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Abstract—Event location identification is a challenging task in
power distribution feeders due to limited number of measurement
devices. Another challenge is the lack of access to reliable informa-
tion on network parameters. This paper proposes a new method to
address both challenges. We identify the location of the events in
distribution feeders using synchro-waveform measurements from a
group of line-mounted sensors, which are inexpensive and easy to
install. Importantly, we do not require any prior knowledge about
the network parameters, i.e., the impedance of the distribution
lines and the loading at each bus. The sensors in this study measure
the time-domain waveforms for electric field and current; they do
not measure voltage. First, the voltage waveform is approximated
from the available electric field waveform measurement. Next, the
network parameters are estimated by a novel event-based method
using data from a few locationally scarce synchro-waveform
measurements. Finally, the location of the event is identified by
analyzing a data-driven reconstructed circuit model. The method
is applied to real-world measurements from a distribution feeder
in the United States. Despite not using any knowledge about the
network parameters and also using measurements from only a few
sensors, the results demonstrate the accuracy and consistency of
the proposed framework in identifying the location of the events.

Keywords: Synchro-waveform, electric field waveform measure-
ments, line-mounded sensors, event location identification, model-
free method, power distribution feeder, line parameter estimation.

I. INTRODUCTION

In this real-world study, we are provided with the time-
synchronized electric field (e-field) waveform and current wave-
form measurements from line-mounted sensors [1] at four sites
of a three-phase power distribution feeder in the United States1.
Each sensor can report 130 recordings per cycle, i.e., one
sample every 120 µsec [1]. The locations of the sensors are
known from their latitude and longitude coordinates. Sensor 1
is at the upstream of Sensor 2, Sensor 2 is at the upstream of
Sensor 3, and Sensor 3 is at the upstream of Sensor 4.

Fig. 1 shows an example of the synchronized e-field wave-
form and current waveform measurements that are captured
by the sensors during an event on the feeder. Based on visual
inspection, we can argue that the event has occurred somewhere
on Phase B between Sensor 2 and Sensor 3. The reason for this
argument is that, the event causes very large changes in Phase
B of the current waveform of Sensor 2, yet it causes very small
changes in Phase B of the current waveform of Sensor 3. The
question that we seek to answer in this paper is: can we use only
these synchronized e-field and current waveform measurements,
without any prior information about the network parameters,
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and automatically identify the precise location of the event? We
will show that the answer to this question is ‘Yes’.

Different methods have been previously proposed to identify
the location of events in power systems, including impedance-
based methods [2]–[5], traveling wave-based methods [6], and
wide area-based methods [7], [8]. Of particular interest here
is the work in [8], which uses synchronized waveform mea-
surements from waveform measurement units (WMUs) [7]–
[12]. The method in [8] is able to identify the correct location
of events in power distribution networks, including transient
events, such as incipient faults, and permanent events, such as
permanent faults and capacitor bank switching.

The method in [8] requires prior knowledge about the net-
work parameters, namely the impedance of the line segments
and the loading of the buses. However, such network informa-
tion is not always available. Also, the method in [8] requires
access to the synchronized voltage waveform measurements.
However, in practice, the line-mounted sensors cannot measure
voltage waveforms, instead they measure e-field waveforms.

Since the voltage waveforms and the network parameters are
not available in this real-world problem, we propose to instead
use synchronized e-field and current waveform measurements
to identify the location of events in power distribution systems.

The method in this paper is purely data-driven, i.e., it is
model-free. It does not require any prior information about the
network. Hence, this method is very suitable for real-world field
implementation, as it is evident from the results that we present
in this paper based on real-world field measurements.

II. VOLTAGE WAVEFORM APPROXIMATION BASED ON
ELECTRIC FIELD WAVEFORM MEASUREMENTS

As mentioned earlier, the line-mounted sensors in this real-
world analysis do not measure voltage; instead, they measure
e-field. The e-field and current waveform measurements are
provided in time-domain whenever an event occurs.

Let e(t) denote the e-field waveform around a line conductor
that is measured by a line-mounted sensor; and let v(t) denote
the voltage waveform of the conductor. Since line-mounted
sensors are installed very close to the conductor, they provide a
very good approximation of the shape of the voltage waveform.
In particular, e-field waveform measurements are almost in-
phase with the voltage waveform of the conductor. Therefore,
we can assume the following relationship between the voltage
waveform and the e-field waveform at the conductor:

v(t) = β × e(t), (1)

where β ≥ 0 is the tuning operator. We can analytically obtain
β based on different environmental factors, such as the distance
between the conductor and the sensor, the geometry of the
conductor, and the dielectric permittivity of free space [13].
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Fig. 1. Real-world synchronized three-phase e-field waveform and three-phase current waveform measurements captured by line-mounted sensors at four sites on
a distribution feeder in the United States during an event that occurred on April 26, 2021: (a)-(b) Sensor 1; (c)-(d) Sensor 2; (e)-(f) Sensor 3; (g)-(h) Sensor 4.

However, in this paper, we do not need the true value of
β, see Lemma 1 in Section IV. Instead, we can consider the
fact that, under normal grid operating conditions, i.e., in the
absence of an event, the voltage at any point on a conductor is
very close to the voltage at the substation, where the voltage is
measured directly as part of the typical substation monitoring
system. Hence, we can assume that the magnitude of voltage
waveform during normal operating conditions is available from
the voltage measurements at the substation. Thus, we can obtain
β in a data-driven fashion based on the peak amplitude of the e-
field waveform and the peak amplitude of the voltage waveform
during normal conditions and right before an event occurs.

For example, again consider the real-world e-field waveform
measurements in Fig. 1(a). We can see that, the peak amplitude
of the e-field waveform measurements on Phase B of Sensor
1 during the normal operating conditions, i.e., before the event
occurs, is about 210 V/m. On the other hand, the under-study
feeder is operated at 22.9 kV line-to-line. Thus, the peak
amplitude of the voltage waveform during normal conditions
is obtained as 22.9×1000×

√
2/
√
3 = 18, 698 V. Accordingly,

we can obtain the tuning operator as β = 18, 698/210 = 89.
Once the tuning operator is obtained, the voltage waveform

can be approximated via (1). Therefore, for the rest of this
paper, we assume that we have access to the current waveform
measurements and the approximated voltage waveform mea-
surements at each of the line-mounted sensors.

III. RECONSTRUCTING THE UNKNOWN
NETWORK PARAMETERS

As mentioned in Section I, one key advantage of the proposed
method is that we do not need any prior knowledge about the
network parameters, namely the resistance and inductance of
the distribution lines and the loading of the buses. We rather
estimate those parameters based on the same measurements that
we receive from the existing line-mounted sensors.

A. Intuition

Consider a power distribution feeder that is observed by two
line sensors, as shown in Fig. 2(a). Let i1(t) denote the current
waveform measurements and v1(t) denote the approximated
voltage waveform measurements at Sensor 1. Also, let i2(t)
denote the current waveform measurements and v2(t) denote
the approximated voltage waveform measurements at Sensor 2.
Suppose an event occurs at time t = τ at an unknown location.
For the sake of our explanation, we assume that the event has
occurred somewhere at the downstream of the two sensors, i.e.,
in the area that is marked in the downstream network.

To explain the intuition in obtaining the network parameters,
let us first analyze the distribution feeder at one cycle, right
before the event occurs, i.e., from time τ −T to time τ , where
τ is the time that the event has occurred and T = 16.667 msec
is the duration of one cycle. Fig. 2(a) shows the distribution
feeder for the period from τ − T to τ . During this period,
the feeder is under normal conditions, i.e., there is no event.
Once the event occurs at t = τ , the event current is injected
to the network, as shown in Fig. 2(b). Given the waveforms
right before the event occurs, i.e., from τ − T to τ , and the
waveforms right after the event occurs, i.e., from τ to τ + T ,
we can obtain the amount of changes in voltage waveforms and
current waveforms at Sensors 1 and 2 as follows:

∆v1(t) = v1(t)− v1(t− T ), t = τ, · · · , τ + T,

∆v2(t) = v2(t)− v2(t− T ), t = τ, · · · , τ + T,

∆i1(t) = i1(t)− i1(t− T ), t = τ, · · · , τ + T,

∆i2(t) = i2(t)− i2(t− T ), t = τ, · · · , τ + T.

(2)

By comparing the feeder right before the event occurs, as
in Fig. 2(a), and the feeder right after the event occurs, as in
Fig. 2(b), it is expected that the network parameters, including
the line parameters and load parameters, remain the same. The
reason comes from the fact that, once the event occurs, most
of the event current is injected into the upstream network,
because the Thevenin impedance of the upstream network is
much smaller than the impedance of the load points [12]. In
other words, almost all of the event current flows from the event
location to the upstream network, as shown with the red line in
Fig. 2(c). Accordingly, the currents of the lines between Sensor
1 and Sensor 2 are the same. Thus, the changes in current
waveforms at Sensor 1 and Sensor 2 are almost the same:

∆i1(t) ≃ ∆i2(t), t = τ, · · · , τ + T. (3)

Thus, we can simplify the feeder between Sensor 1 and Sensor
2 during the event. That is, we can assume that there is no load
points between the two sensors during the event, see Fig. 2(c). It
should be noted that, the intuition is less reliable when the event
causes very small changes in the waveform measurements.

B. Using Regression to Estimate Line Parameters

From Section III-A, we can focus our analysis during the
event on the simplified distribution feeder model in Fig. 2(c).
In this simplified model, the nodal voltages are the changes in
the voltage waveforms between the two successive cycles, one
cycle right after the event and one cycle right before the event,
as in (2). Similarly, the line currents are the changes in current
waveforms between the two successive cycles, one cycle right
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Fig. 2. An illustration to reconstruct an unknown distribution feeder between two sensors to a known distribution feeder: (a) the feeder at one cycle right before
the event; (b) the feeder at one cycle right after the event; (c) the difference between right after the event and right before the event; (d) the combined line
parameters; (e) the reconstructed feeder model with even line parameters. The parameters inside the rectangle in (a)-(c) are unknown.

after the event and one cycle right before the event, as in (2).
As a result, the line parameters of the line segments between
Sensor 1 and Sensor 2 are connected in series, see Fig. 2(c).

Let Rj and Lj denote the resistance and the inductance of
line segment j, respectively. Considering the series connection
of the line parameters between Sensor 1 and Sensor 2 in Fig.
2(c), at each time t = τ, . . . , τ + T , we can write the voltage
difference in time-domain between the two sensors as:

∆v1(t)−∆v2(t) =
∑
j∈S

Rj∆i1(t) +
∑
j∈S

Lj
d∆i1(t)

dt
,

= R∆i1(t) + L
d∆i1(t)

dt
,

(4)

where S is the set of all the line segments between Sensor 1
and Sensor 2; R is the combined resistance that is obtained by
adding up all the line resistances between Sensors 1 and 2; and
L is the combined inductance that is obtained by adding up all
the line inductances between Sensors 1 and 2. Fig. 2(d) shows
the distribution feeder model with the combined line parameters
R and L. We can write (4) in matrix form as:

∆V = ∆I P, (5)

where

∆V =


∆v1(τ)−∆v2(τ)

∆v1(τ +∆t)−∆v2(τ +∆t)
...

∆v1(τ + T )−∆v2(τ + T )

 , (6)

∆I =


∆i1(τ)

d∆i1(τ)
dt

∆i1(τ +∆t) d∆i1(τ+∆t)
dt

...
...

∆i1(τ + T ) d∆i1(τ+T )
dt

 , P =

[
R
L

]
, (7)

where ∆t = 120 µsec is the sensors’ reporting interval [1].
We can estimate the line parameters in (5) by using the

regression method with the following closed-form solution:

P̂ = (∆IT∆I)−1∆IT∆V , (8)

where P̂ is the estimation of the unknown line parameters.

C. Selecting the Number of Line Segments

Utility poles are used to carry overhead lines. For the sake
of our analysis, we treat each pole as a bus for the feeder. Even
in the absence of the utility model, the location of the utility
poles can be detected by using aerial images, Google street view
images, or field surveys [14]. Even if the location of the poles is
not known, we can use the fact the distance between every two
adjacent utility poles are usually equal. Thus, another option to
obtain the number of poles is to use the distance between two
sensors and the typical distance between two adjacent poles.
It bears mentioning that, in cable networks, we treat each pad
mounted box as a bus for the feeder.

Suppose the distance between two sensors is D and the
distance between two adjacent poles is h. The number of poles
between the two sensors is approximately obtained as:

n = [D/h] + 1, (9)
where [·] returns the integer part. For example, the distance
between Sensor 1 and Sensor 2 in Fig. 2 is 12670 ft and
the typical distance between two adjacent poles of the under-
study feeder is 150 ft. Thus, the number of poles/buses between
Sensor 1 and Sensor 2 is n = 85 = [12670/150] + 1.

We number the buses from bus 1, where Sensor 1 is installed,
to bus n, where Sensor 2 is installed, see Fig. 2(e). The number
of line segments between the two sensors is n − 1. From (8),
we obtain the resistance of each line as R/(n − 1) and the
inductance of each line as L/(n− 1), as shown in Fig. 2(e).

The network model in Fig. 2(e) is the complete reconstruction
of the circuit model between Sensor 1 and Sensor 2. We can
similarly reconstruct the circuit model between Sensor 2 and
Sensor 3, and also the circuit model between Sensor 3 and
Senor 4. This will provide us with the circuit model for the
entire network. Importantly, obtaining such model does not
require any prior information about the network parameters.

IV. EVENT LOCATION IDENTIFICATION

Consider the reconstructed feeder model in Fig. 2(e). It con-
sists of n buses and n−1 lines. As shown in [8], if a waveform
measurement unit (WMU) is installed at the beginning of the
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Fig. 3. The single line diagram of the real-world power distribution feeder in the United States, with four sites of sensors: (a) a picture of the distribution feeder,
where no information about the structure and parameters between every two sensors is available; (b) the corresponding constructed feeder model with 269 buses.

feeder and another WMU is installed at the end of the feeder,
the synchronized voltage and current waveform measurements
from the two WMUs can be used to accurately identify the event
bus by conducting a forward sweep and a backward sweep. In
the forward sweep, we start from Sensor 1 at bus 1 and calculate
the nodal voltages all the way to bus n. In the backward sweep,
we start from Sensor 2 at bus n and calculate the nodal voltages
all the way to bus 1. Suppose the location of the event is bus k.
Parameter k is unknown. We can break down the calculations
of the forward and backward sweeps into the following correct
and incorrect calculations [8]:

{V f
1 , · · · , V f

k−1, V
f
k︸ ︷︷ ︸

correct

, V f
k+1, · · · , V

f
n }︸ ︷︷ ︸

incorrect
(10)

{V b
1 , · · · , V b

k−1︸ ︷︷ ︸
incorrect

, V b
k , V

b
k+1, · · · , V b

n}︸ ︷︷ ︸
correct

(11)

where V f
i and V b

i denote the voltages at bus i that are calculated
from forward and backward sweeps, respectively.

In (10)-(11), even though we do not know which bus is the
event bus, we do know that the forward and backward voltage
calculations at event bus k are correct. Since the discrepancy
between the forward calculation and backward calculation is
the lowest at event bus k, the event location is identified as [8]:

k⋆ = argmin
i

|V f
i − V b

i | = argmin
i

Ψi, (12)

where Ψi is the discrepancy at bus i.
The above analysis can be easily extended to the case with

multiple line-mounted sensors. For example, in our real-world
case, if the event occurs somewhere unknown between Sensor
2 and Sensor 3, then there are two different sets of discrepancy
indexes to examine. One set is obtained by using the waveform
measurements from Sensor 1 and Sensor 3, denoted by Ψ1,3

i .
Another set is obtained by using the waveform measurements
from Sensor 2 and Sensor 4, denoted by Ψ2,4

i . A combined
discrepancy index can be defined as Ψi = Ψ1,3

i +Ψ2,4
i .

It bears mentioning that, if the event occurs on a lateral, our
method can still identify the bus at the beginning of the lateral
as the event bus. To identify the true location of the event, it is
necessary to use a sensor at the end of the lateral [7].

Lemma 1: With two sensors, suppose the tuning operators
for Sensors 1 and 2 are the same and equal to β. The value of
β has no impact on identifying the location of the event.

Proof : From (5), and since ∆v1(t) = β∆e1(t) and ∆v2(t) =
β∆e2(t), we have ∆V = β∆E. Similar to (8), we can obtain:

P̂ = β
(
(∆IT∆I)−1∆IT∆E

)
= βP̂ e (13)

Thus, the estimated line parameters using the voltage wave-
forms are proportional, with ratio β, to the estimated line
parameters by using the e-field waveforms. Let Zi and Ze

i

be the impedance of line segment i that are estimated by
using the voltage waveform and by using the e-field waveform,

Fig. 4. Distribution of (a) the combined resistance; (b) the combined inductance
of Phase B of the line between Sensors 1 and 2 using the proposed method in
Section III. The means of the distributions are marked with dashed lines.

respectively, where Zi = βZe
i . From the Kirchoff Voltage Law

(KVL), we can obtain the nodal voltage in the forward sweep
as V f

i+1 = V f
i − ZiI

f
i , see [7, Eq. (6)]. Thus, we have:

βEf
i+1 = βEf

i − βZe
i I

f
i ⇒ Ef

i+1 = Ef
i − Ze

i I
f
i . (14)

Parameter β is canceled out from the KVL equation. Similarly,
we can derive an equation in the backward sweep as Eb

i+1 =

Eb
i+Ze

i I
b
i , see [7, Eq. (11)]. Accordingly, we have: |V f

i −V b
i | =

β|Ef
i −Eb

i |. Therefore, from (12), the value of tuning operator
β has no impact in obtaining the location of the event. ■

V. REAL-WORLD CASE STUDY

The sensors in the real-world feeder in the United States
are installed at four sites. We label each sensor separately
at each phase, thus, we denote the sensors as: 1A, 1B, 1C,
. . . , 4A, 4B, 4C. The synchronized waveform measurements
are collected from all the sensors for 75 events that occurred
over a period of six months, from March till August 2021.

A. Line Parameter Estimation Results

First, we use the synchronized waveform measurements
during the 75 captured events to estimate the combined line
parameters between every two adjacent sensors on the same
phase. Fig. 4 shows the distribution of the combined resistance
and the combined inductance of Phase B of the line between
Sensor 1 and Sensor 2 using the method in Section III.

The distribution of the estimated inductance fluctuates over
a narrow range, while the estimated resistance varies over a
wider range. This is because most of the events in this study
have resistive characteristics which affect the estimation of the
combined resistance. The average resistance and the average
inductance are marked on the dash lines. Table I shows the
average value of the estimated line parameters of the lines
between different sensors. For the rest of this paper, we use
the average resistance and the average inductance of the lines.



5

TABLE I
RESULTS OF THE EVENT-BASED LINE PARAMETER ESTIMATION

Sensors Phase A Phase B Phase C
R (Ohm) L (H) R (Ohm) L (H) R (Ohm) L (H)

1 - 2 0.1888 0.0025 0.1753 0.0037 0.1775 0.0032
2 - 3 0.2443 0.0035 0.2237 0.0029 0.2021 0.0047
3 - 4 0.2005 0.0017 0.3238 0.0032 0.2047 0.0017

Once we estimated the line parameters, next we obtain the
number of poles between every two adjacent sensors. The
average distance between every two adjacent poles in this feeder
is 150 ft. From (9), the number of poles/buses are obtained
as: 85 poles between Sensors 1 and 2, 124 poles between
Sensors 2 and 3, and 62 poles between Sensors 3 and 4. Thus,
Sensor 1 is at bus 1, Sensor 2 is at bus 85, Sensor 3 is at bus
208 = 85+124−1, and Sensor 4 is at bus 269 = 208+62−1.

Fig. 3(b) shows the reconstructed model of the feeder. This
model will be later used for event location identification.

B. Event Location Identification Results

Again consider the real-world waveform measurements in
Fig. 1. Recall that the event in this figure occurred somewhere
on Phase B between Sensor 2 and Sensor 3. Next, we apply
the proposed event location identification method to identify
the event bus based on the reconstructed model in Fig. 3(b).

Since we do not know which bus is the true event bus, we
cannot verify the correctness of the event location identification
results. However, we can check the consistency of the results
across the following two independent sets of data: one set is the
waveform data from Sensor 1B and Sensor 3B and the other
set is the waveform data from Sensor 2B and Sensor 4B.

First, consider the profile for the discrepancy index Ψ1B,3B
i

for i = 1, . . . , 269 in Fig. 5(a). The minimum is reached at
bus 123. Next, consider the profile for the discrepancy index
Ψ2B,4B

i for i = 1, . . . , 269 in Fig. 5(b). The minimum is
reached at bus 93. From the results in Figs. 5(a) and (b), the
identified event buses are always between Sensor 2 and Sensor
3, which is correct. This confirms the accuracy of the proposed
event location identification method.

Importantly, the results in Figs. 5(a) and (b) vary in a narrow
rang of 31 buses from bus 93 to bus 123. Thus, it is expected
that the exact location of the event, that we saw its waveforms
in Fig. 1, is somewhere between bus 93 to bus 123. In this case,
the identified zone of the event is at the downstream of Sensor
2 and somewhere between 150 × (93 − 85 + 1) = 1350 ft to
150 × (123 − 85 + 1) = 5850 ft. Accordingly, the identified
event zone is 5850− 1350 = 4500 ft long.

The above results are much more specific than the initial
event zone that we mentioned based on visual inspection in
Section I. Note that, such initial event zone is somewhere
between Sensor 2 and Sensor 3, which is 18450 ft; see Fig. 3.
Thus, the proposed event location identification method is able
to significantly narrow down the event zone by 76% from 18450
ft to 4500 ft. This confirms the effectiveness of the proposed
method. We shall emphasize that this method does not use any
prior knowledge about the network parameters.

Finally, if we sum up the above two discrepancy indexes,
we can obtain a combined discrepancy index Ψi = Ψ1B,3B

i

+ Ψ2B,4B
i ; see Fig. 5(c). The minimum of the combined dis-

crepancy occurs at bus 105, which is inside the identified event
zone from bus 93 to bus 123. This confirms the consistency of
the proposed event location identification method.

Fig. 5. Discrepancy index using the waveform measurements from: (a) Sensors
1B and 3B; (b) Sensors 2B and 4B; (c) Sensors 1B, 2B, 3B, 4B.

VI. CONCLUSIONS

A model-free event location identification method was pro-
posed to identify the location of events using real-world syn-
chronzied e-field and current waveform data; without knowing
the network parameters. The proposed method was applied to
the real-world synchronized waveform measurements from 12
line-mounted sensors at four sites on a power distribution feeder
in the United States. The results illustrated the accuracy, effec-
tiveness, and consistency of the proposed method in identifying
the correct location of events. On average, the proposed method
is able to significantly narrow down the event zone by 76%.
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