
A Synchronized Lissajous-based Method to
Detect and Classify Events in Synchro-waveform

Measurements in Power Distribution Networks
Milad Izadi, Student Member, IEEE and Hamed Mohsenian-Rad, Fellow, IEEE

Abstract—Waveform measurement units (WMUs) are a new
class of smart grid sensors. They capture synchro-waveforms,
i.e., time-synchronized high-resolution voltage waveform and cur-
rent waveform measurements. In this paper, we propose new
methods to detect and classify power quality events in power
distribution systems by using synchro-waveform measurements.
The methods are built upon a novel graphical concept, called
synchronized Lissajous curve. The proposed event detection and
event classification methods work by analyzing the shape of the
synchronized Lissajous curves during disturbances and events.
The impact of challenging factors, such as the angle, the location,
and other parameters of the event are discussed. We show that
these challenges can be addressed if we treat the synchronized
Lissajous curves as images, instead of as time series as in the
raw synchronized waveform measurements. Hence, we can take
advantage of the recent advancements in the field of image
processing so as to capture the overall characterizing patterns
in the shapes of the synchronized Lissajous curves. We develop
a Convolutional Neural Network (CNN) method to classify the
events, where the input is the synchronized Lissajous images. The
effectiveness of the proposed event detection and classification
methods is demonstrated through computer simulations, includ-
ing hardware-in-the-loop simulations, and real-world field data.
Multiple case studies verify the performance of the proposed
methods. The proposed event detection method can accurately
detect events, and identify the start time and the end time of each
event. The proposed event classification method can classify power
quality events with high accuracy. The proposed detection and
classification methods do not require any prior knowledge about
the network. They use data from as few as only two WMUs.

Index Terms—Synchro-waveform, data-driven method, wave-
form measurement unit, power quality event, convolutional neural
network, synchronized Lissajous curves, detection, classification,
image classification, hardware-in-the-loop simulations.

I. INTRODUCTION

WAVEFORM measurement units (WMUs) are a new
class of smart grid sensors that provide precise time-

synchronized voltage and current waveform measurements in
time domain [1]–[9]. The very high reporting rate of WMUs,
such as 256 samples per cycle, and the fact we have access
to synchronized waveform measurements, can significantly
enhance situational awareness and operational intelligence in
power distribution networks [8], [9]. So far, WMUs have been
used in only a few number of applications, such as to study
harmonics in transformers [1] or to identify the source location
of power quality events [2] and incipient faults [3].

It is worth clarifying that the term WMU is relatively new.
While phasor measurement units (PMUs) are used to measure
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synchro-phasors [10], WMUs are used to measure synchro-
waveforms [3], [11], [12]. The term WMU is gradually starting
to appear in the academic literature, e.g., see [2], [7], and
also in the industry reports, e.g., see [13], [14]. Given the
much higher reporting rate of WMUs than PMUs, and also
because WMUs have much less internal filtering than PMUs,
WMUs are capable of capturing several details about the
voltage waveforms and current waveforms that are inherently
impossible for PMUs to capture. Illustrative examples on the
details that can be captured by WMUs but cannot be captured
by PMUs are available in Section I-A in [3].

In this paper, we seek to propose a novel data-driven
situational awareness framework based on a fundamentally
new graphical concept, called synchronized Lissajous curve, in
power distribution systems. The synchronized Lissajous curve
is obtained by plotting the difference of two synchronized volt-
age waveforms versus the difference of two synchronized cur-
rent waveforms. Our goal is to use the synchronized Lissajous-
based representation of the WMU measurements to accurately
detect and classify various power quality events.

A. Summary of Technical Contributions
The main contributions in this paper are as follows:

1) A new data-driven situational awareness framework is pro-
posed in power distribution systems based on the analysis
of synchro-waveform measurements. The new framework
is built upon the new concept of synchronized Lissajous
curves. During normal operating conditions, the synchro-
nized Lissajous curve is an ellipse. Once an event or a
disturbance occurs, the shape and the area of the synchro-
nized Lissajous curve can change significantly, depending
on the type, location, and other characteristics of the event.

2) The proposed event detection method monitors the
changes in the areas of two successive synchronized
Lissajous curves. Once an event occurs, the area sharply
changes, indicating that an event has occurred. We present
an adaptive detection threshold based on a statistical
threshold selection method that is robust against outliers.

3) The proposed event classification method works by classi-
fying the synchronized Lissajous images. A Convolutional
Neural Network (CNN) is developed as the image classi-
fication method. Our approach is in sharp contrast to the
common practice in the literature to conduct classification
based on the time series of the waveform measurements.
The proposed classification method reaches a high accu-
racy, even at lower measurement reporting rates, under
missing data, and under major measurement noise.



4) The proposed framework is able to correctly detect and
classify a wide range of events, such as sustained events
with steady-state component, e.g., high impedance fault;
sustained events with transient component, e.g., capacitor
bank switching; and temporary events with very short
duration, e.g., incipient faults. The proposed detection and
classification methods are model-free and they do not
require any knowledge about the network. These methods
require data from as few as only two WMUs.

B. Related Literature

The topic of synchro-waveform measurements is new and the
related literature is starting to emerge only recently. The basic
ideas and comparison with supervisory control and data ac-
quisition (SCADA) measurements and PMU measurements are
discussed in [1]. Methods based on modal analysis at damping
frequencies are presented in [2], [3] to identify the location
of power quality events and incipient faults using synchro-
waveform measurements. A analysis based on eliminating the
fundamental frequency component is done in [15] to identify
sub-synchronous resonance.

Importantly, for a method to be truly relevant to synchro-
waveform measurements, it must take advantage of the synchro-
nized waveform measurements from multiple WMUs. However,
even before the development of synchro-waveforms, there was a
literature on the analysis of waveform measurements that come
from individual power quality sensors. Both event detection
and event classification are addressed in such literature; but the
focus has been mainly on major events such as major faults.

Traditionally, a common approach in event detection has
been to monitor the changes in the root-mean-square (RMS) of
the voltage waveforms, e.g., in [16]. There are other methods
that work based on signal processing tools, such as wavelet
transform [17], wavelet packet transform [18], S-transform [19],
and Fourier transform [20]. Although these methods perform
well in many cases, they are often sensitive to the presence
of harmonics in the waveforms and also to the parameters
of the transformation technique that is being used. Unlike the
above and other similar methods, the event detection method
in this paper is meant for synchro-waveform measurements as
it takes direct advantage of the multiple available synchronized
waveform measurements. It works in time-domain therefore it
does not require any data transformation. It is not sensitive to
harmonics. Furthermore, it makes use of both the synchronized
voltage waveform and the current waveform measurements.

As for the traditional methods on event classification, various
techniques have been used, such as decision trees [21], neural
networks [22], support vector machines [23], and hierarchical
process [24]. The common approach in the above papers and
other similar studies is to conduct event classification based
on the time series data that come from power quality sensors.
In a sharp contract, here we propose a fundamentally different
approach to conduct event classification based on the graphical
representation of the events in Lissajous images. Accordingly,
our method is a CNN-based image classification. It is designed
to use both the synchronized voltage waveform measurements
and the synchronized current waveform measurements.

WMU 1 WMU 2

Substation
Substation

Fig. 1. A distribution feeder that is equipped with two WMUs.

There is a limited literature on classifying power quality
events using image classification methods, including different
choices of CNN models. For example, in [25]–[27], wavelet
transformation is used to generate scalogram image represen-
tation for the power quality events. As another example, in
[28], image representation of the waveforms is done by using
the space-phasor analysis and discrete quantization. To the best
of our knowledge, no prior study has used any variation of the
synchronized Lissajous curves to conduct event classification in
this context. Furthermore, all the prior studies are focused on
making use of only event classification based on measurements
from only one power quality or waveform sensor.

We introduced the concept of synchronized Lissajous curves
for the first time in the preliminary conference version of this
paper in [8]; where we discussed the potential use of such
curves in achieving situational awareness. The focus was on
showing illustrative examples to present events based on the
synchronized Lissajous curves. We have also recently identified
different variations of synchronized Lissajous curves and their
basic characteristics in a letter paper in [9]. In this paper, we
develop the actual methods to achieve event detection and event
classification using synchronized Lissajous curves.

II. CYCLIC SYNCHRONIZED LISSAJOUS CURVE
REPRESENTATION OF A POWER QUALITY EVENT

Consider a power distribution feeder, such as the one in
Fig. 1. Suppose two WMUs are installed on this feeder, where
WMU 1 is installed at the beginning of the feeder and WMU
2 is installed at the end of the feeder. Let v1(t) denote
the voltage waveform and i1(t) denote the current waveform
that are measured by WMU 1. Also, let v2(t) denote the
voltage waveform and i2(t) denote the current waveform that
are measured by WMU 2. The waveform measurements are
time-synchronized. When an event occurs somewhere on the
power distribution feeder, it creates signatures in the waveform
measurements that are captured by both WMUs 1 and 2. In this
regard, we define the following two new waveforms [8], [9]:

v(t) = v1(t)� v2(t); (1)

i(t) = i1(t)� i2(t): (2)

The waveform in (1) is the difference between the voltage
waveforms at WMU 1 and WMU 2. The waveform in (2) is
the difference between the current waveforms at WMU 1 and
WMU 2. If WMU 1 and WMU 2 are not in the same nominal
voltage levels, then we can define (1) and (2) in per unit.

Figs. 2(a) and (b) show examples of the synchronized wave-
foms in (1) and (2) that are captured by WMUs 1 and 2 when a
power quality disturbance occurs. The impact of the disturbance
is clearly visible in these synchronized waveforms.



A. Synchronized Lissajous Curve

The waveform measurements in (1) and (2) can be graph-
ically represented as a Lissajous curve. A Lissajous curve is
a graph that is constructed by plotting one waveform versus
another waveform. It has various applications in signal and
image processing; such as in electrocardiogram analysis and
dielectric discharge analysis [29]. Furthermore, the Lissajous
curves have had occasional applications also in power sys-
tem engineering; such as to analyze non-linear single-phase
circuits [30] or to identify fault location in transmission lines
[31]. However, these existing applications have focused on the
specific physical characteristics of the particular circuit or the
particular equipment of interest.

In this paper, we propose to plot the voltage waveform
difference in (1) versus the current waveform difference in (2).
We refer to such Lissajous curve as the synchronized Lissajous
curve [8], [9]; because it is constructed based on synchronized
waveform measurements in WMU 1 and WMU 2.

The synchronized Lissajous curve that is corresponding to
the waveforms in Fig. 2(a) and (b) is shown in Fig. 2(c). The
blue curve represents the pre-disturbance conditions, i.e., the
normal operating conditions before the disturbance occurs. The
red curve represents the post-disturbance conditions, i.e., the
circumstances immediately after the disturbance occurs.

The basic characteristics of the synchronized Lissajous
curves have been derived in our recent work in [9]. Here, we
briefly summarize them. First, as shown in Section IV-A in
[9], the area of the synchronized Lissajous curve that is used
in this paper can be interpreted as the weighted summation
of the reactive power that one can define with respect to the
voltage waveform in (1) and the current waveform in (2). It
is worth adding that, there exists another definition for the
synchronized Lissajous curve whose area can be interpreted
as the weighted summation of the active power that one can
define with respect to the voltage waveform in (1) and the
current waveform in (2). Second, as shown in Section IV-B
in [9], the rotational angle of the synchronized Lissajous curve
provides insights about the location of the event. The rotational
angle can also be interpreted as the impedance of the feeder
as seen by the two WMUs. Third, as shown in Section IV-C
in [9], the shape of the synchronized Lissajous curve is very
informative about the cause of the event. In the absence of an
event, i.e., during normal operation conditions, the shape of
the synchronized Lissajous curves is proven to be an ellipse,
see its proof in Section IV-C in [9]. However, once an event
occurs, the synchronized Lissajous curve can take different
shapes depending on the nature of the event. For example, in
Fig. 2(c), the pre-disturbance curve is an ellipse (in blue); while
the post-disturbance curve is a very different shape (in red).

Inspired by the above basic characteristics, in this paper, we
develop new data-driven algorithms to utilize the synchronized
Lissajous curves for event detection and event classification.

B. Different Shapes of Power Quality Events

Once an event occurs, the synchronized Lissajous curve
deviates from its initial ellipse shape. The new (i.e., post-event)

Fig. 2. An example of the synchronized Lissajous curve for a high impedance
fault on a distribution feeder that is seen by two WMUs during normal operating
conditions (blue) and disturbance conditions (red) [8]: (a) the difference of two
synchronized voltage waveform; (b) the difference of two synchronized current
waveform measurements; (c) the corresponding synchronized Lissajous curve.

shape of the synchronized Lissajous curve would depend on
the type of the event. To better understand the pre-disturbance
and post-disturbance conditions, it is beneficial to plot the
synchronized Lissajous curve separately for each cycle. Such
sequence of the graphical snapshots can be referred to as cyclic
synchronized Lissajous curve. Fig. 3 shows five successive
cycles of the synchronized Lissajous curves for three different
power quality events, respectively. In all three cases, the cyclic
synchronized Lissajous curves are initially an ellipse but then
they change to some other shapes.

We can distinguish two broad types of disturbances: sus-
tained disturbances; such as high impedance faults and ca-
pacitor bank switching; and temporary disturbances, such as
incipient faults. For the events in Fig. 3, the first and the second
events are sustained while the third event is only temporary.

As shown in Figs. 3(a)-(e), if a high impedance fault occurs,
the synchronized Lissajous curve deviates to a very different
shape, see Figs. 3(c)-(e), compared with the ellipse shape during
the normal operating condition, see Figs. 3(a)-(b). This is be-
cause the fault current in the high impedance fault contains odd
order harmonics. As shown in Figs. 3(f)-(j), if a capacitor bank
switches on, then the synchronized Lissajous curve oscillates
for a very short period of time and then it converges to a
new (different) ellipse shape, see Figs. 3(h)-(i). This happens
because of the new transient mode of oscillation of the capacitor
bank [2], [3]. As shown in Figs. 3(k)-(o), if an incipient fault
occurs, then the synchronized Lissajous curve deviates from
the shape of an ellipse for the duration of the incipient fault,
see Figs. 3(m)-(n), then it turns back to the ellipse shape at the
normal operating condition, see Fig. 3(o). This happens because
the incipient fault is self-clearing and has a very short duration.

The above examples show that the shape of the synchronized
Lissajous curve can draw a unique picture about the presence
and the root cause of the power quality events.

C. Intuition based on Circuit Analysis

Even though the analysis in this paper is data-driven, one
can still discuss the event-triggered changes in synchronized
Lissajous curves also in the context of the underlying power
distribution circuit. Such analysis can provide additional in-
sights on why it is reasonable to use the voltage waveform in



Fig. 3. Five cycles of synchronized Lissajous curves for three different types of events: (a)-(e) high impedance fault which is a sustained event; (f)-(j) capacitor
bank switching which is a sustained event with a major transient component; (k)-(o) incipient fault which is only a short temporary event. T is one cycle period.

(1) and the current waveform in (2) for the purpose of obtaining
the synchronized Lissajous curve. To see this, again consider
the power distribution feeder with two WMUs that we saw in
Fig. 1. Suppose an event occurs somewhere between the two
WMUs. Once the event occurs, almost the entire event current
flows through the substation at the upstream of the event, as
opposed to flowing through the loads at the downstream of
the event bus. This physical concept is commonly used in the
literature in power distribution systems, e.g., see [12]; and it
can be explained by comparing the Thevenin equivalent of the
circuit at the upstream of the event with the Thevenin equivalent
of the circuit at the downstream of the event. In particular,
since the Thevenin impedance of the substation at the upstream
of the event is much smaller than the Thevenin impedance of
the loads at the downstream of the event, the event current is
approximately equal to the change in the waveform i1(t)�i2(t)
that is defined in (2), i.e., the change in the difference between
the current waveform that is measured at WMU 1 and the
current waveform that is measured at WMU 2. As a result,
the waveform in (2) provides valuable information about the
current characteristics of the event.

We can similarly explain the physical intuition for the
definition of the waveform in (1). Given the fact that the event
current does not flow through the loads at the downstream of the
event, it does not cause any change in the voltage at the buses at
the downstream of the event. However, since the event current

flows through the substation at the upstream of the event, it
does cause some changes in the voltage at the buses at the
upstream of the event. As a result, the change in voltage that
is caused at the location of the event, which we can refer to as
the event voltage, is approximately equal to the change in the
waveform v1(t)�v2(t) that is defined in (1), i.e., the change in
the difference between the voltage waveform that is measured at
WMU 1 and the voltage waveform that is measured at WMU 2.
As a result, the waveform in (1) provides valuable information
about the voltage characteristics of the event.

Accordingly, the synchronized Lissajous curve that is ob-
tained by plotting the waveform in (1) versus the waveform in
(2) can capture both the voltage characteristics and the current
characteristics of the event, despite the fact that WMU 1 and
WMU 2 are not at the location of the event; as the event rather
occurs at an arbitrary location between WMU 1 and WMU 2.

Of course, an event may affect the characteristics of the
voltage, the characteristics of the current, or the characteristics
of both the voltage and the current. Thus, the synchronized
Lissajous curve can be used to study different types of events.
For example, a high impedance fault mostly affects the current
waveform; as we saw in the synchronized Lissajous curve
in Fig. 3(c); a capacitor bank switching mostly affects the
voltage waveform; as we saw in the synchronized Lissajous
curve in Fig. 3(h); and an incipient fault affects both the
current waveform and the voltage waveform; as we saw in the
synchronized Lissajous curve in Fig. 3(m).



III. EVENT DETECTION METHOD

Motivated by the examples and the analysis in Section II,
our goal in this section is to use the synchronized Lissajous
curves as the means to detect power quality events.

A. Similarity Index

Let us define the area of the synchronized Lissajous curve
at time t over period T of the past cycle as follows:

Area(t) =

���� Z i(�=t)

i(�=t�T )

v(�) di(�)

����: (3)

During normal operating conditions, there is little to no dif-
ference between two successive calculations of the areas in
(3). However, once an event occurs, such difference suddenly
becomes significant. This can help us detect the event. Suppose
Area(t) and Area(t��t) denote the areas of the synchronized
Lissajous curves at times t and t��t, where �t is the reporting
interval of the WMUs, e.g., �t = 65 �sec. We define the
similarity index at time t as

S(t) = 1�

����� Area(t)�Area(t��t)

max
�
Area(t); Area(t��t)

	�����: (4)

If the areas of the two successive synchronized Lissajous curves
are almost equal, then S(t) is close to one. However, if the
areas of the two successive synchronized Lissajous curves are
considerably different, then S(t) is close to zero, indicating that
a sudden change has occurred in the synchronized Lissajous
curve at time t. This means an event has occurred at time t.

B. Adaptive Detection Threshold

We propose an adaptive detection threshold by considering
the past similarity indices to minimize the number of false
alarms. In this regard, consider a window of time period W
immediately before time t, i.e., from time t�W to time t��t.
The similarity indices of such window of duration W are

S(t�W ); S(t�W + �t); � � � ; S(t��t): (5)

Let us define M(t) and MAD(t) as the median and median
absolute deviation of the similarity indices in (5) [32]. We
propose to define the adaptive threshold as follows:

T (t) = �
�
M(t)� � MAD(t)

�
; (6)

where � is a number between 0 and 1 to control the sensitivity
of the event detection method. A common choice for � is
2.5 [32]. We use the median and median absolute deviation
statistics because they are robust against outliers. We detect an
event at time t if the following inequality holds:

S(t) < T (t): (7)

Importantly, the detection threshold must be revised after an
event is detected. We discard the very small similarity index at
event time from the next calculation of the adaptive threshold.
That is, the similarity index at time t is used in the calculation
of the next threshold only if time t is not an event time.

IV. EVENT CLASSIFICATION METHOD

Once the power quality event is detected by the proposed
method in Section III, we construct a new synchronized Lis-
sajous curve from the moment that the event is detected and
for the duration of one cycle. Next, we need to identify the
type of the detected power quality event based on this one-
cycle synchronized Lissajous curve. Therefore, in this section,
we propose a novel method based on image classification to
categorize each detected event into different classes based on
the shape of their one-cycle synchronized Lissajous curves.

First, we will discuss the factors that affect the shape of
the synchronized Lissajous curves and why they make the
classification problem a highly challenging task. Second, we
will convert the detected synchronized Lissajous curves to
images so that they can be classified by using image processing
techniques. Third, we will develop an efficient Convolution
Neural Network (CNN) to extract features of the synchronized
Lissajous images in order to conduct event classification.

A. Challenging Factors

The shape of the synchronized Lissajous curve depends on
not only the type (i.e., the class) of the event, but also other
factors such as the angle, the location, and the size of the
affected physical components. Therefore, even when we look at
different examples of the exact same class of events, the shapes
of the synchronized Lissajous curves can have considerable
differences based on the above various factors. They can make
the event classification problem challenging, as we explain next.

Impact of the Event Angle: Consider the synchronized
Lissajous curves in Fig. 4. They both represent the exact same
disturbance, which is a capacitor bank switching event. How-
ever, the firing angle of the switching action is different in these
two cases. One switching event occurs near the positive peak
of the voltage waveform. The other switching event occurs near
the negative peak of the voltage waveform. We can see that the
oscillations in the corresponding Lissajous curves start at two
different places on the voltage-current plane; making the two
curves look differently. In fact, one curve is almost the mirror
reflection of the other curve. Therefore, we can conclude that
the angle of the event can affect the shape of the synchronized
Lissajous curve, thereby creating additional challenges and
complications in the event classification problem.

Impact of the Event Location: Next, consider the syn-
chronized Lissajous curves in Fig. 5. They represent the exact
same disturbance, which is a high impedance fault with equal
fault impedance. However, the location of the fault is different
in these two cases; one is closer to the substation at the
beginning of the feeder; while the other one is closer to
the end of the feeder. We can see that the shapes of the
two curves are somewhat similar; however, there are major
rotational differences among these curves. If the fault occurs
near the beginning of the feeder, i.e., near WMU 1, then the
angle between the voltage difference waveform and the current
difference waveform in the synchronized Lissajous curve is
smaller, see Fig. 5(a). However, if the fault occurs near the



Fig. 4. The synchronized Lissajous curves during the same event that occurs
at two different firing angle: (a) near positive peak; (b) near negative peak.

Fig. 5. The synchronized Lissajous curves during the same event that occurs
at two different locations: (a) near WMU 1; (b) near WMU 2.

Fig. 6. The synchronized Lissajous curves during two incipient faults with dif-
ferent fault parameters: (a) lower fault impedance; (b) higher fault impedance.

end of the feeder, i.e., near WMU 2, then the angle between
the voltage difference waveform and the current difference
waveform in the synchronized Lissajous curve is larger, see
Fig. 5(b). We can conclude that the location of the event can
directly affect the shape of the synchronized Lissajous curve,
thereby making classification a challenging task.

Impact of other Event Parameters: Finally, consider the
synchronized Lissajous curves in Fig. 6. They show the exact
same disturbance, which is an incipient fault. However, the
impedance of the fault is different in these two cases. One
fault has a smaller impedance. The other fault has a larger
impedance. We can see that the shapes of the two curves are
almost similar; however, the sizes of the curves are different;
which is due to the different fault impedances. If the impedance
of the incipient fault is smaller, then the size of the Lissajous
curve is larger, see Fig. 6(a). Conversely, if the impedance of
the incipient fault is larger, then the size of its corresponding
Lissajous curve is smaller, see Fig. 6(b). We can conclude that
the parameters of an event can highly affect not only the shape
but also the size of the synchronized Lissajous curve.

B. Synchronized Lissajous Curve as Image

The challenges in Section IV-A can be addressed if we treat
the synchronized Lissajous curves as images and subsequently
take advantage of the recent advancements in the field of image
processing to solve the event classification problem.

There are multiple reasons why it is beneficial to study
a synchronized Lissajous curve as an image, as opposed to
studying the raw synchronized waveform measurements as time
series. First, graphical images can capture the overall patterns
in the shape of the synchronized Lissajous curves; while such
overall patterns are inherently spreed over time in the original
time series. For example, there are clear similarities between
the two synchronized Lissajous curves in Fig. 5. It is clear that
one image is almost a squeezed version of the other image.
Therefore, the two Lissajous images belong to the same class
of events. However, such similarity would not be clear if we
only look at the raw waveform measurements corresponding
to these two events. Second, the sequential nature of time
series is embedded with many important characteristics, which
lays outside of a typical time-domain analysis. Therefore, it
is difficult to perform classification in time-domain using the
state-of-the-art sequence classification methods. Third, deep
machine learning methods have shown particularly promising
results in recent years in solving image processing problems.
Therefore, if we present the event classification problem based
on synchronized Lissajous curves as an image processing
problem, then we benefit from powerful image processing tools.

The synchronized Lissajous curves are converted to syn-
chronized Lissajous images by using various readily available
conversion functions in MATLAB and/or Python. For example,
one option is to use the combination of functions getframe
and frame2im in MATLAB; see [33], [34].

We will verify the importance of treating synchronized
Lissajous curves as images through case studies in Section V-C.

C. Convolutional Neural Networks

Once the synchronized Lissajous curves are converted to im-
ages, one can use various advanced image processing methods
to classify the events based on their synchronized Lissajous
images. In this paper, we use Convolutional Neural Networks
(CNNs) to classify the detected Lissajous images into multiple
classes of events. CNNs are effective deep machine learning
techniques that are widely used in image recognition and speech
recognition, among other fields [35], [36].

The structure of CNN includes an input layer, a few hidden
layers, and an output layer. The input layer takes as input the
synchronized Lissajous images of the detected power quality
events. The hidden layers consist of the convolutional, batch
normalization, activation, max-pooling, dropout, and the fully-
connected layers. The convolutional layer is the key layer
to extract features. It includes a series of kernel filters. The
batch normalization layer normalizes the input, to speed up
the training of the CNN. The activation layer implements non-
linearity functions to the CNN model, by using functions such
as sigmoid, hyperbolic tangent, or rectified linear unit (ReLU).
The max-pooling layer performs down-sampling to summarize



TABLE I
THE STRUCTURE OF THE PROPOSED CNN MODEL

Layer Layer Type Activation
1.1 Convolutional (120,120,60)
1.2 Batch Normalization (120,120,60)
1.3 ReLU (120,120,60)
2.1 Convolutional (120,120,60)
2.2 Batch Normalization (120,120,60)
2.3 ReLU (120,120,60)
3.4 Max-Pooling (60,60,60)
3.1 Convolutional (60,60,120)
3.2 Batch Normalization (60,60,120)
3.3 ReLU (60,60,120)
3.4 Max-Pooling (30,30,120)
3.5 Dropout (30,30,120)
4.1 Fully-connected (1,1,3)
4.2 Softmax (1,1,3)
4.3 Classification –

the extracted features. The dropout layer randomly assigns zero
to the input to prevent over-fitting. The fully-connected layer
integrates the features from the previous layers to the softmax
activation layer to obtain probabilities of the input. The output
layer is the classification layer that determines the label of the
input image given the probabilities from the previous layer.

Table I shows the structure of the proposed CNN for event
classification based on Lissajous images. It consists of a four-
layer architecture, where each architecture includes multiple
layers. Since the size of the input Lissajous images is large,
a wide kernel filter is used in the first convolutional layer to
extract more features from the Lissajous images. The ReLU is
used in the activation layers to speed up learning and improve
its performance [37]. Softmax is used in the final activation
layer to get a probability distribution density for the classes.
The proposed CNN classification approach is implemented in
MATLAB using its available CNN model [38].

After examining a few different CNN structures, the current
structure based on the four-layer CNN was selected due to its
desirable performance. This structure is similar to the struc-
ture of other CNN-based image classification method in the
literature, e.g. see [25]–[28]. The performance of the proposed
classification method is examined in Section V-B and VI-B.

It bears mentioning that the size of a synchronized Lissajous
image depends on the size of the event. This may affect the
results in the classification task. This issue is addressed by
normalizing each synchronized Lissajous curve with respect to
its energy before the curves are converted to graphical images.

V. CASE STUDIES

In this section, we assess the performance of the proposed
event detection and event classification methods. All simula-
tions are done in PSCAD [39] based on the IEEE 33-bus test
system. The one line diagram of the simulated test system is
shown in Fig. 7. Two WMUs are assumed to be installed in the
network. WMU 1 is installed at bus 1. WMU 2 is installed at
bus 18. Each WMU captures the time-synchronized voltage and
current waveforms at its location. To emulate real-world WMU
measurements, white Gaussian noise is added to the simulated
voltage and current waveform measurements. Unless stated

WMU 1 WMU 2

Substation

Fig. 7. The IEEE 33-bus distribution system with two WMUs.

otherwise, we consider a signal-to-noise-ratio (SNR) of 80 dB
in both voltage and current waveforms. The nominal system
frequency is 60 Hz. Unless stated otherwise, the reporting rate
of the WMUs is assumed to be 256 samples per cycle.

The events that we study in this section are of the type that
would typically require examining waveform measurements,
i.e., they typically cannot be investigated properly by using
phasor measurements. For example, we do not consider voltage
sags, voltage swells, and interruptions; because they often do
not require examining the waveform measurements in order to
be detected or even classified. We also consider some events
that could be captured by phasor measurements; but they are
understood much better if one can instead capture the waveform
measurements. One such example is capacitor bank switching;
where capturing the waveform can further reveal the ringing
oscillations as well as potential incipient faults.

The proposed event detection and event classification meth-
ods can be used both in post-mortem analysis and in real-time
analysis. When it comes to real-time analysis, the steps that
are taken are as follows. The proposed event detection method
is run continuously to plot and examine the synchronized
Lissajous curves to immediately detect any event as soon as it
occurs. Once an event is detected, a new synchronized Lissajous
curve of the detected event is plotted from the start time of
the event and for a duration of one cycle. Most power quality
events have a short duration, such as less than one cycle. Even
for longer events, the event signature during the first cycle is
particularly informative. Thus, one cycle of the synchronized
Lissajous curve is long enough to examine the signature of a
power quality event quickly after it is detected. This one-cycle
synchronized Lissajous curve is then converted to a synchro-
nized Lissajous image using an image conversion function, as it
was previously explained in Section IV-B. Finally, the obtained
synchronized Lissajous image is used as input to the proposed
CNNs, which is already trained when it comes to real-time
operation, in order to identify the type of the detected event.

A. Event Detection Results

We examine the performance of the proposed event detection
method on three different classes of disturbances. Here, the
sensitivity factor is set to 0:9; and the window duration is set
to W = 133 msec. The results of event detection for the first
class, i.e., the high impedance fault, the second class, i.e., the
capacitor bank switching, and the third class, i.e., the incipient
fault, are shown in Figs. 8(a), (b), and (c), respectively.

In Fig. 8(a), the similarity index drops from almost 1 to 0.82
at time t = 0:50 sec, indicating that an event occurs at this time,
which is the correct event time. The similarity index fluctuates
right after the event occurs, for about one cycle, from t = 0:50


