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Abstract—This paper is concerned with solving the phase
identification problem in a real-world smart grid project; where
there is only a few smart meters available on each of the five
power distribution feeders in the test site in Riverside, CA. The
main idea is to develop and use two reliability criteria that
can identify the most reliable components in a broken-down
phase identification analysis; thereby significantly improving the
accuracy of phase identification. The proposed method consists
of three steps. The results from field implementation reveal the
accuracy and consistency of the proposed method in practice,
in correctly and reliability identifying the phase connectivity.
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I. INTRODUCTION

Accurate phase identification is critical in order to properly
monitor and operate power distribution networks and to
maintain updated three-phase network models [1].

Traditionally, in practice, phase identification is done by
manually inspecting the phase connectivity in the field.
However, manual inspection is labor-intensive and costly.

An alternative to manual inspection is to use measurement-
based methods. A popular approach in to examine the corre-
lation across the voltage measurements on different phases,
e.g., see [2], [3]. In [4], correlation analysis is done based on
linear regression. In [5], a mixed integer programming model
is developed to identify phase connectivity using power
measurements. In [6], a correlation-based method is designed
using the voltage phasor measurements from micro-phasor
measurement units. In [7], a k-means clustering algorithm is
used for phase identification. In [8], a spectral and saliency
analysis is presented to extract the frequency domain features
from load profiles for the purpose of phase identification.

In practice, if we have access to only a few sensors, then
the methods in [2]–[6], such as the use of correlation analysis,
are more applicable. On the other hand, the methods in [7],
[8], often require access to several sensors; for example to
achieve accurate clustering results. However, the problem
with correlation-based methods is lack of high accuracy, ex-
cept for when we have access to phase angle measurements,
as in [6]; but this is often not the case in practice.

In this paper, we are concerned with solving the phase
identification problem in a real-world test site in Riverside,
CA. The goal is to significantly improve the accuracy of the
measurement-based methods, despite having access to only a
few smart meters on each power distribution feeder.

The proposed method uses a sliding window to break-
down the phase identification problem on each day into
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Fig. 1. Six possible phase connection configurations between two three-
phase systems. Phases A, B, and C are the known reference phase labeling;
and Phases a, b, and c are the unknown phase labeling. The configuration
number from 1 to 6 is marked at the top left corner for each configuration.

several smaller problems to help evaluate the reliability of
the phase identification analysis. Subsequently, the results are
examined through two reliability criteria, to identify the most
reliable components to make the ultimate phase identification
conclusions. The proposed method in this paper is rather
general; as it provides a new approach to measurement-based
phase identification to explicitly use reliability assessment to
enhance the results. The proposed method is applied to the
real-world measurements from smart meters on five power
distribution feeders in Riverside, CA. The results illustrate
the high accuracy and consistency of the proposed method in
identifying the correct phase connection configuration.

II. PROBLEM STATEMENT

The objective of the phase identification problem is to
determine the phase connectivity for a given bus or a given
device in a power distribution network. Phase identification
is done in reference to phase labeling in another bus. In
a three-phase power system, there are six possible phase
configurations; as shown in Fig. 1. The three phases of the bus
or device with unknown phase connectivity are denoted by
Phases a, b, and c. The goal is to identify phase connectivity
with respect to a reference phase labeling, denoted by Phases
A, B, and C. For example, if Phase a of a meter with unknown
phase connectivity is connected to Phase C of another meter
with known phase connectivity, Phase b is connected to Phase
A, and Phase c is connected to Phase B; then the two smart
meters are connected according to configuration #3.

A. Field Experiment

In this paper, our focus is on measurement-based phase
identification. Here, phase identification is done solely by
examining the voltage measurements at the meter with un-
known phase labeling and comparing them with the voltage
measurements at the meter with reference phase labeling.

The real-world field measurements that are used in this
study are collected from 24 smart meters across five power
distribution feeders in Riverside, CA. An example for the
three-phase voltage measurements at two smart meters are
shown in Fig. 2 over a period of 24 hours. Both meters are
on the same power distribution feeder. The objective of the



Fig. 2. The time series of three-phase voltage measurements on April 5,
2020 by two smart meters on the same distribution feeder: (a) smart meter 2
which acts as the reference; (b) smart meter 1 with unknown phase labeling.

phase identification in this example is to determine the phase
connection configuration between these two smart meters.

Ultimately, our goal is to do phase identification for all the
smart meters that are on the same power distribution feeder.

B. Baseline Method

A common approach in practice to solve the measurement-
based phase identification problem is to examine and max-
imize the correlations between the two sets of time-series.
They include the voltage measurements on Phases a, b, and
c, at the meter with unknown phase labeling, denoted by
va1 (t), vb1(t), and vc1(t), respectively. They also include the
voltage measurements on Phases A, B, and C, at the meter
with reference phase labeling, denoted by vA2 (t), vB2 (t), and
vC2 (t), respectively. In this regard, let us define the three-
phase correlation coefficient between the three-phase voltage
measurements at smart meter 1 with unknown phase labeling
a, b, c and the three-phase voltage measurements at smart
meter 2 with the reference phase labeling A, B, C as follows:
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1
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(
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)
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(1)

where ρ(. , .) returns the correlation coefficient between two
single-phase voltage measurements. It should be noted that,
(1) is calculated over a time interval denoted by T , e.g., T =
one day = 24 hours. We can similarly obtain:

Ψa,c,b, Ψc,a,b, Ψb,a,c, Ψb,c,a, Ψc,b,a. (2)

The three-phase correlation coefficients in (1) and (2) are
corresponding to the six different phase connection configu-
rations in Fig. 1. According to the baseline method, we can
identify the phase connection configuration of the smart meter
with the unknown phase labeling as follows:

{a?, b?, c?} = arg max
i,j,k∈{a,b,c}

Ψi,j,k. (3)

Putting it simply, in the baseline method, the correct phase
connection configuration between two meters is the configu-
ration in which the three-phase correlation is maximized.

Fig. 3. The connection configuration number between smart meters 1 and 2
that is reported by the baseline phase identification method on a daily basis
over a period of three months, from April 1, 2020 till June 30, 2020.

C. The Challenge

Again consider the real-world three-phase voltage mea-
surements in Fig. 2. Suppose we apply the baseline method
in (1)-(3) in Section II-B to conduct phase identification on a
daily basis for three months. The results are shown in Fig. 3.
We can see that, the baseline method identifies Configuration
#1 as the phase identification solution on 41 days. The
baseline method also identifies Configuration #3 on 47 days.
On the remaining 3 days, the baseline method identifies
Configuration #4 as the phase identification solution. Noted
that, the correlation coefficients are calculated for the entire
day, i.e, over T = 24 hours. Accordingly, the baseline method
identifies one configuration for each day.

From the results in Fig. 3, it is clear that the baseline
method results in significant inconsistency in the phase iden-
tification solution. Importantly, the phase connectivity did not
change from one day to another. The true phase connectivity
remained the same throughout this three-month period. Yet,
the baseline method reported different phase configurations
on different days. This makes the results useless; because the
operator remains unclear about the correct phase connectivity.

III. PROPOSED METHOD

In this section, we use real-world measurements to make
the case that, the poor performance of the conventional
baseline method is due to the variable reliability of the
analysis in (1)-(3). That is, the phase identification results
that are obtained based on (1)-(3) are not always reliable.
Therefore, if we can somehow develop a data-driven method
that properly evaluates the reliability of the results in (1)-(3),
then we can ultimately develop a phase identification method
that makes use of only the most reliable cases; thus providing
us with a much better phase identification performance.

The development of our new method involves three steps.
First, we break-down the phase identification problem into
several small window sizes. This will allow us to examine
the analysis in (1)-(3) in a significantly higher granularity.
Second, we introduce two reliability criteria that determine
how reliable the analysis in (1)-(3) is in each small window
during the day. Accordingly, we also introduce a threshold-
based mechanism to discard the results from unreliable time
windows. Finally, we obtain the final phase configuration for
the entire day from the selected reliable time windows.

A. Step 1: Granular Window-based Analysis

Suppose a sliding window with time-duration ∆, where
∆� T , and a speed of γ moves along the time series. Given
the duration of the time series T , the number of windows is:

N =

[
T −∆

γ

]
+ 1, (4)



where [.] returns the integer part. For example, if we assume
that the duration of the time window is one hour, i.e., ∆ = 1
hour, and the window moves every 30 minutes, i.e., γ = 0.5
hour; then the total number of windows that can cover the
entire day, i.e., T = 24 hours, is N = 47 = [(24−1)/0.5]+1.
Noted that, the first window is from time 00:00 to time 01:00;
and the last window is from time 23:00 to time 24:00.

In Step 1, we use the baseline method in Section II-B
to identify the phase connection configuration at each time
window. Let w denote the wth window, where w ∈ N =
{1, . . . , N}. We start from the first window and solve the
problem in (1)-(3) for each window, all the way to the last
window on each day. It should be noted that, in each window,
the correlation analysis is done over the length of the window,
i.e., which is equal to ∆. The phase configuration for every
window, i.e, from window 1 to window N , is obtained as

K1,K2, · · · ,Kw, · · · ,KN , (5)

respectively. Here, Kw denotes the configuration number at
window w; and it takes a number from 1 to 6, as in Fig. 1.

Fig. 4(a) shows the configuration number at each window;
based on the same two sets of three-phase voltage measure-
ments that we saw in Fig. 2 in Section II-B. We can still see
some inconsistencies even within the smaller windows on the
same day. This indicates that solving the phase identification
problem in smaller windows does not necessary improve
the consistency of the results. This calls for scrutinizing the
results in each small window in order to select only the most
reliable cases, as we will explain in the next step.

B. Step 2: Threshold-Based Reliability Assessment

In this step, we examine the phase identification results
at each time window in order to identify the most reliable
windows. We do so by introducing two criteria.

Criteria 1: First, recall from Section II-B that the baseline
method works by maximizing the three-phase correlation
coefficient; i.e., by solving the optimization problem in (3).
Accordingly, for each window w, let Ψw denote the maximum
three-phase correlation coefficient that is obtained by solving
the problem in (3). On each day, we can obtain

Ψ1,Ψ2, · · · ,Ψw, · · · ,ΨN . (6)

The value of Ψw is one possible index for the reliability of
the phase identification result in window w. A higher Ψw

means a higher correlation among the voltage measurements
at the selected phase connection configuration during window
w. Therefore, as the first criteria in Step 2, we consider the
phase identification result at time window w to be reliable
only if the following inequality holds:

Ψw > ψThreshold, (7)

where ψThreshold denotes the correlation threshold, i.e., the
minimum required value for Ψw in order for the phase
identification result at window w to be acceptable, as far as
the maximum achieved correlation coefficient is concerned.

Criteria 2: Next, at each time window w, we look at
the difference between the highest three-phase correlation
coefficient and the second highest three-phase correlation
coefficient. Recall from Criteria 1 that Ψw denotes the highest
three-phase correlation coefficient that is obtained by solving

Fig. 4. The results of the phase identification between smart meters 1 and
2 over 47 time windows on April 5, 2020: (a) the connection configuration
number that is obtained by solving the maximization problem in (3); (b)
correlation index; (c) reliability index. The correlation threshold and the
reliability threshold are marked with red horizontal dashed lines.

problem (3) at time window w. Let Φw denote the second
highest three-phase correlation coefficient. We define:

Rw = Ψw − Φw. (8)

On each day, we can obtain:

R1,R2, · · · ,Rw, · · · ,RN . (9)

The value of Rw is another index for the reliability of the
phase identification result in window w. A higher Rw means
a higher distinction between the connection configuration
that is selected by solving the problem in (3) versus the
connection configuration that has the second highest three-
phase correlation coefficient. Thus, as the second criteria in
Step 2, we consider the phase identification result at window
w to be reliable only if the following inequality holds:

Rw > RThreshold, (10)

where RThreshold denotes the reliability threshold, i.e., the
minimum required value for Rw in order for the phase
identification result at window w to be acceptable, as far as
the margin of the maximization in problem (3) is concerned.

Figs. 4(b) and (c) show the correlation and the reliability at
each time window corresponding to the connection configura-
tions in Fig. 4(a). As we can see, the reliability index is quite
high at the time windows where the configuration is #1, which
is the correct configuration. However, the reliability index is
quite low at the time windows where the configuration is
not #1. The correlation is mostly high at every window. This
shows the importance of using both Criteria 1 and Criteria 2
in selection of the most reliable time windows.

C. Step 3: Final Configuration Determination

On each day, let us define set S as the set of all time win-
dows that satisfy both Criteria 1 and Criteria 2. For example,
if we assume that the correlation threshold is ψThreshold = 0.80
and the reliability threshold is RThreshold = 0.001 for the



Algorithm 1 Phase Identification Method
1: // Step 1:
2: for each window w ∈ N = {1, . . . , N} do
3: Solve the maximization problem in (1)-(3).
4: end for
5: // Step 2:
6: S = {}.
7: for each window w ∈ N do
8: if correlation criteria in (7) holds then
9: if reliability criteria in (10) holds then

10: S = S ∪ {w}.
11: end if
12: end if
13: end for
14: // Step 3:
15: Obtain the final configuration K? using (12)
16: Obtain Ψ? and R? using (13) and (14), respectively.

analysis in Fig. 4, then the number of the windows that satisfy
both Criteria 1 and Criteria 2 is 34. The set of the selected
time windows in this example is obtained as

S = { 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 17, · · · , 21,

23, · · · , 28, 32, 33, 36, · · · , 41, 43, 45, 46, 47}.
(11)

We obtain the final connection configuration for the entire
day from the results during the time windows in set S:

K? = mode{Kw | w ∈ S}, (12)

where mode{.} returns the configuration number that appears
most among the time windows in set S. For example, for the
analysis in Fig. 4, we have Kw = 1 in 26 time windows
(76%); Kw = 2 in one time window (3%); Kw = 3 in four
time windows (12%); and Kw = 4 in three time windows
(9%). Thus, we obtain K? = 1. In this example, although we
initially started with inconsistent phase identification results
at different time windows, as we saw in Fig. 4(a), the analysis
of the correlation index in Fig. 4(b) and the reliability index in
Fig. 4(c), resulted in focusing only on the time windows in set
S, where the phase identification results are very consistent.

Also, we obtain a representative correlation and a repre-
sentative reliability for the final configuration:

Ψ∗ = mean{Ψw |Kw = K∗, w ∈ S}, (13)

R? = mean{Rw|Kw = K∗, w ∈ S}, (14)

where mean{.} returns the mean value. For the example in
Fig. 4, we have: Ψ? = 0.93 and R? = 0.016.

D. Algorithm

The process in Steps 1-3 is summarized in Algorithm 1.
It is worth pointing out that, the approach in Algorithm 1 is
rather general and it may work even if we replace the baseline
method in (1)-(3) with other phase identification methods.

IV. REAL-WORLD CASE STUDIES

In this section, we assess the performance of the proposed
phase identification method using real-world smart meter data
on a test site with 24 smart meters that are installed across
5 power distribution feeders, as we explained in Section

Fig. 5. The results of the phase identification between smart meters 1 and
2 over three months using the proposed method: (a) configuration number;
compare it with Fig. 3; (b) correlation; (c) reliability.

II-A. The measurements are obtained over a period of three
months, from April 1, 2020 till June 30, 2020. Unless stated
otherwise, we assume that the duration of each window is
one hour, i.e., ∆ = 1 hour, and the window moves every half
an hour, i.e., γ = 0.5 hour. Also, unless stated otherwise, we
assume that ψThreshold = 0.80 and RThreshold = 0.001.

A. Performance Comparison

Again consider the real-world three-phase voltage mea-
surements in Fig. 2. Recall that the performance of the
baseline method was very inconsistent, as we saw in Fig. 3.
Next, we apply the proposed method in Algorithm 1 to repeat
phase identification across the same two smart meters. The
results are shown in Fig. 5. As we can see, the results are very
consistent during the entire three months. Algorithm 1 always
results in connection configuration #1 except on one day.
This indicates 98.9% accuracy. Also, the correlation is always
over 0.9, and the reliability is always more than 0.001. These
results confirm the accuracy and consistency of the proposed
method in identifying the correct phase configuration with
high correlation and high reliability. On the contrary, as we
saw in Fig. 3, the baseline method identifies Configuration #1
on only 41 days out of three months, which is 45% accuracy.

Table I shows the accuracy of phase identification results
using the baseline method and the proposed method across
the five feeders. As we can see, the proposed method has
always higher accuracy compared with the baseline method
across the five feeders. Notice that, the worst-case accuracy of
the proposed method is 87.9%; while the worst-case accuracy
of the baseline method is 39.6%; and there are also other
cases where the accuracy of the baseline method is as low as
45.1% and 54.9%. It should be noted that, the distance of the
smart meters affect the performance of phase identification.
When their distance is higher, the performance of the baseline
method is poor; yet the performance of the proposed method
is still very good. For example, consider smart meters 20 and
23 that are installed with some distance from each other. The



TABLE I
COMPARING PHASE IDENTIFICATION ACCURACY

Feeder Smart Meters Baseline Method Proposed Method

1

1 and 2 45.1% 98.9%
1 and 3 100% 100%
1 and 4 100% 100%
1 and 5 39.6% 87.9%

2

6 and 7 98.9% 100%
6 and 8 98.9% 98.9%
6 and 9 98.9% 100%

6 and 10 61.5% 100%
3 11 and 12 93.4% 100%

4

13 and 14 100% 100%
13 and 15 100% 100%
13 and 16 100% 100%
13 and 17 100% 100%
13 and 18 100% 100%
13 and 19 100% 100%

5

20 and 21 96.7% 100%
20 and 22 100% 100%
20 and 23 54.9% 91.2%
20 and 24 100% 100%

Average 88.8% 98.9%

Fig. 6. Distribution of (a) the reliability; (b) the correlation of phase
identification results using the baseline method and the proposed method.
The means of the distributions are marked with dashed lines.

accuracy of the baseline method is 54.9%, and the accuracy of
the proposed method is 91.2%, which is 66.1% improvement.

B. Enhanced Reliability

Fig 6 shows the distribution of the correlation and the
reliability of phase identification results using the baseline
method and the proposed method. We can see that the
proposed method has much higher reliability but slightly
lower correlation, compared with the baseline method. The
average reliability and the average correlation over the entire
three-months period are marked on the dash lines. We can
conclude that, not only the phase identification results are
much more accurate as we saw in Section IV-A, the results
demonstrate also a much higher reliability and robustness.

C. Sensitivity Analysis

1) Impact of Parameters of Sliding Window: Table II
shows the accuracy of Algorithm 1 when we try different
choices of window duration ∆ and window speed γ. Note
that, the window speed must always be smaller than the
window duration in order to cover the entire day. Therefore,
the window speed is set based on the different factors of
window duration in Table II. As we can see, the high accuracy
is achieved when the duration of the window is small. The

TABLE II
IMPACT OF THE PARAMETERS OF THE SLIDING WINDOW

Window Speed: γ Window Duration: ∆ (hour)
1 2 4 8

1/8 ×∆ 98.9% 96.7% 92.3% 79.1%
1/4 ×∆ 97.8% 96.7% 94.5% 80.2%
1/2 ×∆ 98.9% 95.6% 95.6% 76.9%

1 ×∆ 98.9% 97.8% 93.4% 76.9%

TABLE III
IMPACT OF THRESHOLDS IN CRITERIA 1 AND 2

Reliability threshold: RThreshold
Correlation Threshold: ψThreshold
0.80 0.85 0.90 0.95

0.001 98.9% 98.9% 98.9% 98.9%
0.005 98.9% 98.9% 97.8% 95.6%
0.01 100% 100% 98.9% 81.3%
0.02 90.1% 87.9% 82.4% 25.3%

results are poor for longer windows. Also, the accuracy
slightly changes based on the speed of the window. We can
conclude that the proposed phase identification method works
well for a sliding window that has a short duration.

2) Impact of Thresholds in Criteria 1 and 2: Table III
shows the accuracy of Algorithm 1 when we try different
correlation threshold ψThreshold and different reliability thresh-
old RThreshold. As we can see, the higher accuracy is achieved
when both ψThreshold and RThreshold are small. The results are
poor for larger thresholds. We can conclude that the proposed
phase identification method works well for small thresholds.

V. CONCLUSIONS

A new data-driven method was proposed to solve the phase
identification problem based on real-world measurements
from a small number of smart meters. In this method, a cross
correlation analysis is done across different time intervals
using a sliding window; and then a reliability assessment
is conducted using two threshold-based criteria in order to
make conclusions based on the most reliable segments in the
available data. The accuracy, reliability, and the sensitivity to
the choice of parameters were tested across five real-world
power distribution feeders. On average, the accuracy in phase
identification improves from 88.8% to 99.0%. The worst-case
accuracy improves drastically from 39.6% to 87.9%.
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