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. . . . . .

Background
The growing adoption of power electronic devices and large non-linear
loads has increased harmonic-related power quality problems.
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Harmonic State estimation (HSE)

Locate the harmonic sources;
Estimate harmonic voltage distribution.
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Figure: Diagram of HSE in distribution systems.
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Harmonic State estimation (HSE)

We consider the harmonic state estimation problem in distribution
system. The main difficulties include:

unbalanced phases and phase coupling;
Measurement matrix is unknown.
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Component Model

We use time-invariant harmonic models to represent all the
components in distribution networks except for the loads.

Lines: multiphase coupled equivalent π model;
Transformer: the constant short-circuit impedance model;
Voltage regulators: the short-circuit impedance model ;
Supply sources: the Thevenin model;
PV system: Norton model.

Nonlinear loads that produce harmonics are modelled as current
injecting sources with time-varying impedance.
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Load Model
The impedance of a load, denoted by yℓ(h), is computed as,

yℓ(h) = ypℓ (h) + ysℓ (h), (1)

ypℓ (h) =
(1− c)P

V 2
n

− j
(1− c)hQ

V 2
n

, (2)

ysℓ (h) =

[
V 2
nP

c(P 2 +Q2)
+ j

hV 2
nQ

c(P 2 +Q2)

]−1

, (3)
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Figure: The utilized load model for harmonic analysis.
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Formulation

HSE aims to estimate state variables x from DPMU measurements z
with measurement noise ξ:

z(h) = Φ(h)x(h) + ξ(h), (4)

with

z(h) =

[
V (h)
I line(h)

]
, Φ(h) =

[
S1[Y

H(h)]−1

S2Y
B(h)[Y H(h)]−1

]
. (5)

where x(h) ∈ Cn×1 , z(h) ∈ C2m×1, 2m ≤ n.
Matrices S1 and S2 encode the locations of DPMUs. Y B(h) and Y H(h)
are the branch admittance matrix and harmonic admittance matrix,
respectively.
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Contribution

Our contribution are twofold:
We propose a data-driven approach to HSE which copes with the
unknown measurement matrix leveraging data from smart meters.
We propose an SBL-based estimator for networks that are not fully
observable to locate the harmonic sources, and to estimate the
voltages using considerably fewer DPMUs than distribution nodes.
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Framework
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Figure: A typical distribution network.
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Framework
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Figure: The overall framework for HSE in distribution networks.
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Power Flow Regression
The first step is to infer the relationship between power flow in primary
nodes and the demands of downstream customers measured by smart
meters. This requires measuring the real and reactive power at each
primary node for a relatively short time. We assume that this data is
available.

Υ = ΨΘ (6)

where

Υ =

P 1 Q1

...
...

P ts Qts

 ,Ψ =

p1 v1 v1
2

...
...

...
pts vts vts

2

 ,

vts
2 represents the square of its element and Θ is the coefficient matrix.

.

......The least squares method is utilized to solve this problem.
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Demand Prediction

.

......

Since the refreshing rate of smart meter is much slower than that of
DPMU, it is necessary to predict the power consumption based on the
historical power. we employ the LSTM network to predict the power
and then update the measurement matrix.

Figure: The architecture of LSTM network ( Source: MATLAB 2018).
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Estimating Measurement Matrix

One can compute the admittance matrix in real-time as follows:

Ŷ Ht

(h) = Y H0

(h) + ∆Y 0→t(h) (7)
∆Y 0→t(h) = f(P̂ t, Q̂t, P̃ 0, Q̃0)

P̂ t = [P̂ t
1, · · · , P̂ t

nb
]⊤

Q̂t = [Q̂t
1, · · · , Q̂t

nb
]⊤

where f(·) is a function that returns the changes in the load
admittance values according to the load model in Eqs. (1) (2) (3).
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SBL-based Estimator

The likelihood is

p(z|x) ∼ N (Φx, λI). (8)

We introduce Gaussian prior for x to induce the sparsity,

p(x) =

n∏
i=1

p(xk) ∼
n∏

i=1

N (0, γi). (9)
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SBL-based Estimator

The posterior of x is

p(x|z) = p(z|x;λ)p(x; γ)∫
p(z|x;λ)p(x; γ)dx

∼ N (µx,Σx), (10)

with

Σx = (Γ−1 + λ−1ΦTΦ)−1, Γ = diag(γ),
µx = λ−1ΣxΦ

T z.

The Bayes estimator of x is

x̂ = (λΓ−1
MP +ΦTΦ)−1ΦT y = ΓMPΦ

T (λI +ΦΓMPΦ
T )−1z. (11)

Wei Zhou (HUST) DPMU for Harmonic State Estimation SmartGridComm 2019 21 / 38



. . . . . .

SBL-based Estimator

The hyperparameter γ is optimized through type-2 maximum
likelihood as

γ = arg max
γ≥0

∫
p(z|x;λ)p(x; γ)dx.

Taking −2 ln(·) transformation yields

L(γ) = ln det(λI +ΦΓΦT ) + zT (λI +ΦΓΦT )−1z, (12)

where the second term is data dependent. Note that

zT (λI +ΦΓΦT )−1z = λ−1zT (z − Φµx)

= λ−1∥z − Φµx∥22 + µT
xΓ

−1µx

= min
x

λ−1∥z − Φx∥22 + xTΓ−1x. (13)
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SBL-based Estimator

Substitute Eq. (13) into Eq. (12) yielding

L(z, γ) = ln det(λI +ΦΓΦT ) + λ−1∥z − Φx∥22 + zTΓ−1z. (14)

Observe that this is a convex-concave problem. We solve it following
the convex concave programming idea.
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SBL-based Estimator

By virtue of the sparsity of harmonic sources, the injecting harmonic
currents are calculated as,

x̂(k) = arg min
x

1

2
∥z − Φ̂x∥22 + λ

n∑
i=1

u
(k)
i |xi|, (15)

γ
(k)
i = x̂

(k)
i /u

(k)
i , (16)

u
(k+1)
i = [Φ̂⊤

·i (λI + Φ̂Γ(k)Φ̂⊤)−1Φ̂·i]
1
2 . (17)

The re-weighting parameter ui promotes the sparsity of x, and the
weight parameter λ trades off sparsity for estimation error.
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Test Feeder

We test the proposed HSE framework on the modified IEEE
13-bus feeder under light and heavy loading conditions.
We use real load data from ADRES data set and real harmonic
spectrum from Power Stand Lab.

Table: The proposed harmonic state estimator and four baselines.

Cases B1 B2 B3 B4 B5
Observed Data z(h)

Measurement Matrix Φ̂ Φ̃ Φ̄ Φ̌ Φ

Regression Yes Yes No No No
Prediction Yes No No Yes No

Wei Zhou (HUST) DPMU for Harmonic State Estimation SmartGridComm 2019 26 / 38



. . . . . .

Metrics

Three metrics, i.e., the identification error ϵx(h, i), the localization
failure rate (LFR), and the normalized root-mean-square error
(nRMSE), are utilized for evaluating HSE.

ϵx(h, i) :=
|xesi (h)− xtri (h)|

∥xtr(h)∥2
, (18)

LFR :=
m

N
× 100% (19)

nRMSEIM :=

√∑n
i=1

(
|xtri | − |xesi |

)2
∥xtr∥2

, (20)

nRMSEVM :=

√∑nb
i=1

(
|V tr

i | − |V es
i |

)2
∥V tr∥2

. (21)
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Prediction Results

The regression error (nRMSE) is less than 1%, and the prediction
error is about 11.90% and 10.16% under lighting and heavy two
conditions.

The Prediction nRMSE with Heavy Loads
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Figure: The training and prediction nRMSE of an hour ahead along buses
under heavy loading condition.
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Load only
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Figure: The maximum identification error among all harmonic orders at
different nodes for each hour of the day under the light loading condition.
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Load only
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Figure: Comparison of nRMSEIM for five cases under light and heavy
operating conditions.
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Load only
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Figure: Comparison of nRMSEVM for five cases under light and heavy
operating conditions.
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Load only

.Results:..

......

The simulation result shows that the proposed SBL-based estimator
can accurately estimate the voltage distribution and reliably locate the
harmonic sources.

The hourly maximum identification error among all orders is
2.36% which is attained for the peak hour, 12:00pm.
the nRMSEIM of our approach improves by 71.27% and 73.31%
compared to B3 benchmark under light and heavy operating
conditions, respectively.
The proposed method has a smaller nRMSEVM and a lower LFR
than B2 and B3 benchmarks.
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PV Systems is not harmonic sources
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Figure: Comparing the nRMSEIM for harmonic orders 3, 5, 7, 9 when a
grid-connected PV system is installed and when there are only loads.
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PV Systems is harmonic sources
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Figure: Comparing the nRMSEIM for harmonic orders 5, 7, 11, 13 when
harmonic sources are located at buses that are not equipped with a DPMU.
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Summary

The proposed data-driven approach for updating the measurement
matrix enhances the estimation performance.
The proposed SBL-based estimator can locate the harmonic
sources accurately using a small number of DPMUs.
PV systems do not have a negative impact on the proposed
estimator.
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Thanks! Any questions?

Email: zhouwei@hust.edu.cn
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