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Abstract— The recent advent of distribution-level phasor mea-
surement units (D-PMUs), a.k.a., micro-PMUs, has introduced a
wide range of new applications in power distribution systems. A
sub-class of such emerging applications are called event-based
methods. These methods focus on the analysis of events in
the stream of micro-PMU measurements to achieve situational
awareness, enhance load modeling, integrate distributed energy
resources, etc. In this paper, we explore a scenario, where a
cyberattack compromises the micro-PMU measurements during
an event. Such a targeted attack could be limited in scope but
result in a major impact on the operation of the power grid
by highly deviating the outcome of the event-based methods.
First, we investigate and model two types of such attacks, event-
unsynchronized (basic) attacks and event-synchronized (advanced)
attacks. We then conduct a geometric analysis to understand
each attack type, in a setting where the events are represented
in the phasor domain in a differential mode. Next, we introduce
a novel method to detect the presence of the attack and then
identify which micro-PMUs are compromised so as to discard
the compromised measurements as a defense mechanism. The
proposed approach makes critical use of magnitude as well as
phase angle measurements from micro-PMUs. The method is
tested on the IEEE 33-bus power distribution test system.

Keywords: Micro-PMUs, Event-based Methods, Cyber Attacks,
Differential Mode, Attack Modeling, Detection, and Identification,
Geometric Analysis, False Data Injection, Power Distribution.

I. INTRODUCTION

A. Background and Motivation

Distribution-level phasor measurement units (D-PMUs),
a.k.a., micro-PMUs, provide GPS-synchronized measurements
of voltage and current phasors at a high resolution, e.g., up to
120 phasor readings per second [1]. In order to support such a
high rate of reporting phasor measurements, micro-PMUs have
a sampling rate of 512 samples per cycle [2]. Micro-PMUs
have significantly improved our ability to achieve situational
awareness in power distribution systems. An important and
growing class of such situational awareness methods focuses
on the analysis of events that are observed in the micro-
PMU measurements. In this context, an event is defined rather
broadly, such as load switching, capacitor bank switching, DER
connection/disconnection, device malfunction, fuse blowing,
relay tripping, etc. [3] [4]. The application of event-based
methods include asset monitoring [5], fault location [6], and
contingency analysis [7], etc.

While these new event-based methods have made a great
use of available micro-PMU measurements to provide effective
situational awareness solutions; they could be vulnerable to
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certain cyberattacks that specifically seek to comprise the micro-
PMU measurements during major events in power distribution
systems. If such attacks are successful, then they can undermine
our ability to analyze events correctly. This in turn can
prompt incorrect actions that may compromise system operation.
Accordingly, in this paper, we seek to address the open problem
of understanding cyberattacks against the analysis of events in
micro-PMUs and to develop proper countermeasures.

B. Summary of Contributions

One can raise a number of questions regarding the cyberat-
tacks against event-based analysis of micro-PMU data: 1) How
can such attacks affect the phasor representation of an event?
2) To what extent these attacks are actually harmful, i.e., they
affect the final outcome of event-based methods? 3) How can
an attack be detected? 4) How can we identify the number and
location of the compromised micro-PMUs once an attack is
detected? We seek to answer these questions in this paper.

The contributions in this paper can be summarized as follows:
1) This paper opens up a novel study on cyberattacks. It

shows how an attack against micro-PMU measurements
can jeopardize the functionality of event-based applica-
tions and the operation of the power distribution system.

2) Two types of attacks are modeled, event-unsynchronized
(basic) attacks and event-synchronized (advanced) attacks.
The later attacks can stay inactive (thus hidden) during
normal operating conditions and affect the micro-PMU
measurements only during a major event. Geometric
analysis is conducted to show how each type of attack
can affect magnitude as well as phase angle in the voltage
and current phasor measurements. The advanced attacks
are more impactful and more difficult to detect.

3) An attack detection method is proposed based on ex-
amining consistency in micro-PMU measurements in
differential mode. By using differential measurements
instead of direct measurements, the proposed method
is able to detect both types of attacks effectively. It
outperforms the conventional bad data detection methods,
e.g., residue-based distribution system state estimation,
when it comes to detecting advanced attack cases.

4) An optimization-based attack identification method is
developed to identify the compromised micro-PMU(s),
once the presence of an attack is detected. The accuracy
of the method is tested on the IEEE 33-bus power
distribution test system under different attack scenarios.

5) The proposed attack detection method is robust to
inaccuracy in pseudo-measurements and line impedances;
as well as errors in micro-PMU measurements.
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C. Related Literature

As the use of information and communication technologies
in power systems continues to grow, the sophistication, and
the frequency of the cyberattacks against the power grid are
increasing rapidly [8]. For example, the report on 2015 Ukraine
attack showed how a failure in the communication network
security resulted in significant power outages [9]. Attacks
against power grid and its components may also lead to
cascading failure in the power system, e.g., see [10], [11].

Broadly speaking, attacks on PMUs can be defined as any
altering of the measurements or blocking of the flow of data
that is reported by PMUs and/or phasor data concentrators
(PDCs). These attacks can impede various critical tools, such
as state estimation, real-time protection, and control algorithms
that rely on continuous streaming data [12] [13].

A detailed sequence of an attack on PMU measurements is
portrayed in [14]. In a nutshell, an attack starts by detecting
and exploiting vulnerabilities in the target system, including in
the operating system (OS) and firmware version, in order to
scan devices settings and configurations, e.g., to discover active
IP addresses that belong to PMUs. Later, the attack seeks the
best way for injecting false data into the PMU traffic without
being detected; see [14] for more details.

Different types of attacks against PMUs have been investi-
gated in the literature. Several examples in this area include
packet drop attacks [15], Denial of Service (DoS) attacks [16],
GPS signal spoofing [17], and data manipulation [18].

Broadly speaking, the nature of cyberattacks that are studied
in this paper can be seen as a special case of the general class of
false data injection attacks (FDIAs) in power systems. Several
methods have been introduced to detect FDIAs. For example,
in [19] [20], an attack is detected by detecting the mismatch
between the values obtained from PMUs and those obtained
from SCADA. However, most events in power distribution
systems that are of interest in the context of micro-PMU
measurements, last only a few milliseconds to a few seconds.
Therefore, they do not even appear in SCADA measurements.
Other methods of detecting FDIAs include applying deep
learning techniques to recognize the behavior patterns of FDIAs
based on historical measurement data [21], monitoring the line
impedances which get affected when data is manipulated [22],
and using density-based spatial clustering of applications with
noise [23]. Some other approaches focus on creating data
redundancy by leveraging optimal PMU placement to ensure
system observability despite a cyberattack [24]-[26].

The studies that we mentioned above are related to the cyber-
security issues in PMUs in general. They are not discussed in
the specific context of micro-PMUs. This is because the whole
concept of micro-PMUs was introduced only recently. So far,
the studies in [27] [28] have proposed methods to model and
detect FDIAs against the specific application of distribution
system state estimation. Both papers require attackers to have
full or at least partial knowledge of the network topology and
the system parameters, such as line impedances, in order to
launch a successful attack. Interestingly, for the type of attacks
that is explored in this paper, there is no need for an attacker
to have any such knowledge about the power system. Another
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Fig. 1: The voltage and current phasor measurements that are captured by a
micro-PMU during a real-life capacitor bank switching event [1].

study that has addressed cyber-security in micro-PMUs is [29],
where the authors proposed an optimal micro-PMU placement
method in order to detect anomalies in measurements.

This manuscript is different from the previous works in [27]-
[29], both in terms of the types of attacks that are studied; as
well as the methodologies to investigate the attacks, to detect
and identify the compromised micro-PMU(s).

Moreover, this paper and the work in [30] are in two opposite
directions. The work in [30] provides a new method for an
event-based analysis based on micro-PMU measurements. In
this paper, we make the case that an event-based analysis,
such as the one in [30], is vulnerable to cyder-attacks against
micro-PMUs. Both the analysis in this paper and the one
in [30] use differential synchrophasors; however, this is
simply because differential synchrophasors are very well-
suited to mathematically represent the events in distribution
synchrophasor measurements. Importantly, the method in [30]
uses differential synchrophasors to identify the location of an
event. In contrast, we use differential synchrophasors to detect
whether any micro-PMU is compromised; and subsequently to
identify which exact micro-PMUs are compromised; regardless
of the application of the event-based analysis. Of course, the
outcome of this paper can help make any event-based analysis
of micro-PMU measurements, including the method in [30],
to be more resilient to cyberattacks against micro-PMUs.

Finally, compared to the preliminary conference version of
this work in [31], the current journal submission has several new
and important contributions. The analytical geometric studies
of attack models, the performance comparison of the detection
method, and the sensitivity analysis to errors in measurements
and pseudo-measurements are all new in this journal version.
Furthermore, the proposed attack detection and identification
method is independent of any specific event-based application;
as opposed to the application-specific analysis in [31]. Last
but not least, we have analyzed a series of different events in
our case studies in this journal version to emphasize that the
proposed method using pre-event and post-event measurements
can work for various distribution-level events.
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Fig. 2: An example event-based method that can be vulnerable to the type of cyberattacks that we study in this paper. Here, the measurements from two
micro-PMUs are collected in differential mode in order to identify the location of the capacitor bank switching event.

II. EVENTS IN DISTRIBUTION SYSTEMS

Recall from Section I that the definition of events in the
context of this paper is rather broad. For example, Fig. 1
shows the micro-PMU measurements (on one phase) during a
real-world capacitor bank switching event in a 12 kV power
distribution system. Hundreds of such events occur in each
power distribution feeder every day. The focus of the event-
based methods in the literature are to capture and analyze the
micro-PMU measurements during this type of events and infer
the states of the system, or the health of the grid equipment,
events detection and classification, etc. [32] [33].

A. Phasor Representation of Events

In many cases micro-PMUs are geared to steady-state
analysis of the distribution system. When it comes to an
event, two sets of synchronized phasors from micro-PMUs
are often used in order to analyze the event: the synchronized
phasor measurements before the event and the synchronized
phasor measurement after the event. For example, consider the
capacitor bank switching event in Fig. 1. The pre-event and
post-event phasors are marked on the figure. Together, these
two sets of synchrophasor measurements represent the event
in the phasor domain in the differential mode, as follows [30]:

∆V = Vpost − Vpre, (1)

∆I = Ipost − Ipre. (2)

Note that, both ∆V and ∆I are themselves phasors. They are
sometimes referred to as differential phasors [34].

The analysis in this paper is applicable to any event that
creates a steady-state change in the phasor measurements, such
that the phasors “before” the event are different from the
phasors “after” the event. Accordingly, such events can be
represented based on their differential synchrophasors. Several
events in practice meet the above requirement, including load
switching, capacitor bank switching, transformer tap changing,
fuse blowing, etc. All these events are important for the utility
and of focus for event-based analysis, e.g., see the studies in
[3]-[7]. Therefore, they are all good targets for attacks against
events-based analysis; which is the focus of this paper.

The above phasor representation of an event is a key step in
some of the emerging event-based methods to analyze micro-
PMU measurements as we will see in Section II-B.

B. An Example Event-Based Analysis

While this paper is not concerned with a particular event-
based method or a particular application of such methods, it
is worth to briefly discuss one such application to see how
the outcome of an event-based analysis can be manipulated by
corrupting the micro-PMU measurements in differential mode.

Again, consider the capacitor bank switching event in Fig. 1.
Suppose we want to know the location of the capacitor bank.
This is an important piece of information for the utility operator.
As shown in Fig. 2, the location of the capacitor bank can be
obtained by representing the event in the phasor domain in the
differential mode. By applying the compensation theorem from
circuit theory [35], we can construct an equivalent circuit for
the distribution feeder in differential mode. Here, the feeder
has n buses and the event occurs at bus k; which is assumed to
be unknown. Using the measurements from two micro-PMUs,
the location of the event is identified as [30]:

k = arg min
i

|∆V ui −∆V di |. (3)

where at each bus i, differential nodal voltage phasors ∆V ui and
∆V di are calculated based on the measurements of the upstream
micro-PMU and the downstream micro-PMU, respectively, and
by applying the circuit laws; see [30].

From (3), it is clear that if a cyberattack can compromise the
micro-PMU measurements, whether at micro-PMU 1 or micro-
PMU 2, then the attacker can seek to change ∆V ui or ∆V di ,
respectively. In either case, the attack can completely change
the outcome of the event location identification algorithm; thus,
voiding the whole advantage of the method in [30]. We will
further investigate the impact of a cyberattack against the above
event location identification algorithm in Section III-C.

III. TWO TYPES OF ATTACKS AND THEIR GEOMETRIC
ANALYSIS

In practice, each micro-PMU has two separate channels to
report the magnitude and phase angle for a phasor measurement
[36]. Let us denote the readings at these two channels as

|X| and ∠X, (4)

respectively. Phasor X could be either a voltage phasor or a
current phasor. If the micro-PMU is compromised, then the
attacker can corrupt and change the above two readings to

|Xcorrupt| and ∠Xcorrupt, (5)
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Fig. 3: Geometric illustration of the basic attack and its impact on ∆X: (a)
an attack that only affects the magnitude channel of the micro-PMU; (b) an
attack that only affects the phase angle channel of the micro-PMU.

where

|Xcorrupt| 6= |X| and ∠X 6= ∠Xcorrupt. (6)

Since our focus in this paper is on attacks against event-based
methods, we are interested in understanding how a cyberattack
may compromise the phasor representation of the event. That
is, we are interested in evaluating how the following vector

∆Xcorrupt = |Xcorrupt
post |∠X

corrupt
post − |Xcorrupt

pre |∠Xcorrupt
pre (7)

would be different from the original vector ∆X . We are also
interested in understanding how such difference can affect the
decisions that are made based on the phasor representation of
an event, e.g., for the event-based application in Section II-B.

In this section, we introduce two types of attacks and study
their impact on differential phasors using geometric analysis.

A. Basic Attack: Event-Unsynchronized

In this “basic” attack scenario, the attack cannot distinguish
the pre-event phasor measurements and the post-event phasor
measurements. Therefore, the attack cannot affect Xpre and
Xpost differently. We refer to this type of attacks as event-
unsynchronized; because the attacker is unable to synchronize
the false data injection actions with the occurrence of the event.
Nevertheless, the attack can still affect the phasor representation
of the event, i.e., ∆X , as it is shown in Fig. 3.

In Fig. 3(a), the attacker only corrupts the measurements at
the magnitude channel of the micro-PMU; but not at the phase
angle channel. In particular, the attack is designed to increase
or decrease the magnitude measurements with a factor of β.
Since the attack is event-unsynchronized, we have;

|Xcorrupt
pre | = |Xpre|+ β |Xpre|, (8a)

|Xcorrupt
post | = |Xpost|+ β |Xpost|. (8b)

By replacing (8) in (7), the magnitude of the phasor
representation of the event under attack is

|∆Xcorrupt| = (1 + β)|∆X|. (9)

Note that, if β < 0, then the magnitude decreases.

In Fig. 3(b), the attacker only corrupts the measurements
at the phase angle channel of the micro-PMU; but not at the
magnitude channel. In particular, the attack is designed to
increase or decrease the phase angle by an amount of γ. Since
the attack is event-unsynchronized, we have

ΔXXpost
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Fig. 4: Geometric illustration of the advanced attack and its impact on ∆X:
(a) an attack that only affects the magnitude channel of the micro-PMU; (b)
an attack that only affects the phase angle channel of the micro-PMU.

∠Xcorrupt
pre = ∠Xpre + γ (10a)

∠Xcorrupt
post = ∠Xpost + γ. (10b)

By replacing (10) in (7), the phase angle of the phasor
representation of the event under attack is impacted as follows:

∠∆Xcorrupt = ∠∆X + γ. (11)

The above two cases exemplify how a basic attack can affect
the phasor representation of an event. As we will see in Section
V, basic attacks are easier to detect when it comes to attack
detection methods that we will develop in differential mode.

B. Advanced Attack: Event-Synchronized

In this “advanced” attack scenario, the attacker has the ability
to detect when an event occurs. Thus, the attack can be specific
and target to only compromise the phasor representation of the
event. Importantly, event-synchronized attacks can stay inactive
(and thus hidden) during normal operating conditions and affect
the micro-PMU measurements only during the events. As a
result, they can have a drastic impact on event-based methods
while they do not trigger attack detection mechanisms that
monitor power system sensor measurements during normal
operating conditions. Note that, event-synchronized attacks
may have no footprint other than specifically during the events.

An event-synchronized attack can compromise the pre-event
measurements and the post-event measurements, separately.
Alternatively, the attack may only change the post-event
measurements; the impact can be similar in terms of affecting
the phasor representation of the event. Thus, to simplicity the
discussions, for the rest of this paper, we assume that the
attacker corrupts only the post-event phasor measurements.

As in Section III-A, we can characterize event-synchronized
attacks using geometric analysis. This is illustrated in Fig. 4.

In Fig. 4(a), the attacker only corrupts the measurements at
the magnitude channel of the micro-PMU. Thus, we have:

|Xcorrup
pre | = |Xpre|, (12a)

|Xcorrupt
post | = |Xpost|+ β |Xpost|, (12b)

From (12) and (7), we have:

|∆Xcorrupt| = [ |Xpre|2 + |Xpost|2(1 + β)2

−2(1 + β)Xpre ·Xpost ]
1
2 ,

(13)

and
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Fig. 5: The IEEE 33-bus test system that is used in our case studies. The
micro-PMUs are deployed at the end of main feeder and laterals.

∠∆Xcorrupt = ∠∆X + arcsin

{
|Xpost|(1 + β)

|∆Xcorrupt|
sinα

}
− arcsin

{
|Xpost|√

|Xpre|2 + |Xpost|2 − 2Xpre ·Xpost
sinα

}
,

(14)

where (·) denotes the operator for inner product of phasors.
In Fig. 4(b), the attacker only corrupts the measurements at

the phase angle channel of the micro-PMU. Thus, we have:

∠Xcorrupt
pre = ∠Xpre, (15a)

∠Xcorrupt
post = ∠Xpost + γ. (15b)

Then from (12) and (7), we have:

|∆Xcorrupt| = [ |Xpre|2 + |Xpost|2

−2|Xpre||Xpost|cos(α+ γ) ]
1
2 ,

(16)

and

∠∆Xcorrupt = ∠∆X − arcsin

{
|Xpost|
|∆Xcorrupt|

sin (α+ γ)

}
+ arcsin

{
|Xpost|√

|Xpre|2 + |Xpost|2 − 2Xpre ·Xpost
sinα

}
.

(17)

From the above analysis, we can conclude that an advanced
attack against either the magnitude channel or the phase angle
channel can compromise both the magnitude and phase angle
of ∆X . Whereas in the case of a basic attack, an attack against
the magnitude (phase angle) channel can compromise only the
magnitude (phase angle) of ∆X . Therefore, advanced attacks
can be more impactful on event-based methods.

C. Impact of Attacks on Event-Based Analysis

In this section, we provide a numerical example to illustrate
the impact of the basic and advanced attacks on an event-based
analysis. This example is meant to motivate our discussion on
attack detection and identification in the next section.

Again consider the event-based method in Section II-B and
the capacitor bank switching event performed in IEEE-33 bus
test system in Fig. 5. Recall that the method in [30] uses
the measurements from micro-PMUs to identify the location
of the capacitor bank; which is placed on bus 10 in Fig. 5.
The outcome of the method in [30] is shown in Fig. 6, for
different choices of attack parameters β and γ, when micro-
PMU-2 located at bus 18 is compromised by the attacks that
we introduced in Sections III-A and III-B, respectively. The
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Fig. 6: Impact of the attack on the ability of the event-based method in [30]
to correctly identify the location of the capacitor bank at bus 10: (a)-(b) event-
unsynchronized attack, and (c)-(d) event-synchronized attack. The correct bus
location is shown in pink; an incorrect bus location is shown in blue.

pink markers in Fig. 6 refer to the correct bus number as the
source location of the event, i.e., bus 10; which are identified
when β and γ are close to zero on the x-axis. However as β
and γ increase on the positive side or decrease on the negative
side, we get highly incorrect bus number on the y-axis as the
source location of the event. They are shown with blue markers
in Fig. 6. Overall, we can see that the method in [30] results in
falsely identified event source location for the capacitor bank
switching event, under both types of attacks.

Importantly, in case of an advanced attack, the attacker needs
to inject a much smaller false data into the compromised micro-
PMU in order to corrupt the outcome of the method, compared
to the case of basic attacks. From Figs. 6(a) and (c), the attacker
needs to inject 20 times larger β in the basic attack to get
similar impact as in the advanced attack. Here, β reflects the
fractional changes in per unit voltage magnitude according to
(8) and (12); therefore, it has no unit. Also, from Figs. 6(b)
and (d), it is quite impossible for the basic attacker to create a
considerable impact without raising alarms, injecting only into
the phase angle channel of micro-PMUs. Whereas, γ is almost
50 times smaller and have a larger impact in advanced case
scenarios. These make advanced attacks harder to detect. In
all the cases, subscript unsync and sync with β and γ is used
to indicate basic and advanced attacks, respectively.

IV. ATTACK DETECTION AND IDENTIFICATION

As we saw in Section III-C, even a small deviation that
is caused by an attack in readings from a micro-PMU can
have a significant impact on event-based applications in power
distribution systems. This is particularly true under event-
synchronized attacks. This makes attack detection a challenging
task. Furthermore, once an attack is detected, we need to also
identify which micro-PMU(s) are compromised. This is also a
challenging task because we do not know how differently
an event may affect the measurements at different micro-
PMUs; and we often do not know how the true (not corrupted)
measurements corresponding to an event may look like.

In this section, we show that the key to addressing the above
challenges are to develop event detection and event identifica-
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tion methods in differential mode, i.e., based on differential
synchrophasors, as opposed to ordinary synchrophasors.

A. Attack Detection

Consider a pair of micro-PMUs and suppose an event occurs
on the distribution feeder. Suppose the feeder is modeled as an
equivalent circuit in differential mode, as in Fig. 2 in Section
II. First, let us start from the differential phasor that is obtained
by micro-PMU 1 at bus 1 and successively apply the Kirchhoff
Voltage Law (KVL) in the forward direction and calculate the
following differential phasors from bus 1 all the way to bus n:

∆V 1
1 ,∆V

1
2 , ...,∆V

1
n . (18)

Next, let us start from the differential phasor that is obtained
by micro-PMU 2 at bus n and successively apply the KVL in
the backward direction and calculate the following differential
phasors from bus n all the way back to bus 1:

∆V 2
1 ,∆V

2
2 , ...,∆V

2
n . (19)

Note that, the superscripts in (18) and (19) denote the micro-
PMU from which we started the successive calculation of
the differential voltages across the power distribution feeder.
Another note is that, both the forward sweep that results in
(18) and the backward sweep that results in (19) need some
knowledge about the loading at each bus. Such knowledge can
be obtained by using the measurements from smart meters; in
case smart meters are available. Otherwise, we can simply use
pseudo-measurements, such as the ratings of load transformers
or the historical load data that is available to the utility. As we
will discuss in Section V-D, our analysis is robust to limited
accuracy in our knowledge about the loading at each bus.

In general, the fundamental observation in (18) and (19) is
that the difference between the calculated differential voltages
should be minimum at the event location; because the event
for which the differential phasors are obtained is the same
[30]. However, if one of the two micro-PMUs is compromised,
whether an event-unsynchronized or event-synchronized attack,
the calculated differential phasors at the event location in (18)
and (19) would not match, which increases the inconsistency
in the measurements. This could indicate that something is not
right with respect to the measurements; thus giving us the main
clue that the micro-PMUs might have been compromised.

The above analysis can be done similarly for any number
of available micro-PMUs. That is, suppose a total of m micro-
PMUs are installed on the power distribution system. For each
micro-PMU l, where l = 1, . . . ,m, suppose we calculate the
differential voltage phasors at all buses in the network, and
place the results in one vector, denoted by ∆V l. This will
result in obtaining a total of m calculations for the differential
voltage phasor for every single bus i, where i = 1, . . . n; all
being associated with the same event that is being captured.
Accordingly, for each bus i we can obtain [37]:

Var{∆Vi}M = Var{Re{∆Vi}M}+ Var{Im{∆Vi}M}

=
1

m

m∑
l=1

{
Re{∆V li } −

1

m

m∑
l=1

Re{∆V li }

}2

+
1

m

m∑
l=1

{
Im{∆V li } −

1

m

m∑
l=1

Im{∆V li }

}2

.

(20)

where M denotes the set of all buses with micro-PMUs. The
cardinality of set M is m; and Re{·} and Im{·} denote the real
part and the imaginary part of the complex number, respectively.

The calculation of the variance in (20) is done across the
m different calculations of the differential voltage phasor at
each bus i. Ideally, and in the absence of any attack, the
minimum variance, which accounts for the event bus, must
be zero. However, in practice, the variance is always a small
number due to the measurement errors.

Based on the above analysis, we detect an attack against the
micro-PMUs during an event if the following condition holds:

ΦM > σ, (21)

where for a given set M we define:

ΦM = min
i

Var{∆Vi}M . (22)

Here σ is a threshold parameter, which is calculated by
analyzing the historical attack and non-attack scenarios. We
will discuss the choice of σ in details later in Section V.

The proposed attack detection method is applicable only
when more than one micro-PMU is installed in the distribution
feeder; such that we can check for the inconsistency in
measurements. Also, in general, micro-PMUs are installed
at least as a pair [38]. This is because the synchronization
aspect among phasor measurements is meaningful only when
there are multiple micro-PMUs present in the system.

B. Attack Identification

The notion of variance in (20) can be used also to identify
the attack, i.e., to identify which micro-PMU(s) are causing
the inconsistency. This can be done as we explain next.

Suppose, for some reason, we decide not to use the
measurements from certain subset of micro-PMUs, denoted by
P ⊂ M , where the cardinality of set P is p. In this regard,
we can introduce Var{∆Vi}M\P similar to the formulation for
Var{∆Vi}M in (20), but based on only the measurements from
the rest of the micro-PMUs, i.e., those in set M\P . We can
also define ΦM\P similar to (22), but based on Var{∆Vi}M\P
instead of Var{∆Vi}M . Accordingly, we have:

ΦM\P = min
i

1

m− p
∑

l∈M\P

{
Re{∆V li } −

1

m− p
∑

l∈M\P

Re{∆V li }

}2

+

1

m− p
∑

l∈M\P

{
Im{∆V li } −

1

m− p
∑

l∈M\P

Im{∆V li }

}2

.

(23)
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The basic idea in our proposed attack identification method
is to compare ΦM\P with ΦM to see if the inconsistency is
suddenly resolved, if we remove the measurements that come
from the micro-PMUs in set P . Accordingly, we propose the
following two steps to identify the compromised micro-PMUs.

1) Step I: For now, suppose we know how many micro-
PMUs are compromised, but we do not know which ones. That
is, we know p, but we do not know P ; which is the set of micro-
PMUs that must be removed due to being compromised. We
can obtain P by solving the following optimization problem:

minimize
P⊂M

ΦM\P (24a)

subject to |P | = p, (24b)

where | · | denotes the cardinality of the set. By solving (24),
we find the set of micro-PMUs of cardinality p such that the
inconsistency in the analysis of the circuit in differential mode
across the remaining micro-PMUs is minimized.

Optimization problem (24) can be solved in its current form
using exhaustive search. Alternatively, one can introduce the
following equivalent binary reformulation for problem (24) to
be solved using standard solvers:

minimize
I,B,ϑ,ν

1

m− p

n∑
i=1

m∑
l=1

{
Re{∆V li }2(I li − 1)

+

(
Re{∆V li } − Re{νli}

)2}
+

1

m− p

n∑
i=1

m∑
l=1

{
Im{∆V li }2(I li − 1)

+

(
Im{∆V li } − Im{νli}

)2}
(25a)

subject to
n∑
i=1

m∑
l=1

I li = m− p, (25b)

n∑
i=1

Bi = 1, (25c)

I li ≤ Bi, ∀ l = 1, . . . ,m (25d)

ϑ =
1

m− p

n∑
i=1

m∑
l=1

∆V li I
l
i , (25e)

Re{ϑ} − L(1− I li) ∀ l = 1, . . . ,m,

≤ Re{νli}, ∀ i = 1, . . . , n (25f)

Im{ϑ} − L(1− I li) ∀ l = 1, . . . ,m,

≤ Im{νli}, ∀ i = 1, . . . , n (25g)

Re{νli} ≤ L I li ,
∀ l = 1, . . . ,m,
∀ i = 1, . . . , n

(25h)

Im{νli} ≤ L I li ,
∀ l = 1, . . . ,m,
∀ i = 1, . . . , n

(25i)

0 ≤ Re{νli} ≤ Re{ϑ}, ∀ l = 1, . . . ,m,
∀ i = 1, . . . , n

(25j)

0 ≤ Im{νli} ≤ Im{ϑ}, ∀ l = 1, . . . ,m,
∀ i = 1, . . . , n

(25k)

I li , Bi ∈ {0, 1}, (25l)

Algorithm 1 Attack Identification
1: P = { }; p = 0;
2: if condition (21) holds then
3: for p = 1 to b(m− 1)/2c do
4: Solve the optimization problem (24).
5: if condition (31) holds then
6: Set P identifies the compromised micro-PMUs.
7: break;
8: end if
9: end for

10: end if
11: return P , p

where I is a binary n×m indicator matrix that gives the exact
location of the p compromised micro-PMUs. Variables ϑ and ν
are complex; and L is a constant large number. The details on
the equivalence of problems (25) and (24) are provided in the
Appendix. It is evident that the binary-relaxation of problem
(25) is convex. Therefore, it can be solved by using a standard
solver, such as CVX [39]. Nevertheless, given that in practice,
only a handful of micro-PMUs are installed on a distribution
feeder in practice, one can choose to either solve problem (25)
in CVX; or simply solve problem (24) using exhaustive search.

2) Step II: As a fundamental requirement in attack identifi-
cation, the number of compromised micro-PMUs should not be
more than the number of micro-PMUs that are not compromised
[40]. Thus here the parameter p is upper bounded by:

p ≤ b(m− 1)/2c. (26)

The solution of the optimization problem in (24) identifies
exactly which micro-PMUs are compromised for a given p, i.e.,
it maps any p to set P . However, we still need a mechanism
to find p itself. This can be done by applying a sensitivity
analysis on the objective function similar to the one in [41].

Proposition 1: Suppose F (p) denotes the optimal objective
value in problem (24) for a given p that is upper-bounded as
in (26). Suppose we define a sensitivity function for F (p) as

S(p) = F (p)− F (p+ 1). (27)

We can show that S(p) has the following two properties:
(a) It is non-negative, i.e., we have:

S(p) = F (p)− F (p+ 1) ≥ 0. (28)

(b) It is a non-increasing function of parameter p, i.e., we have:

S(p+ 1) ≤ S(p). (29)

The proof of Proposition 1 is similar to that of Theorem 1 in
[41]. In short it works based on the basic principle that if we
increase p, i.e., discard more micro-PMUs, then the optimal
objective value in (24) either decreases or does not change.

Based on Proposition 1, let us define a normalized version
of the sensitivity function S(p), denoted by N(p), as follows:

N(p) =

{
1, if p = 0
S(p)/S(1), if p 6= 0

(30)
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Since the non-increasing function N(p) starts from 1 and
gradually approaches 0, one can determine parameter p by
applying a horizontal cut to function N(p) at a proper threshold
(0 < µ < 1), for which the following condition holds:{

N(p− 1) > µ
N(p) ≤ µ. (31)

Parameter µ, the identification threshold can be selected by
using historical data of different attack scenarios, so as to
maintain a desirable sensitivity of the identification system.

The proposed attack identification method is summarized
as in Algorithm 1. This algorithm returns set P as the set of
identified compromised micro-PMUs; and its cardinality p.

V. ADDITIONAL CASE STUDIES

All case studies in this section are performed on the IEEE-
33 bus test system. A total of 136 events are simulated. Each
event occurs at a randomly selected bus; in form of sudden
interconnection of a load or a power generation source with
1) peak active and reactive power capacity at the bus; 2) half
of the peak active and reactive power capacity at the bus; 3)
peak active power at that bus with a fixed reactive power; or
4) peak reactive power at that bus with a fixed active power.

Recall that each event is represented in form of differential
synchrophasors based on the pre-event and post-event phasors.
For the events that we generated, fractional changes in p.u.
voltage magnitude, 1− |Vpost|/|Vpre|, has a normal distribution
with zero mean and standard deviation 0.015; and changes in
angle, ∠Vpost−∠Vpre, has a normal distribution with zero mean
and standard deviation 0.39◦. These values due to the events
range within [−0.08, 0.08] and [−2◦, 2◦], respectively.

Each event was simulated under normal operation as well
as under event-unsynchronized attacks and event-synchronized
attacks. Attack parameters β and γ are chosen at their smallest
value that is needed to incorrectly identify the location of the
event at least 3 buses away from the correct location.

A. Impact of Attacks on Differential Synchrophasors

Fig. 7 shows Var{∆Vi} across buses as well as its minimum,
ΦM , under two scenarios: no attack and event-synchronized
attack. The event occurs at bus 10, and the attack compromises
the micro-PMU at bus 18. In the absence of the attack, i.e., in
Fig. 7(a), the variance is relatively small at all buses and ΦM
is practically zero, i.e., ΦM = 3.75× 10−10. In the presence
of the event-synchronized attack, i.e., in Fig. 7(b), the variance
increases at all buses; and ΦM jumps to 1.19×10−4. A similar
figure can be plotted for the event-unsynchronized attack.

To further analyze the impact of the attack, we measure ΦM
for all the four types of considered events, at bus 10. Figs.
8 (a) and (b) portray the change in ΦM versus the advanced
attack parameters β and γ, respectively. From these results,
it can be realized that the extent of events almost does not
change ΦM , rather the extent of attacks has more impact on it.
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Fig. 7: Changes of variance across each bus for an example event at bus 10.
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Fig. 8: Minimum variance of ∆Vi, i.e., ΦM , for a range of β and γ values
in the case of event-synchronized attacks where an event occurs at bus 10.

B. Performance Evaluation of Attack Detection

Next, we compare our proposed attack detection method with
a recent bad data detection method that is applied on micro-
PMU measurements in distribution system state-estimation
(DSSE) [42]. The results for comparison are shown in Fig.
9 over a total of 4000 simulations of events and attacks
scenarios. Specifically, we compare the distribution of ΦM
as the key measure for attack detection in our method, versus
the distribution of the residue in DSSE, as the key measure
for bad data (and attack) detection based on DSSE. All the
residues are calculated based on post-event measurements.
Per [43], the errors in micro-PMU are set to be 0.05% in
magnitude and 0.002 degrees in angle. From the three plots
on the left hand side, it is clear that although the DSSE-based
residue method can detect the basic attacks, it cannot detect
the advanced attacks; because the advanced attacks do not
change the distribution of the residue. In contrast, from the
three plots on the right-hand side, our proposed method can
detect both basic and advanced attacks; because both types of
attacks change the distribution of ΦM significantly.

As a side note, based on the results in Fig. 9, we can decide
the value of the detection threshold σ in (21) to be in the range
of 5× 10−7. From the insets, it is shown that there is no value



9

Fig. 9: Comparison between the distribution of residue in a DSSE-based
detection (left) and that of ΦM in the proposed detection method (right).
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Fig. 10: Function N(p) for attack identification: (a) Case I and (b) Case II.

of ΦM for the attacked cases that falls below this threshold.

C. Performance Evaluation of Attack Identification

Consider two cases: Case I) only micro-PMU 3 is compro-
mised; and Case II) micro-PMUs 3 and 5 are compromised.
By running the sensitivity analysis in section IV-B, appropriate
identification threshold µ is found to be 0.1. As shown in
Fig. 10, the number of the compromised micro-PMU(s), p, is
correctly identified to be 1 and 2 in Cases I and II, respectively.

Next, given the value of p, we can solve (24) and identify the
exact micro-PMU(s) that are compromised. This is illustrated
in Figs. 11(a) and (b) for Case I and Case II, respectively. Pay
attention to the minimum of the curve in each case. Algorithm
1 returns P = {3} and p = 1 in Case I, and P = {3, 5} and
p = 2 in Case II. Both results are indeed correct.

To identify the attacks successfully, the total number of
compromised micro-PMUs should be less than half of the
total number of all the micro-PMUs in the system, see (26).
However, this limitation is inherently inevitable because if
the majority of the micro-PMUs are compromised, then we
can no longer rely on consistency among the micro-PMU
measurements as the key indicator to detect and identify the
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Fig. 11: Attacked micro-PMU(s) identification: (a) Case I and (b) Case II.

attack. Another limitation is for the case when the event is very
small. In such cases, the information that is available about
the event is very limited compared to the background noise in
the system. Therefore, with or without the attack, there is not
much information to check. Of course, a very small event is
of less importance to the utility anyways; and accordingly, a
degraded ability to evaluate it may not be a concern in practice.

D. Analyses of Sensitivity and Robustness

In practice, the utility’s knowledge about the system pa-
rameters is not perfect and measurements are not precise.
Uncertainty varies for different parameters and measurements.
In this section, we examine the robustness of the proposed
event detection algorithm against different levels of parameters
and measurements inaccuracy. We use the Monte Carlo method
to generate different scenarios for each level of parameter error.

1) Errors in Pseudo-Measurements: Pseudo-measurements
can be obtained by aggregating smart meter data, as long as
such data is available; or they can be estimated solely based
on the historical load data that is available to the utility, when
smart meters are not available. Depending on how the pseudo-
measurements are obtained, they may carry a wide range of
errors, as low as 10% [44], when smart meter data is available,
or as high as 50%, when pseudo-measurements are obtained
from historical load data. In our simulations, the errors are being
drawn from a normal distribution with zero mean and standard
deviation followed by the specified measurement inaccuracies.
Besides the mentioned typical range of error, we consider
errors in pseudo-measurements up to 500%, which indicates
the possibility of bad data injection in load information.

The distribution of ΦM for different ranges of error in
pseudo-measurements is shown in Fig. 12. By comparing the
distributions of ΦM in Figs. 12 (a)-(c) versus the distribution
of ΦM for the no attack case in Fig. 9, we can realize that
for the typical ranges of pseudo-measurements errors, i.e. less
than 50%, the distribution does not change. Only very large
errors in the pseudo-measurements can change the distribution
of ΦM . For example, if the errors in pseudo-measurements
are as high as 500%, then they increase ΦM by two orders



10

Fig. 12: The distribution of ΦM for different levels of error in pseudo-
measurements: (a) 10%, (b) 25%, (c) 50%, (d) 100%, (e) 250%, (f) 500%.

Fig. 13: The distribution of ΦM for different levels of error in lines impedance:
(a) 5%, (b) 10%, (c) 15%, (d) 20%, (e) 25%, (f) 30%.

of magnitude. Even for a large value of pseudo-measurements
error, the distribution of ΦM when there is no attack, as in
Fig. 12, is very different from the distribution of ΦM when
there is an attack, as in Fig. 9. Therefore, attacks in pseudo-
measurements do not considerably affect our ability to detect
an attack in micro-PMUs.

2) Errors in Distribution Line Impedances: We further
examine the performance of the proposed attack detection
method against imperfect knowledge about the line impedances
in the distribution system model. The results are shown in
Fig.13. We can see that, the error in line impedances does
not increase the distribution of ΦM more than one order of
magnitude. Of course, this does not mean that the imperfect line
impedances do not affect the analysis of the equivalent circuit
in differential mode. For example, these errors can result in
an incorrect event source location identification, e.g., see [30].
However, these errors do not cause any major issue for our
proposed attack detection and attack identification algorithms.

VI. CONCLUSIONS

A new class of cyberattacks against micro-PMUs was
investigated that aims to compromise event-based applications
in power distribution systems. Based upon the phasor represen-
tation of events in differential mode, two types of attacks are

modeled: event-unsynchronized (basic) and event-synchronized
(advanced) attacks. Through a geometric analysis, it was shown
that advanced attacks are more impactful and difficult to detect.
A recent event-based application of micro-PMUs is scrutinized
to show how the true location of the event source can be
miscalculated due to the attack. A novel method is proposed
to detect the presence of attacks and to identify which micro-
PMUs are compromised. Case studies are presented to evaluate
the proposed methods and their characteristics. It is shown
that they are effective in detecting and identifying the attacks
against micro-PMUs. The results in this paper can be helpful
to utilities and data-driven application developers as interests
in micro-PMUs and their applications continue to grow.

APPENDIX

In this appendix, we explain why problem (25) and problem
(24) are equivalent. The objective function in (25) can be
derived by multiplying the binary indicator matrix I with
variance of ∆V . In this regard, we can rewrite (23) as

ΦM\P = min
i

1

m− p

n∑
i=1

m∑
l=1

I li

{
Re{∆V li }

− 1

m− p

n∑
i=1

m∑
l=1

Re{∆V li }I li

}2

+
1

m− p

n∑
i=1

m∑
l=1

I li

{
Im{∆V li }

− 1

m− p

n∑
i=1

m∑
l=1

Im{∆V li }I li

}2

. (32)

As in (25e), let us define the following auxiliary variable, which
is a complex number:

ϑ =
1

m− p

n∑
i=1

m∑
l=1

∆V li I
l
i ,

Accordingly, we can write the first term in (32) as

1

m− p

n∑
i=1

m∑
l=1

I li

{
Re{∆V li } − Re{ϑ}

}2

(33a)

=
1

m− p

n∑
i=1

m∑
l=1

Re{∆V li }2I li + I liRe{ϑ}2

− 2I liRe{ϑ}Re{∆V li } (33b)

=
1

m− p

n∑
i=1

m∑
l=1

Re{∆V li }2(I li − 1)

+

{
Re{∆V li } − I liRe{ϑ}

}2

(33c)

=
1

m− p

n∑
i=1

m∑
l=1

Re{∆V li }2(I li − 1)

+

{
Re{∆V li } − Re{νli}

}2

. (33d)

Similar formulation can be derived for the imaginary part. Here,
the product of variables I li and ϑ in (33c) is replaced by a new
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non-negative auxiliary variable νli in (33d). Instead, for each i
and each l, we use the constraints in (25f)-(25k), to enforce
the relationship between νli , ϑ, and I li ; see [45] and Appendix
B in [46]. Thus, problems (25) and (24) are equivalent. �
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