization problem in (1) and the real time market
optimization problem in (2) form the lower-level problems.

C. Special Cases

1) Joint Physical and Convergence Bids: Physical assets,
such as generators, can leverage CBs to further increase
their profit. While the constraints of the profit maximization
problem remain as in (3), the objective function for joint
physical and convergence bidding must change as follows:

min
∑
t

[ ∑
i∈N b

(
λdi [t]−

∑
k

ρkλ
r
ik[t]

)
× P b,d

i [t]

+
∑

i∈N g,d

λdi [t]× P g,d
i [t]− f

(
P g,d
i [t]

) ]
, (4)

where f(·) denotes the operation cost of the generation unit. It
should be noted that, if submitting CBs is not profitable for a
physical asset, then the optimization problem in (4) results in a
solution at which the CB quantity is zero. In other words, there
is never a harm in using the formulation in (4); because the
CB will be automatically and optimally set to zero, if needed.

2) Net-zero Convergence Bidding: This is one of the op-
tions available to a strategic convergence bidder to hedge
against the uncertainty in the energy components of LMPs.
The objective of a net-zero CB is to make profit from the
congestion component of LMPs, as opposed to making profit
from the fluctuations in the energy component of LMPs. The
problem formulation for this strategy is similar to one in
problem (3), with the following additional constraint:∑

i∈N b

P b,d
i [t] = 0, (5)

where the net energy terms of demand and supply CBs is zero.
Net-zero convergence bidding is also sometimes referred to as
up-to-congestion bidding, such in the PJM market [9].

3) Price Gap Minimization: As far as an ISO is concerned,
convergence bidding is ultimately a mechanism to close the
price gap between the DAM and RTM. One may ask: how is
this concern aligned with or against the goal of a convergence
bidder, i.e., maximizing its own profits? Thus, we introduce
a metric, called Summation of Price Differences (SPD), to
measure how much the ISO’s ultimate goal of closing the price
gaps is achieved. This automatically results in introducing a
special case, where the objective of the convergence bidder is
to minimize SPD, instead of maximizing its own profile:

min
∑
t

∑
i∈N b

∣∣∣∣∣ λdi [t]−
∑
k

ρkλ
r
ik[t]

∣∣∣∣∣ . (6)

4) Risk Management: While net-zero bidding can reduce
the risk against uncertainty in the marginal cost of congestion;
there are also ways to more explicitly address risk management
in convergence bidding. For example, one option is to include
Conditional Value at Risk (CVaR) either in the objective
function or in the constraints [33], [34]. Other techniques, such
as robust optimization, may also be used, c.f. [35]–[37]. In all
methods, the ultimate goal is to provide the market participant
with a mechanism to control the risk-profit trade-off.

III. SOLUTION METHOD

The nonlinear bi-level optimization problem in (3) is diffi-
cult to solve. In fact, it is even more challenging compared to
the standard bi-level optimization problems that often appear
in market bidding problems, e.g., in [31], due to the presence
of two lower-level problems that are interconnected in their
variables. Nevertheless, we will next present a method to find
the global optimal solution of problem (3) by converting it into
a single mixed integer linear program (MILP), whose optimal
solution can be procured with a reasonable computation time.

We start by first replacing the lower level problems (1) and
(2) with their equivalent set of Karush-Kuhn-Tucker (KKT)
conditions. Problem (1) has the following KKT conditions:

Eqs. (1b)− (1f) (7a)

ag,dj [t]− λdj [t] + µg,d
j [t]− µg,d

j [t] = 0 ∀t, j (7b)

− al,dj [t] + λdj [t] + µl,d
j [t]− µl,d

j [t] = 0 ∀t, j (7c)

ab,di [t]− λdi [t] + µb,d
i [t]− µb,d

i [t] = 0 ∀t, i (7d)
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TABLE I
TRANSMISSION LINE DATA

From To Reactance [p.u.] From To Reactance [p.u.]
1 2 0.06 7 9 0.11
1 5 0.22 6 11 0.2
2 3 0.2 6 12 0.26
2 4 0.18 6 13 0.13
2 5 0.17 7 8 0.18
3 4 0.17 9 10 0.08
4 5 0.04 9 14 0.27
4 7 0.21 10 11 0.19
4 9 0.56 12 13 0.2
5 6 0.25 13 14 0.35

∑
m | (n,m)∈L

[
Hnm

(
λdn[t]− λdm[t]

)
+

Hnm

(
βd
nm[t]− βd

mn[t]
)

+

Hnm(βd
mn[t]− βd

nm[t])

]
= 0 ∀t, n (7e)

Xd. ∗ Y d = 0 (7f)

Y d ≥ 0, (7g)

where (7b)-(7e) are the gradient equilibrium conditions and
(7f) enforces complementarity slackness.

Similarly, the KKT conditions for problem (2) become:

Eqs. (2b)− (2e) (8a)

ag,r+jk [t]− λrjk[t] + µg,r+
jk [t]− µg,r+

jk [t] = 0 ∀k, t, j (8b)

− ag,r−jk [t] + λrjk[t] + µg,r−
jk [t]− µg,r−

jk [t] = 0 ∀k, t, j (8c)∑
m | (m,n)∈L

[
Hnm (λrnk[t]− λrmk[t]) +

Hnm

(
βr
nmk[t]− βr

mnk[t]
)

+

Hnm

(
βr
mnk[t]− βnmk

r[t]
)]

= 0 ∀k, t, n (8d)

Xr. ∗ Y r = 0 (8e)
Y r ≥ 0. (8f)

By replacing the lower level linear programs in (1) and (2) with
the constraints in (7) and (8), problem (3) becomes a standard
mathematical program with equilibrium constraint (MPEC):

max
∑
t

∑
i∈N b

[
λdi [t]−

∑
k

ρkλ
r
ik[t]

]
× P b,d

i [t]

s.t Eqs. (7), (8). (9)

The optimization problem in (9) is nonlinear; but it can be
linearized and converted into a MILP. The details on the
problem reformulation are explained in the Appendix.

IV. CASE STUDIES

We investigate the merit of the proposed analysis based on
the IEEE 14-bus test system [38]. This network includes 20
transmission lines, where N g,d = {1, 2, 3}, N g,r = {6, 8},
N l,d = {2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14}, N b = {1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}. The grid information and the
offered data are shown in Tables I-IV. The transmission

TABLE II
SUBMITTED SUPPLY BIDS TO THE DAM [$/MWH]

Bus a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

1 14 18 22 26 30 34 38 42 46 50
2 12 17 22 27 32 37 42 47 52 57
3 17 20 23 26 29 32 35 38 41 44

TABLE III
SUBMITTED SUPPLY BIDS TO THE RTM [$/MWH]

Bus a1 a2 a3 a4 a5 a6

6 15 23 31 39 47 55
8 5 14 23 32 41 50

capacity of all transmission lines is 300 MW, except for line
(1,5) and line (4,5) whose transmission capacity is 31 MW and
23 MW, respectively. Here the maximum limitation for CBs
is 10 MWh unless otherwise stated. The corresponding MILP
problem is solved using Gurobi 8 (http://www.gurobi.com).

A. Illustrative Example

Table V shows the DAM and RTM prices as well as the
change in price gap with and without optimal CBs. Applying
CB can help one LMP to converge in a bus, at the same
time, causes the LMP divergence in another bus. Thus, we
use SPD, see Section II.C.3, as the criteria to compare impact
on price difference. By maximizing the profit of convergence
bidder, SPD is increased to $226.79 from $203.89, which is
not expected from CBs’ outcome in electricity markets.

B. Uncertainty in Demand and Generation Bidding in RTM

One reason to submit CB is to hedge against the uncertainty
in electricity markets. In this section, the uncertainties in
the demand in RTM as well as the uncertainties in the
generation bids that participate in RTM are considered. Monte
Carlo simulation is used to generate 3000 scenarios. To keep
computation tractable, we reduced the number of scenarios
to 10 distinguished scenarios using the fast backward/forward
method [39], [40]. The probabilities of the scenarios are 0.60,
0.12, 0.07, 0.05, 0.04, 0.03, 0.02, 0.03, 0.03, 0.01. In the
stochastic case, the expected profit for convergence bidder
is decreased to $113.25 from $150.42 in the deterministic
case. The expected SPD is $182.06 in the presence of CBs,
while it is $176.18 in the absence of CBs. The increase
in SPD indicates that the profit maximization approach of

TABLE IV
DEMAND DATA

Bus Demand in DAM [MWh] Demand Change in RTM [MWh]
2 17.36 4.34
3 75.36 18.84
4 38.24 9.56
5 6.08 1.52
6 8.96 2.24
9 23.6 5.9
10 7.2 1.8
11 2.8 0.7
12 4.88 1.22
13 10.8 2.7
14 11.92 2.98
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TABLE V
LMPS IN TWO-SETTLEMENT MARKETS WITHOUT CBS, AS WELL AS THE
OPTIMAL CBS AND CHANGE IN PRICE GAPS UNDER STRATEGIC BIDDING

Bus
No.

Without CB With CB

λdi λri P b,d
i

Change in
Price gap

1 38 23.52 9.62 -4
2 39.92 25.39 -4.88 -1.44
3 41 30.8 -9.88 0
4 41.92 35.39 9.12 1.22
5 42.55 16.65 -0.19 2.06
6 42.33 23 0.37 1.78
7 42.03 32 -1.38 1.38
8 42.03 32 -0.13 1.38
9 42.09 30.22 -0.12 1.46
10 42.13 28.99 0.63 1.51
11 42.23 26.07 -0.38 1.64
12 42.31 23.57 5.37 1.76
13 42.3 24.01 0.12 1.73
14 42.18 27.52 -0.13 1.58
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Fig. 2. The price gap in various buses within the network under a contingency.

convergence bidders increases, i.e., worsens, the price gap
between the DAM and RTM. Thus, convergence bidders make
profit despite the fact that they exacerbate the price gap.

C. Contingency within Power Network

Power grid is subjected to various contingencies; and it is
interesting to find out whether CBs can heal or exacerbate the
situation when contingencies occur. Consider a contingency
in the RTM in the form of an outage in the transmission
line between buses 4 and 7. The results are shown in Fig.
2. Two scenarios are considered here. In the first scenario,
it is assumed that convergence bidders are unaware of the
contingency when they submit their bids to the DAM. In the
second scenario, it is assumed that they are aware of the situa-
tion. Under the first scenario, the profit for convergence bidder
increases, from $150.42 under normal conditions to $350.75
under the contingency. Here, CBs lead to an improvement in
the price convergence as seen by reduction in SPD to $253.27
from $344,42 in the normal case.

Under the second scenario, the profit for convergence bid-
ders increase drastically, from $150.42 under normal condi-
tions to $3,133.78 under the contingency. However, we can
now see undesirable divergence of LMPs between the two
markets. Specifically, SPD increases to $1743.59. Thus, the
increase in the profit of convergence bidder comes with a
retrogression in price convergence between the two markets.

D. Joint Physical and Convergence Bids

In this section, we investigate the scenario where CBs are
submitted in coordination with physical bids. We will consider
two different cases. First, the case where CBs are submitted
jointly with physical supply bids. Second, the case where CBs
are submitted jointly with physical demand bids.

1) Physical Supply Bids: CBs are assumed to be submitted
one at a time by each individual generator. Generators G1,
G2, and G3, submit physical bids to the DAM; and generators
G6 and G8 submit physical bids to the RTM. The profit of
each generator while submitting CBs to maximize its profit is
shown along with the one without CB in Fig. 3. We observe
that submitting CBs can serve as a leverage for generators to
significantly increase their profit. For example, by submitting
not only physical bids but also CBs, generator G3 increases
its profit from $1080 without CB to $5776.76 with CBs even
though it loses $1481.79 on CB. The profit of generator G8
that bids in the RTM also increases from $540 without CB to
$3736.09 with CB even though it loses $1784.78 on CBs.
These two units strategically lose money on their CBs to
significantly increase their profit on physical supply bids.

We investigate the awarded CBs as well as the profit from
CBs for generators G3 and G8 in order to find the cause
of the significant increase in the profit. As shown in Fig.
4, the profit of generators G3 and G8 are negative from
the submitted CB at all buses with the exception of buses
1, 2, 3, and 13 for generator G3, and buses 5 and 6 for
generator G8. It is interesting to note that the CBs submitted
by generator G3 cause an increase in the price gap between
the two markets at the same buses that their profit from
submitting CBs is negative when it is compared with a scenario
with only physical bids. There is one exception which is the
generator bus i.e. bus 3. It is the ultimate desire of generator
G3 to increase the LMP on bus 3 to increase its profit from
its physical bids in the DAM. On the other hand, the CBs
submitted by generator G8 cause a change in the sign of price
gap. Thus, the LMPs within the RTM become larger than those
in the DAM. Taking a closer look at buses 7-12 reveals that
the CBs submitted by generators G3 and G8 are demand bid
and supply bid, respectively; and the changes in price gap
are in the opposite direction of profit making for these CBs.
However, as a result of this strategy, the LMP on bus 3 in
the DAM is increased from $41 to $102.68 which leads to
the notable increase in the profit of generator G3 that would
compensate for the loss from its CBs. Similarly, the LMP on
bus in the RTM is increased from $32 to $117.43 which also
leads to the notable increase in the profit of generator G8 to
the level that will cover the loss from submitted CBs.

It is interesting also to check the impact of CBs on the
awarded generation dispatch of each generator, as shown
in Fig. 3. For the units that participate in the RTM, the
awarded dispatch is almost doubled with the submission of
CBs. However, there are not significant changes in the awarded
generation dispatch of units that participate in the DAM.
Among those units, the largest increase belongs to G3 which
also has the largest increase in the profit from CBs.

The above results can be interpreted also in the context of
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Fig. 4. The profit from CB on each bus while submitted by various generators.

market power. First, consider the results for Generator G1. By
submitting CBs, Generator G1 reduced its physical generation
yet it increased its total profit. Next, consider Generators G3
and G8. By submitting CBs, they both significantly increased
their total profit; but they both lost money on their CB market
participation. That means, their CB market participation was
not meant to gain profit in the CB market; but rather to create
a scenario to put them in a much better position to gain a
huge profit on their physical bids. The examples suggest that
convergence bidding by a physical asset owner may increase
the market power of that physical asset owner.

2) Physical Demand Bids: Load service entities (LSEs)
who bid in the market to purchase electricity may also submit
CB in order to reduce their payments. In this section, we inves-
tigate the impact of CBs submitted by LSEs on their payment.
The total payment of LSEs reduced from $10134.72 when they
do not submit CB to $9373.06 once they strategically submit
CBs. The quantities of submitted CBs on each bus that led to
the decrease in its LMP in both DAM and RTM as well as the
breakdown of the $844.52 decrease in the payment of LSEs are
given in Table VI. Submitting CBs by LSEs led to the decrease
in LMPs of all buses in the DAM. Similarly, CBs caused the
decrease in LMPs of the majority of buses in the RTM, with
the exception of Bus 3. However, the second largest decrease
in the payment of LSEs is on Bus 3 with $121.02 decrease in
the payment. It is interesting to observe that as a convergence

TABLE VI
IMPACT OF CBS SUBMITTED BY LSES

Changes in Change in Changes in Quantity of
Bus LMPs of the LMPs of the Payments of Submitted
ID DAM RTM LSEs CB

[$/MWh] [$/MWh] [$] [MWh]
1 0 -7.54 0 -4.88
2 -1.92 -5.87 -58.807 -3.38
3 -3 -1.07 -246.2388 -4.13
4 -3.92 3.02 -121.0296 0.87
5 -4.55 -13.64 -48.3968 -0.93
6 -4.33 -8 -56.7168 4.62
7 -4.03 0 0 0.37
8 -4.03 0 0 4.37
9 -4.09 -1.58 -105.846 4.62
10 -4.13 -2.67 -34.542 -1.88
11 -4.23 -5.26 -15.526 -3.88
12 -4.31 -7.49 -30.1706 1.12
13 -4.3 -7.09 -65.583 3.37
14 -4.18 -3.98 -61.686 -2.13

bidder, LSEs are not necessarily submitting demand CBs and
they are also submitting supply CBs e.g. 4.62 MWh submitted
as a CB on bus 9. Regardless of the type of CB, the aim of
LSEs is to decrease the LMPs in both DAM and RTM to lower
their payment. Interestingly, the profit of LSEs from their CB
is negative. This reveals that LSEs tolerated a loss from their
CBs to reduce their payment on their physical demand.

Submitting CBs by LSEs results in more decrease in LMPs
in the RTM than in the DAM, as one can see in Table VI.

E. Net-Zero Bidding Plan

By taking a net-zero bidding plan, speculators hedge against
the uncertainty in changes in the energy component of LMPs.
The profit of the convergence bidder without and with adopting
the net-zero bidding plan is $150.42 and $70.13 An interesting
observation is shown in Table VII with respect to the price gap.
We can see that once the net-zero bidding plan is adopted,
the price gap either reduces or remains unchanged. The only
exception is at buses 1 and 2 where the price gap becomes
larger due to net-zero convergence bidding. These two buses
are connected to generators G1 and G2. The generation dis-
patch of G1 increases from 58.36 MWh to 60.4 MWh and the
generation dispatch of G3 increases from 80.64 MWh to 87.06
MWh. The generation dispatch of G2 remains unchanged.

Here the observation is that the awarded generation dispatch
of units that bid in the RTM decreases when net-zero bids
are submitted. Here, the generation dispatch of G6 decreases
from 20 MWh to 17.6 MWh and the generation dispatch of
G8 decreases from 40 MWh to 34.34 MWh for G8. It is also
interesting to note that by adopting the net-zero bidding plan,
the power flow in transmission lines are changed in the DAM
and the RTM. For example, the congestion occurred in the line
between buses 4 and 5 in the DAM does not actually occurs in
the RTM. This is an example of how convergence bidders take
advantage of congestion component of LMPs to make profit.

It is insightful to compare the effectiveness of CBs with and
without adopting the net-zero bidding plan. Without net-zero
bidding, SPD is $215.95; while, it decreases to $203.89 when
the net-zero bidding plan is adopted. Thus, adopting net-zero
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TABLE VII
THE OPTIMAL CBS AND PRICE GAPS WITH AND WITHOUT NET-ZERO PLAN

Bus
No.

With CB (No Net-zero) With CB (Net-zero)
P b,d
i price gap P b,d

i price gap
1 9.62 10.48 0.31 10.48
2 -4.88 13.09 5.12 13.09
3 -9.88 10.2 -5.63 10.2
4 9.12 7.75 2.87 7.75
5 -0.19 27.96 9.94 27.96
6 0.37 21.11 6.12 21.11
7 -1.38 11.41 8.87 11.41
8 -0.13 11.41 8.87 11.41
9 -0.12 13.33 -9.63 13.33
10 0.63 14.65 -5.88 14.65
11 -0.38 17.8 -6.88 17.8
12 5.37 20.5 -7.88 20.5
13 0.12 20.02 -6.63 20.02
14 -0.13 16.24 0.37 16.24

bidding plan by convergence bidders leads to a better price
convergence compared to the one without this plan.

Another interesting observation is when the net-zero bidding
plan is adopted in the stochastic case, where the expected
profit reduces from $113.25 to $10.78; and SPD indicates an
increase in price gap. For example, the expected SPD increases
to $58.64. Thus, net-zero bidding will not only decrease the
profit for convergence bidder it will also worsen the price gap.

F. Profit Maximization vs Price Gap Minimization

Recall from Section I that, as far as an ISO is concerned,
convergence bidding is a mechanism to close the gap in prices
between the DAM and RTM, i.e., to solve the problem in (6).
In this section, we seek to investigate how such goal is aligned
with the objective of a convergence bidder to maximize its own
profit, i.e., to solve the optimization problem in (3).

Under the profit maximization framework, as we increase
the maximum allowed convergence bidding quantity at each
bus from 1 MWh to 25 MWh, the convergence bidder’s profit
increases, see the curve with the star markers in Fig. 5(a);
while the price gap initially decreases but later increases; see
the curve with the star markers in Fig. 5(b). Therefore, the
increase in the profit of the convergence bidder may or may
not coincide with improvement in the price gap between the
two markets, depending on the size of the CB. It should be
noted that the monotone behavior in the curve in Fig. 5(a) is
due to the fact that the optimal objective value in the profit
maximization problem in (3) is monotonically non-decreasing
with respect to the constraint on maximum CB quantity. This
profit curve ultimately reaches its maximum limit at $104.3.

Under the price gap minimization framework, as we in-
crease the maximum allowed convergence bidding quantity
at each bus from 1 MWh to 25 MWh, price gap across the
buses in the network decreases, see the curve with the square
markers in Fig. 5(b); while the convergence bidder’s profit
fluctuates; see the curve with the square markers in Fig. 5(a).
Therefore, in this case, the decrease in the price gap may or
may not coincide with the improvement in the convergence
bidder’s profit, depending on the size of the CB. It should be
noted that the monotone behavior in the curve in Fig. 5(b) is
due to the fact that the optimal objective value in the price gap

Fig. 5. Comparing profit maximization and price gap minimization strategies
versus maximum allowable CB: (a) Convergence bidder’s profit; (b) Price gap.

minimization problem in (6) is monotonically non-increasing
with respect to the constraint on maximum CB quantity. This
SPD curve ultimately reaches its minimum limit at zero.

G. Long-Term Bidding Performance

In this section, we demonstrate the long-term performance
of strategic convergence bidding over a period of one month.
The results are shown in Fig. 6(a) and (b). The base demand
is set according to the normalized hourly load of California
ISO between March 10, 2020 and April 9, 2020. Both normal
operating conditions as well as operation under physical con-
tingencies are considered. In particular, four days are assumed
to include physical contingencies, as marked on the figure.
The physical contingencies are in form of transmission line
tripping on transmission lines 8, 12, 18, and 20, respectively.

The total daily profit of the convergence bidder under the
profit maximization paradigm and the daily average SPD
across the network under the price gap minimization paradigm
are shown in Figs. 6(a) and (b), respectively. We can observe
that the varying load conditions can result in varying profit
levels and varying SPD levels. However, the basic concepts in
strategic convergence bidding remain the same, including un-
der both normal conditions and during physical contingencies.
For example, market uncertainty may cause financial loss at
certain hours; but as we can see Figs. 6(a), the total daily profit
always remains positive and considerable. As another example,
similar to the results in Section IV-C, if the convergence bidder
is not aware of the physical contingency then it can perform
as well compared to the case that it is aware of the physical
contingency such as due to a planned maintenance.

V. CONCLUSIONS

The strategic behavior of speculators who submit CBs in
a two-stage electricity market is investigated. Five research
questions are raised and answered. First, the optimal con-
vergence bidding problem is formulated from the viewpoint
of a strategic market player whose goal is to maximize its
own profit. The formulated problem is bi-level, where the
problem at the lower-level captures the operation of both day-
ahead and real-time markets. The non-convex bi-level problem
is reformulated to a mixed-integer linear program suitable
for the off-the-shelf solvers. Second, it is shown that if the
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Fig. 6. Long-term convergence bidding performance over a period of one
month under stochastic market conditions and in presence of multiple physical
contingencies: (a) Total daily profit of the convergence bidder under CB profit
maximization; (b) Daily average SPD under price gap minimization.

convergence bids are submitted by a market participant that
owns physical asset, then strategic bidding can be coordinated
between physical bids and convergence bids. Under such
coordination, convergence bids can be used as a leverage by
generators to increase their overall profit. Third, it is observed
that a strategic convergence bidder that aims to maximize its
profit is not necessarily in line with the intended purpose
of CBs to lower the gap across the day-ahead and real-
time markets. In fact, while strategic behavior of convergence
bidder can lower the price gap in many occasions, we can
demonstrate scenarios where there is a trade-off between the
interest of the system operator to lower the gap across the
two markets and the interest of the convergence bidder to
gain profit. Fourth, the impact of strategic bidding on price
gap can be different at different group of buses. Furthermore,
increasing the size of convergence bids may decrease or
increase the price depending on the operating conditions.
Fifth, uncertainty in demand can affect both the convergence
bidder’s profile as well as its impact on the market. In the
event of contingency, depending on the prior knowledge of
the convergence bidder on the event, the gap might shrink or

stretch. Also, while adopting net-zero bidding plan lowers the
gap in the prices across the two markets, it worsens once the
uncertainty in demand is taken into consideration.

The study in this paper can be extended in various direc-
tions. First, the results here can be used to set forth policies
by ISOs to control the impact of CBs on electricity markets.
For example, policies can be designed to control the extent
that owners of physical assets are allowed to participate in
convergence bidding. Second, while the analytical framework
that we designed in this paper is meant to be generic; it is
for the most part based on how convergence bidding works
in the California ISO market. The differences across different
ISO markets and their possible impact on the operation of
CBs can be investigated in the future. Third, other methods
can be used to deal with the non-linearity and non-convexity
in the formulated strategic convergence bidding problem,
such as based on convex relaxation. Fourth, it is interesting
to also investigate the possibility of forming games among
convergence bidding market participants, including among
those market participants that own physical resources, and the
corresponding equilibrium and its characteristics.

APPENDIX: MILP FORMULATION

The optimization problem in (9) is non-linear due to its
MPEC structure, where the nonlinearities come from three
main sources; we address each issue individually next.

First, consider the bilinear term
∑

i λ
d
i [t]P b,d

i [t] in the
objective function. Both λdi [t] and P b,d

i [t] are directly related
to the DAM optimization in (1), which is a linear program and
therefore has zero duality gap. Since strong duality holds for
optimization problem (1), its optimal primal objective value is
equal to its optimal dual objective value; and after reordering
the terms, we can write the term

∑
i λ

d
i [t]P b,d

i [t] as:

−
∑

j∈N g,d

ag,dj [t]P g,d
j [t] +

∑
j∈N l,d

al,dj [t]P l,d
j [t]

−
∑

j∈N l,d

µl,d
j [t] P l

j [t]−
∑

j∈N g,d

µg,d
j [t] P g

j [t]

−
∑

(n,m)∈L

Cnm βd
nm[t]−

∑
(n,m)∈L

Cnm βd
nm[t]. (10)

Second, consider the bilinear term λrik[t]P b,d
i [t] in the ob-

jective function. Note that, variables λrik[t] and P b,d
i [t] comes

from two separate lower-level problems, and P b,d
i [t] does not

exist in the RTM optimization. Therefore, strong duality does
not help in this second case. We instead used the binary expan-
sion method, where bi-linear terms involving two continuous
variables are linearized using binary approximations of one
variable combined with additional linear constraints, c.f., [41].

Finally, the complimentary slackness constraints Xd. ∗ Y d

and Xr. ∗ Y r are also nonlinear; however, one can introduce
new binary variables and apply the large M method to rewrite
them in form of the following equivalent MILP constraints:

0 ≤ Xd ≤Mzd, 0 ≤ Y d ≤M(1− zd),

0 ≤ Xr ≤Mzr, 0 ≤ Y r ≤M(1− zr), (11)

where zd and zr are the vectors of auxiliary binary variables.
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By taking the above three steps, one can convert the NLP in
(9) into a MILP. The decision variables in such MILP include
the prices of CBs as well as all the primal and dual variables
of the DAM and RTM optimization models.
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