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Abstract—Recent reports from Independent System Operators
(ISOs) have raised some concerns about the impact of conver-
gence bids (CBs) on nodal electricity markets. In particular,
in some cases, there are concerns about cases where CBs are
profitable for some market participants without increasing mar-
ket efficiency significantly or even decreasing market efficiency.
The latter occurs when CBs create price divergence instead of
price convergence across the day-ahead and real-time markets.
Accordingly, in this paper, we investigate the sensitivity of nodal
electricity market price to CBs and seek to build an analytical
foundation to explain under what conditions placing a CB at a
bus in a nodal electricity market can create price divergence at
that bus. Illustrative test cases are discussed to provide intuitions
and engineering implications of the results on sensitivity analysis.

Keywords: Convergence bidding, virtual bidding, nodal elec-
tricity markets, transmission line congestion, price sensitivity.

NOMENCLATURE

DAM parameters and variables:
x, y Vectors of physical supply and demand bids
v, w Vectors of supply and demand CBs
p Vector of all bids of all types
Φ, Ψ Incidence matrices for p and x to system buses
K Incidence matrix for p to x
π, µ, λ Locational, shadow, and reference prices
D̄ Index matrix for congested transmission lines

RTM parameters and variables:
z Vector of physical supply bids
l Vector of actual demands at time of operation
Θ, Ω Incidence matrices for z and l to system buses
σ, η, δ Locational, shadow, and reference prices
R̄ Index matrix for congested transmission lines

System parameters:
S Shift factor matrix of the power grid
c Vector of transmission line capacities
∆ Vector of price differences: π − σ
α, β Coefficients of the cost or utility functions

I. INTRODUCTION

Wholesale electricity markets in North America and else-
where are often set up as two-settlement markets, with a day-
ahead market (DAM) and a real-time market (RTM), e.g., see
[1]–[4]. Ideally, and to assure market efficiency, there must be
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no difference between the prices in the DAM and the RTM.
Otherwise, some generation resources may practice market
power and withhold a portion of their capacities to increase
the DAM or RTM prices to gain more profit [3], [5]–[7].

Nevertheless, in practice, there is always a gap between
the two sets of prices. For example, Fig. 1(b) shows the
distribution of the price difference in trading hub SP15 in
Southern California across 24 hours and 30 days in March
2016 [8]. Here, the price difference is calculated as the DAM
price minus the RTM price. There are several days and hours
(such as 2 PM on March 14) where the DAM price is much
higher than the RTM price and there are also several days and
hours (such as 9 AM on March 14) where the RTM price is
much higher than the DAM price. Fig. 1(c) shows similar data
at two nodes within SP15 on March 8 and 14. We can see that
price gap can be less or more severe at different nodes due to
locational issues such as transmission line congestion.

A. Convergence Bidding

To eliminate the above price gap, Convergence bids (CBs),
a.k.a., Virtual bids (VBs), have been introduced to electricity
markets [5]–[7]. Note that, CB is the term that is used by
the California ISO and VB is the term that is used by
the Pennsylvania-Jersey-Maryland (PJM) Interconnection and
some other ISOs. CBs allow market participants to arbitrage
between the DAM and RTM, exempting them from physically
consuming or producing energy [6]. CBs are similar to what is
known as future trading in traditional commodity and financial
markets [5]. Similar to physical bids, CBs have two types:
supply CBs and demand CBs. Supply (demand) CB is a bid
to sell (buy) energy in DAM without any obligation to produce
(consume) energy. If the CB is cleared in the DAM, then the
bidder is credited (charged) at the DAM price and charged
(credited) at the RTM price. Therefore, the difference between
the earning in the DAM (RTM) and the cost in the RTM
(DAM) will be the payment to the CB bidder.

From an ISOs perspective, if participants make profit
through CBs, it should automatically help closing the price
gap [9]. For example, when DAM price is greater (less) than
the RTM price, the participants can make profit by submitting
supply (demand) CB into DAM. Increasing supply (demand)
CBs results in decreasing (increasing) the DAM price due to
the virtual surplus of supply (demand) in the DAM. As a result,
more (less) demand needs to be cleared in the RTM leading to
increase (decrease) in the RTM price [5], [9], [10]. Therefore,
while market participants make profit out of their CBs, they
also help in reducing the price difference between the DAM
and RTM; thus, solving the aforementioned price gap problem.
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Fig. 1. Examples of the price gap, i.e., the DAM price minus the RTM price, in the California ISO market during March 2016: (b) the full month for trading
hub SP15 in Southern California; (c) two sample days at two nodes within SP15.

B. Motivation

The concept of CBs is relatively new in the ISO markets.
For example, California ISO put CBs into effect in 2011 [11].
So far, most ISOs have adopted this concept with almost no
rudimentary changes from traditional commodity and financial
markets [10]. However, there are recent ISO reports raising
some concerns about CBs, arguing that CBs may not have
performed well in ISO markets and it is generally difficult for
ISOs to even analyze how CBs may have actually affected
price convergence and market efficiency in ISO markets. For
example, here is a related quote from the California ISO 2015
Annual Report on Market Issues and Performance [12]:

“However, the degree to which convergence bidding
has actually increased market efficiency has not
been assessed. In some cases, virtual bidding may
be profitable for some market participants without
increasing market efficiency significantly or even
decreasing market efficiency.”

Here is another quote from the PJM Interconnection 2015
Report on Virtual Transactions in the Energy Markets [10]:

“In considering when and to what degree virtual
trading offers benefits to PJM markets, it is important
to account for these distinctions before definitively
concluding that the generally accepted principles of
market efficiency as demonstrated by trading in other
financial and commodity marketplaces hold equally
well to PJMs energy markets.”

The above citations and quotes exemplify the current state of
uncertainty and debate about the advantages or disadvantages
of CBs in nodal electricity markets. With this in mind, our
study seeks to address the above open problem by analyzing
how a CB may affect the price gap between DAM and RTM.

C. Literature Review

The literature on CBs in non-electricity markets is rich,
c.f. [13]–[15]. However, the literature on CBs in electricity
markets has emerged only recently, and there is limited studies
on addressing the issues related to CBs in this market. The
common approach so far has been to use historical market

data from different ISOs to conduct statistical analysis on
market prices to show that, on average, CBs do help with
price convergence over months/years long-term [2], [16]–[18];
however, as we discussed in Section I.B, the California ISO
and PJM are currently skeptical about the benefits of CBs,
e.g., see Section I.B. Also, it is yet to be investigated how
CBs may affect the price gap at each market operation time.

As for the few studies that take a rather analytical approach
to CBs, so far, most of them have focused on cases where the
CBs are somewhat abused, either by a market player, e.g.,
when submitted strategically in conjunction with Financial
Transmission Rights (FTR)s [9], [19], or by an adversary,
e.g., in a cyber-physical attack [20]. As another example a
data-driven approach combined with a game-theoretic analysis
was done in [21], In contrast, in this paper, the focus is on
investigating CBs when they are used as intended, yet they
may demonstrate counter-intuitive results.

There are a few recent studies that have pointed out the
complexities around CBs in electricity markets and the fact
that CBs in electricity markets cannot be evaluated in the same
way that they are often assessed in other markets [10]–[12].
However, so far, no prior study has provided any analytical
method to explain such complexities and their root causes.

D. Summary of Contributions

In this paper, we focus on one of the primary factors that
influences the performance of CBs in electricity markets, i.e.,
transmission line congestion. Our goal is to provide in-depth
sensitivity analysis to understand how the price gap between
DAM and RTM is affected by the CBs under different grid
operational conditions in congested nodal electricity markets.
Our analysis is not statistical; thus, it is inherently different
from the existing literature on CBs in electricity markets, e.g.,
in [2], [16]–[18]. Instead, we look at the basic formulation
of CBs in nodal electricity markets and obtain closed-form
sensitivity models to explain how a CB may influence the
DAM and RTM prices at a bus where it is cleared. Finally,
built upon the fundamental sensitivity analysis, several case
studies are presented to show that the impact of CBs in the
nodal electricity market may cause price convergence (intuitive
result) or price divergence (counter-intuitive result).



II. SENSITIVITY ANALYSIS OF TWO-SETTLEMENT
MARKET PRICES TO CONVERGENCE BIDS

In this section, we investigate the sensitivity of the DAM
and RTM prices to CBs in order to understand how CBs
may influence the price difference in a two-settlement nodal
electricity market.

A. Electricity Market Model:

Consider the following DAM market clearing optimization
problem in presence of convergence bids [2], [6]:

min 0.5 pT Ap + bT p (1a)

s.t. 1T p = 0 : λ (1b)
− c ≤ S Φ p ≤ c : µ−,µ+ (1c)

pmin ≤ p ≤ pmax (1d)

where the optimization variables are

p ,
[
x y v w

]T
. (2)

In (1), A is a positive diagonal matrix comprising α and
−α components of all supply and demand bids in the DAM,
respectively. Both physical and convergence bids are taken into
consideration. Moreover, b is the vector comprising of β and
−β components of all supply and demand bids, respectively.
Equality (1b) represents the system balance constraint ensuring
total generation matches total load. Also, the Lagrange mul-
tiplier associated with (1b) provides the reference price. The
transmission line flow limit constraints in two directions are
expressed in (1c). Also, the Lagrange multipliers associated
with (1c) indicate the shadow prices. The last inequality in
(1d) expresses each participant’s upper and lower operating
capacity limits. Finally, by using the reference and shadow
prices, the LMPs can be obtained as

π = λ1− STµ, where µ = µ+ − µ−. (3)

The RTM market clearing optimization problem can also be
formulated as [2], [6]:

min 0.5 zT C z + dT z (4a)

s.t. 1T z + 1T x = 1T l : δ (4b)

− c ≤ S(Ψ x + Θ z−Ω l) ≤ c : η−,η+ (4c)

zmin ≤ z ≤ zmax (4d)

where the optimization variables are the elements of vector
z. Similar to the DAM LMPs, the RTM LMPs are obtained
by using the Lagrange multipliers in (4b) and (4c) as

σ = δ1− STη, where µ = η+ − η−. (5)

We must note two key differences between (1) and (4). First,
demand bids are not allowed at the RTM, instead, ISOs use the
forecasted load as constant at problem (4), c.f. [22]. Second,
as in practice, the RTM clearing process is based on only
physical bids but not CBs [2], [6]. Note that, even though
CBs do not appear in the RTM optimization in (4), because
they do affect the cleared physical supply bids in the DAM
i.e. x, they indirectly have impact on the LMPs of the RTM.

B. Closed-Form Sensitivity Analysis

We are now ready to present a formal theorem to explain
how the cleared energy of a CB can affect price difference
between the DAM and RTM at the bus where the CB is placed.

Theorem 1. Consider a CB at bus i. Without loss of generality,
suppose it is a supply CB, whose cleared energy bid is denoted
by vi. (a) The price gap ∆i = πi−σi at bus i is a piecewise
linear function of the cleared CB (vi). (b) The slope of such
function, i.e., the right-sided partial derivative, is obtained as

∂∆i

∂vi
=
∂πi

∂vi
− ∂σi

∂vi

=
−1

1T h
− 1

1T e
1

1T h
(1T K̂h− rK̂h)

= − 1

1T h
1

1T e
(1T e + 1T K̂h− rK̂h),

(6)

where
h , Λ1−ΛXT (XΛXT )−1XΛ1, (7)

e , Γ1− ΓYT (YΓYT )−1YΓ1, (8)

r , 1TΓY(YΓYT )−1R̄SΨ̂, (9)

and Λ, Γ, K̂, X, Y, R̄, and Ψ̂ are constant matrices that depend
on cleared bids and admittance and congestion status of lines.

Note that, if the CB is a demand bid, then we can replace
vi with −wi in (6). The proof of Theorem 1 is as follows.

Proof. Suppose bus i is taken as the reference bus, the price
gap at bus i is obtained as ∆i = λ − δ. Let v−i denote the
set of all supply CBs other than vi. We can now define:

p−i ,
[
x y v−i w

]T
(10)

as the optimal solution of all variables in (1) other than vi.
We also define A−i, b−i, pmin

−i , pmax
−i , and Φ−i by removing

row i and/or column i from A, b, pmin, pmax, and Φ.
Let us now decompose vector p−i into vector p̄−i for entries

that are binding by any of the two inequality constraints
in (1d) and vector p̂−i for entries that are not binding by
either of these two constraints. Similarly, we define Ā−i, Â−i,
b̄−i, b̂−i, p̄min

−i , p̂min
−i , p̄max

−i , p̂max
−i , Φ̄−i, and Φ̂−i. We also

decompose vector µ into vector µ̄ for the Lagrange multipliers
corresponding to the binding constraints in (1c). Let D̄ denote
a row-reduced identity matrix, i.e., an identity matrix with the
same size of matrix S whose rows that correspond to the non-
binding transmission line capacity constraints are eliminated.
Finally, we define µ̂ as the Lagrange multipliers which are not
binding by any of the transmission line capacity constraints.
Note that, due to complimentary slackness, we have µ̂ = 0.
Using convex optimization theory [23, Chapter 4], we can
show that problem (1) is equivalent to the following problem:

min
p̂−i

0.5 p̂T
−i Â−i p̂−i + b̂

T

−i p̂−i (11a)

s.t. 1T p̂−i + 1T p̄−i + vi = 0 : λ (11b)

D̄S (Φ̂−i p̂−i + Φ̄−i p̄−i) = D̄c : µ̄. (11c)

Here, vi and p̄−i are fixed at their optimal values but p̂−i

is variable. The objective function includes only those terms



that depend on p̂−i. Since bus i is the reference bus, SΦp =
SΦ−ip−i. Also, we kept only those line capacity constraints
that are binding at the optimal solution of problem (1).

Since (11) is a convex quadratic program, it can be solved by
equivalently solving the following system of linear equations,
namely the KKT conditions [23], over p̂−i, λ and µ̄, as follow:

Λ−1p̂−i + b̂−i =

[
1T

−X

]T [
λ
µ̄

]
(12a)[

1T

X

]
p̂−i = n−

[
1
0

]
vi. (12b)

where

X , D̄SΦ̂−i, Λ , Â
−1

−i , n ,

[
−1T p̄−i

D̄c− D̄S Φ̄−i p̄−i

]
. (13)

The coefficients in (12) hold as long as the set of binding
constraints do not change at the solution of problem (1).
If a binding constraint becomes unbinding or an unbinding
constraint becomes binding, then some or all matrices Λ, b̂−i,
X, and n may change, but keeping the relationship between
variables, i.e., λ and vi, linear. Thus, the overall relationship
is piecewise linear. From (12) and (7), we have:

∂λ/∂vi = −1/1T h. (14)

The analysis of the RTM prices is similar. We can first show
that problem (4) is equivalent to the following problem:

min
ẑ

0.5 ẑT Ĉ ẑ + d̂
T

ẑ (15a)

s.t. 1T ẑ + 1T z̄ + 1T x̂ + 1T x̄ = 1T l : δ (15b)

R̄S(Ψ̄ x̄ + Ψ̂ x̂ + Θ̄ z̄ + Θ̂ ẑ−Ω l) = R̄c : η̄, (15c)

where x̂ = K̂p̂−i and x̄ = K̄p̄−i. Again, since (15) is a convex
quadratic program, we can solve it by equivalently solving its
corresponding KKT conditions [23], which in this case are a
system of linear equations over ẑ, δ and η̄:

Γ−1ẑ + d̂ =

[
1T

−Y

]T [
δ
η̄

]
(16a)[

1T

Y

]
ẑ = m−

[
1T

R̄SΨ̂

]
K̂p̂−i (16b)

where Y , R̄SΘ̂, Γ = Ĉ
−1

, and m is defined as

m ,

[
1T l− 1T z̄− 1T K̄p̄−i

R̄S(Ωl− Ψ̄K̄p̄−i − Θ̂ ẑ)

]
. (17)

Finally, by obtaining p̂−i as a function of vi from (12), and
using the KKT conditions of RTM in (16), the sensitivity of
δ with respect to vi can be obtained:

∂δ

∂vi
=

∂δ

∂p̂−i

.
∂p̂−i

∂vi
=

1

1T e
1

1T h
(1T K̂h− rK̂h) (18)

where e and r are defined in (8) and (9). Note that, the coef-
ficient in (18) depends on the set of binding constraints in not
only the RTM optimization problem in (4) but also the DAM
optimization problem in (1). If a binding constraint becomes
unbinding or an unbinding constraint becomes binding, then
some or all vectors e, h, and r may change, but keeping the
relationship between δ and vi linear.

TABLE I
GENERATORS BIDS PARAMETERS

Bids
α1 β1 α2 β2 α3 β3

Sc
en

ar
io

1 DAM 0.1 8 - - 0.3 10
RTM 0.7 2 1.7 3 1.9 4

2 DAM 0.1 8 - - 0.3 10
RTM 0.7 2 1.7 3 1.9 4

3 DAM 0.1 8 - - 0.3 10
RTM 0.7 2 1.7 3 0.1 9

Since both λ and δ are piecewise linear function of vi, their
difference, i.e., ∆i is also a piecewise linear function of vi.
The slope of such function is derived as in (6) by subtracting
(18) from (14). This concludes the proof.

The above theorem explains how a CB may change the price
difference between the DAM and RTM of the bus where it is
placed. Given the sensitivity model for price gap in (6), can
ISOs guarantee that a profitable CB helps the system efficiency
by closing the price gap under different grid operational
conditions? First, what ISOs expect from the sensitivity of the
price gap needs to be understood. Recall from Section I that
ISOs assume that increasing a supply (demand) CB at a bus
decreases (increases) the DAM price and increases (decreases)
the RTM price at that bus. In fact, ISOs believe that

∂∆i

∂vi
=
∂πi

∂vi
− ∂σi

∂vi
< 0 (19)

Therefore, if ∆i > 0, the market participants can earn profit
by submitting supply CBs; on the other hand, from (19),
the supply CBs close the price gap among DAM and RTM.
The same argument can be done when ∆i < 0 and the
demand CBs are submitted. However, as we show in Section
III, this argument does not always hold in nodal electricity
markets. In fact, the impact of a CB on the price gap of
the bus where it is placed depends on the coefficients of the
piece-wise linear functions in Theorem 1. Indeed, under each
network operating condition; depending on the coefficients
in (6); placing a CB may enforce convergence (desirable)
or divergence (undesirable) of the DAM and RTM prices.
Accordingly, compared to the impact of CBs in financial
markets, the impact of CBs in nodal electricity markets is
much more complicated. Unfortunately, it appears that the CB-
related studies were not aware of such complex issues, and
they could not address the concerns raised by ISOs on CBs
performance, as we pointed out in Section I.B.

III. CASE STUDIES

In this section, we discuss a few illustrative examples to
demonstrate the fundamental concepts that our proposed anal-
ysis can help explain. Consider the three-bus power network
in Fig. 2(a). Generators G1 and G3 participate in both the
DAM and RTM, while generator G2 participates only in the
RTM. All generators have quadratic cost functions in form of
0.5αix2i + βixi, and their values are shown in Table I. The
reactance for all transmission lines is 0.1 Ohm. The resistance
is negligible. The load at bus 2 procures 75 MWh from the
DAM. Its actual load is realized as 90 MWh at the RTM.

Three scenarios are studied under different grid conditions
and transmission line capacities. The scenarios are as follow:
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Fig. 2. An example in a three-bus network to illustrate the intuitive (convergence) and counter-intuitive (divergence) results of convergence bidding.

TABLE II
LINE FLOWS WITHOUT CBS

Line flow (MW)
T12 T13 T32

Sc
en

ar
io

1 DAM 45.4 15.8 29.6
RTM 52.4 18.2 34.3

2 DAM 41.5 8 33.5
RTM 46.9 8 38.9

3 DAM 45.4 15.8 29.6
RTM 50.0 16.1 33.9

Scenario 1: The transmission lines have sufficiently large
capacity, such that no transmission line can be congested. If
no CB is placed to the market, then the cleared market prices
are π1 = π2 = π3 = $14.12 and σ1 = σ2 = σ3 = $8.54.

Scenario 2: The capacity of the transmission line between
buses 1 and 3 (T13) is 8 MW. All other parameters are the same
as in Scenario 1. In this scenario, and in the absence of the
CB, transmission line T13 is congested at both DAM and RTM,
as shown in Table II. Accordingly, LMPs are different across
different buses in both markets: π1 = $12.95, π2 = $15.30,
π3 = $17.65; and σ1 = $5.8, σ2 = $10.05, σ3 = $14.31.

Scenario 3: The capacity of the transmission line between
buses 1 and 2 (T12) is 50 MW. The bid components of G3

submitted at the RTM are also changed as shown in Table I.
All other parameters are the same as in Scenario 1. In the
absence of the CB, no transmission line is congested in the
DAM, and we have: π1 = π2 = π3 = $14.12; however, the
transmission line between buses 1 and 2 is congested at the
RTM, as shown in Table II, note the bold underlined numbers.
Therefore, we have: σ1 = $5.4, σ2 = $13.4, and σ3 = $9.4.

A. Numerical Results

In all scenarios, and in the absence of any CB, we have
π2 > σ2, i.e., the DAM price is higher than the RTM price
at bus 2. Therefore, placing a supply CB at bus 2 is profitable
for the market participant. Of concern is whether or not such

profitable supply CB can also help reducing the gap between
the DAM and the RTM prices at bus 2, i.e., π2 − σ2.

The outcome of placing a supply CB at bus 2 and increasing
its amount is shown in Fig. 2(b), (c), and (d) for Scenarios 1, 2,
and 3, respectively. In Scenarios 1 and 2, placing a profitable
supply CB at bus 2 results in price convergence at bus 2.
However, under Scenario 3, placing a profitable supply CB at
bus 2 results in price divergence at bus 2. This is counter-
intuitive and against what ISOs expect from a CB [10].

B. Analytical Explanations Using Theorem 1

In this section, we use the analytical foundation that we
developed in Theorem 1 to explain the numerical results that
we observed earlier in the three scenarios.

Scenario 1: Since in this scenario, neither DAM nor RTM
experience congestion, we have D̄ = R̄ = 0. From this,
together with definition of X and Y, we have X = Y = 0.
By substituting these terms in (7), (8), and (9), we have:

∂∆i

∂vi
= − 1

1TΛ1
1

1TΓ1
(1TΓ1 + 1T K̂Λ1) < 0 (20)

where the inequality is due to Λ and Γ being diagonal positive
semi-definite matrices and K̂ comprising basis vectors. In fact,
if the grid is not congested, then the electricity market reduces
to a typical two-settlement financial market, in which CBs
always improve market efficiency by reducing the price gap. In
other words, what the ISOs often assume when they work with
CBs is true for a nodal electricity market without transmission
line congestion. For instance, in Scenario 1, we have ∆2 =
5.59 > 0, and ∂∆2/∂v2 = −0.47 < 0, which results in price
convergence between DAM and RTM, as shown in Fig. 2(b).

Scenario 2: In this scenario, the congested transmission
line at both DAM and RTM is T13; therefore, R̄ = D̄. Also,



all marginal, i.e., price-maker, bids in the DAM are of type
physical supply; i.e. K̂ = I and Ψ̂ = Φ̂−i. Thus, we have

rK̂h = rh = 1TΓY(YΓYT )−1

× (XΛ1− XΛXT (XΛXT )−1XΛ1) = 0.
(21)

Also, we can prove that 1T h is always greater than zero:

1T h = ‖Λ0.51−Λ0.5XT (XΛXT )−1XΛ1‖22 > 0 (22)

And similarly, 1T e > 0. Therefore, the sensitivity of the price
gap to the supply CB is less than zero as expressed in (23):

∂∆i

∂vi
= − 1T h + 1T e

(1T h)(1T e)
≤ 0 (23)

The above inequality explains the desirable results in Sce-
nario 2. In fact, the conditions of this scenario guarantees that
the supply CB results in price convergence. In particular, in
this scenario, we have ∆2 = 5.25 > 0, and ∂∆2/∂v2 =
−0.57 < 0, which supports the outcome of the supply CB on
the price gap as shown in Fig. 2(c).

Scenario 3: In this scenario, we have ∆2 = 0.73 > 0.
Also, from (6) in Theorem 1, ∂∆2/∂v2 = 0.21 > 0. This is
in contrast to what ISOs expect from CBs as expressed in (19).
In other words, despite the fact that submitting a supply CB at
bus 2 is reasonable for an independent CB market participant,
the outcome to the market is in form of price divergence and
against what is considered desirable by an ISO.

In summary, from Scenario 1, 2 and 3, it can be concluded
that whether or not a CB causes price convergence between
DAM and RTM in a congested nodal electricity market,
depends on the sensitivity of the price gap to the CB, which
relies on the grid conditions and transmission line congestion
configuration. Therefore, while CBs always act as intended
and results in price convergence in other financial market or
nodal electricity market without congestion, but they may not
act as expected in a nodal electricity market with congestion.

IV. CONCLUSIONS AND FUTURE WORK

This paper was motivated by the current state of uncertainty
and debate about the impact of CBs in nodal electricity
markets, which have been recently reported by multiple ISOs.
To address this open problem, in this paper, a fundamental
sensitivity analysis has been introduced to understand how a
CB may affect the DAM and RTM prices in a transmission-
constrained nodal electricity market. Based upon the proposed
sensitivity model and intuitive case studies, it is shown that
the transmission line congestion can influence the impact of
convergence bidding in nodal electricity markets in a way
that is possible to degrade market efficiency. Specifically,
under certain conditions, placing a CB at a bus can result
in divergence (not convergence) between the DAM and RTM
prices in that bus, which is counter-intuitive and undesirable.

The results in this paper can be extended in several di-
rections. For example, while we studied the impact of CBs
on price convergence (divergence) on the same bus where
the CB was placed, one can similarly study the impact also
on price convergence (divergence) at buses other than where

CBs are placed. One may also investigate insightful sufficient
grid operational conditions to guarantee price convergence
(divergence) when a CB is placed at a bus. Also, the analysis
could be extended to explain the collective impact of a group
of several CBs that are placed at different locations on the
price gap of all system buses. Such extended analysis would
be beneficial to ISOs to understand how it is possible to shape
the price difference caused by CBs across the power system.
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