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Abstract—Synchro-waveforms pioneer power system monitor-
ing, supporting critical smart grid applications such as event
and fault detection, renewable resource integration, and network
dynamics tracking. Data quality in synchro-waveform measure-
ments plays a crucial role in ensuring reliable inference and
situational awareness. However, two key challenges arise when
working with continuous streaming of synchro-waveforms: 1)
the extremely large volume and velocity of data transmission
that often leads to frequent missing data points; and 2) high-
precision time synchronization, which plays a critical role but
encounters real-world issues such as temporary loss of the GPS
signal. We propose an innovative hybrid approach that integrates
matrix completion with a learning ensemble to address both chal-
lenges. Matrix completion leverages the low-rank structure of
synchro-waveform data across sensor locations to capture spatial
dependencies and basic recovery, while deep learning captures
temporal dependencies to refine the recovery. Ensemble learning
techniques combine deep learning methods to enhance data
processing. Experimental results based on real-world synchro-
waveform data demonstrate high data recovery accuracy and
computational efficiency, thus advancing the emerging and future
applications of synchro-waveforms in power systems.

Index Terms—Learning ensemble, matrix completion, data re-
covery, synchro-waveforms, continuous measurement streaming,
power systems monitoring.

I. INTRODUCTION

Synchro-waveforms represent voltage or current waveforms
measured from multiple locations on a power network with
precise time-synchronization enabled by technologies such
as the global positioning system (GPS) [1]. A waveform
measurement unit (WMU) [2] serves as the sensor device
for capturing synchro-waveforms. The fine time granularity
and precise synchronization inherent in synchro-waveform
technology enable various complex data-driven power sys-
tem applications, including real-time monitoring, control, and
protection [3], [4], event detection and characterization [5],
integration of inverter-based resources [6]–[8], wildfire mon-
itoring [9], and fault location identification [10]. These ap-
plications rely on accurate and continuous synchro-waveform
data to ensure the optimal functioning of power networks.
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Fig. 1: Examples of Missing Data in Real-world Voltage Synchro-
waveforms in a Pilot Testbed.

However, poor data quality poses a challenge in synchro-
waveform data analysis. For example, Fig. 1 illustrates a
real-world synchro-waveform testbed in Riverside, CA, where
synchro-waveform data frequently gets lost due to limita-
tions in the data communications infrastructure, depending on
network traffic. Some segments experience extended periods
of data loss spanning several cycles, while intermittent sub-
cycle data loss also occurs. Although upgrading the com-
munications infrastructure—such as adopting terabit Ethernet
technologies—could significantly reduce data loss, this option
involves high costs and may prove impractical in most real-
world settings.

Therefore, we need reliable but also cost-efficient solutions
to address missing data despite the extremely fast reporting
rates of WMUs. We also need to address the common chal-
lenges of measurement noise, especially when we combine
synchro-waveform measurements from multiple sensor loca-
tions. In this paper, we seek to address both challenges.

A. Related Work

Recent studies have provided valuable insights into chal-
lenges in data recovery for data-intensive power system mon-
itoring, such as smart meters [11] and phasor measurement
units (PMUs) [12]. Gao et al. [13] introduced a matrix
decomposition approach that leverages the low-rank property
of PMU data to recover missing entries, effectively addressing



data gaps in large datasets. Similarly, Gao et al. [14] developed
a robust recovery method by combining nuclear norm mini-
mization with Bayesian estimation, exploiting the low-rank
structure of state variables, and incorporating prior knowledge
through second-order statistics. Wu et al. [15] applied network
embedding techniques to recover missing PMU data, capturing
complex interdependencies within the power grid via graph-
based methods in voltage stability assessment. Zhang et
al. [16] proposed a missing-data tolerant method for short-
term voltage stability assessment, which strategically groups
buses to maintain grid observability and employs a structure-
adaptive ensemble learning model to adapt to available data,
ensuring high assessment accuracy despite incomplete mea-
surements.

The above studies underscore the importance of address-
ing missing data in power systems to ensure reliability and
stability. However, these methods primarily focus on static or
low-dimensional measurements and do not adequately tackle
missing data recovery in waveforms or synchro-waveforms
measured by WMUs. WMU data poses unique challenges
due to its continuous streaming nature and intricate temporal
dependencies, which must be preserved for accurate recovery.
Moreover, WMU measurements represent high-dimensional
signals that vary over both space and time [17] and are
often contaminated by noise and outliers stemming from envi-
ronmental disturbances and sensor limitations. These factors
complicate the recovery process and necessitate specialized
techniques tailored to the dynamic and complex characteristics
of WMU data.

B. Technical Contributions

We address the above challenges by introducing a hybrid
learning ensemble method that integrates different deep learn-
ing techniques. The main contributions of this paper can be
summarized as follows:

• Matrix Completion for Noise Containment: We use Sin-
gular Value Decomposition (SVD) to exploit the low-
rank structure of synchro-waveform data, recovering
missing entries while preserving key features. SVD-based
matrix completion approximates the measurement matrix
by retaining the most significant singular values, ensuring
robust recovery even under missing data and noise.

• Deep Learning-based Robust Recovery: After matrix
completion, we apply Long Short-Term Memory (LSTM)
networks and other deep learning methods to learn
sequential patterns within the synchro-waveform data,
smoothing out noise and enhancing temporal consistency,
thereby improving the accuracy of data recovery.

• Learning Ensemble for Boosted Performance: To enhance
robustness across different environments, these deep
learning methods, including LSTM, GRU, and CNN, are
integrated into an ensemble learning framework, crucial
for effective synchro-waveform analysis.

II. METHODOLOGY

In this section, we describe the primary methods we
employed in our data recovery research within synchro-

Fig. 2: Matrices X1 and X2 Reshaping Process Demonstration.

waveforms. Then, we discuss the matrix completion for basic
recovery. Last, we introduce the key components of learning
ensemble and the application of learning ensemble.

A. Overall Design Framework

Our approach comprises several key stages: initial data
processing, matrix completion, advanced deep learning-based
recovery, ensemble learning integration, and final evaluation.
First, the data is organized according to different scenarios and
split into training and testing subsets. In the initial recovery
phase, we apply SVD-based matrix completion to perform
denoising and fill in missing entries, providing a coarse but
effective restoration. Subsequently, multiple deep learning
models [18], [19] are employed in parallel to refine the
recovery, leveraging their complementary strengths to further
improve waveform reconstruction. This produces multiple re-
covered datasets corresponding to each deep learning method.
To enhance robustness and accuracy, these diverse recovery
results are combined using an ensemble learning strategy
based on the Random Forest algorithm. This integration yields
a unified, enhanced recovery outcome that better handles noise
and missing data. Finally, the evaluation module rigorously
assesses the performance of the overall recovery process using
a suite of quantitative metrics.

B. Step 1: SVD-based Matrix Completion

In the context of synchro-waveforms, we use matrix com-
pletion to recover missing data from partial measurements.
Matrix completion exploits the low-rank structure of the
data to recover missing entries. The waveform data matrix
(from WMUs) is assumed to be low-rank, meaning it can be
approximated by a smaller set of dominant features.

We may have two closely spaced WMU devices located
near each other, measuring the same physical quantity. The
matrix X1 (size nT × 3) is obtained from the fully functional
device, while the matrix X2 (size nT × 3) is obtained from
the malfunctioning device. Here, T represents the period, and



n is the number of periods. We assume that the WMU with
missing values contains n cycles, where n is typically a small
number. Next, we divide the X2 matrix into several T × 3
submatrices, calculate the average of each submatrix, and then
concatenate them to form X ′

2 (size T×3n) as shown in Fig. 2,
which has the same size as X ′

1. To facilitate the recovery
process, we first reshape the X1 matrix from an nT×3 matrix
into a T × 3n matrix. The data is divided into several T × 3
submatrices, which are concatenated horizontally as shown in
Fig. 2, resulting in X ′

1 (size T × 3n).
After data processing, we have two datasets: X ′

1 (complete
data from one WMU) and X ′

2 (data from another WMU with
missing values). Both datasets correspond to the same voltage
measurements, but X ′

2 has missing data. The goal is to recover
the missing data in X ′

2 using information from both datasets,
ensuring the reconstructed data matches the actual voltage
characteristics. The shared low-rank structure, temporal and
spatial correlations between X ′

1 and X ′
2 aid in this recovery.

We apply a customized SVD for matrix completion. First, we
obtain the SVD of X ′

1, which are as follows:

X ′
1 = U1Σ1V

T
1 ,Σ1 = diag(σ1, σ2, . . . , σT ). (1)

Then, we select the top m singular values, representing
the dominant features. These components are used to perform
completion on X ′

2:

Σs = diag(σ1, σ2, . . . , σm), X recovery
2 = U2ΣsV

T
2 . (2)

The missing data is reconstructed using the low-rank ap-
proximation derived from X ′

1, resulting in the recovered
matrix, X recovery

2 .

C. Step 2: Deep Learning Methods

After matrix completion for basic recovery, to further refine
data recovery, we mainly utilize an LSTM-based architecture,
which is well-suited for capturing sequential dependencies
in time-series data. The LSTM model is governed by the
following update equations, and the output ht is fed into a
fully connected layer to generate the recovery values for each
time step:

it = σ(Wi · [ht−1, xt] + bi), (3)

ft = σ(Wf · [ht−1, xt] + bf ), (4)

ot = σ(Wo · [ht−1, xt] + bo), (5)

ct = ft · ct−1 + it · tanh(Wc · [ht−1, xt] + bc), (6)

ht = ot · tanh(ct), (7)

ŷt = Wfc · ht + bfc, (8)

where the parameters are defined as follows:
• it, ft, ot: Input, forget, and output gates at time step t.
• ct, ht: Cell state and hidden state at time step t.
• xt: Input at time step t.
• Wi,Wf ,Wo,Wc,Wfc: Weight matrices for input, forget,

and output gate, candidate cell state, and fully connected
layer.

• bi, bf , bo, bc, bfc: Bias terms for input, forget, and output
gates, candidate cell state, and fully connected layer.

TABLE I: Parameters of Learning Methods

Model Parameters Value

LSTM Feature Deminsion 6
Bath Size 128

Look-back Window 30
Max Epoch 100

GRU Batch Size 128
Max Epoch 100

Look-back Window 30
GRU Layer Units 100

CNN Batch Size 128
Epochs 100

Look-back Window 30
Filters in Conv1D Layer 64

Kernel Size in Conv1D Layer 3
Pool Size in MaxPooling1D Layer 2

RF Number of Trees 1,000

• ct−1: Cell state from the previous time step.
• ŷt: Predicted recovery value at time step t.

Following training, we evaluate the model’s performance
on the withheld test set to assess its generalization ability.
During inference, gradient computation is disabled to speed
up processing, ensuring faster recovery.

In addition to the LSTM, we also implement two alternative
methods, Gated Recurrent Unit (GRU) and Convolutional
Neural Networks (CNNs). GRUs, a simplified version of
LSTMs, are used to test whether a more lightweight architec-
ture can achieve similar results. Unlike LSTMs, GRUs have
fewer parameters and are generally faster to train, but they
may struggle with long-range dependencies. CNNs, although
typically used for spatial data, are included to explore their
effectiveness in capturing local temporal patterns in time-
series data. Table I shows the specific settings of these
parameters.

D. Step 3: Learning Ensemble

After multiple deep learning models generate diverse re-
covery results in parallel, these outputs are integrated using
a Random Forest-based ensemble learning framework. This
approach combines the different recovered datasets by learn-
ing from their complementary features, producing a unified
reconstruction. The ensemble model is trained on representa-
tive samples and then applied to aggregate the results, forming
a consolidated output for further processing.

In the learning ensemble model, we employ an RF frame-
work to recover datasets, including three-phase voltage.
Specifically, we integrate matrix completion and deep learn-
ing methods into the RF model, treating them as distinct
datasets within the ensemble. Let D1 and D2 represent the
two datasets, each containing three data streams (three-phase
voltage), resulting in Dtotal = D1 ∪ D2 consisting of twelve
data streams for recovery. The RF algorithm uses Bagging,
which combines multiple decision trees, where the number of
trees T is specified in Table I. Each decision tree t is trained



Fig. 3: Singular Value Example of Reshaped Voltage Matrix.

on a bootstrap sample Bt ⊂ Dtotal sampled with replacement.
The quality of splits is evaluated using the Gini index G(t):

G(t) = 1−
∑K

k=1
p2k, (9)

where pk is the proportion of class k in the node. The tree
is built recursively until stopping conditions are met, such as
maximum depth dmax or minimum sample size nmin.

Once the trees are built, results ŷRF are aggregated: for
regression tasks, the results are averaged, and for classification
tasks, majority voting is applied:

ŷRF =
1

Nt

∑Nt

t=1
ŷt, ŷRF = mode({ŷt}Nt

t=1), (10)

where Nt is the number of decision trees in the RF and ŷt is
the result from the t-th decision tree. This method enhances
robustness and accuracy and reduces overfitting by leveraging
the diversity of individual trees.

III. CASE STUDIES AND RESULTS

In this section, we address the recovery of synchro-
waveform data through the integration of different deep learn-
ing methods after SVD-based matrix completion, following
the concept of ensemble learning. We also compare two
types of data with varying levels of accuracy to validate the
feasibility of our method.

A. Data Selection

Given the context of synchro-waveforms in power systems
[20], we may have two closely spaced devices and measure the
same physical quantity. The curves based on WMUs represent
relatively clean data with minimal noise. These curves reflect
typical characteristics observed in operational power systems,
such as trim levels of noise and minor data disturbances. Such
data supports our assumption and can serve as a reference to
evaluate recovery performance under controlled conditions.

B. Matrix Completion

After data processing, we consider the two datasets from
the two closely spaced devices: X ′

1 and X ′
2.

The first step is to perform SVD on the matrix X ′
1. This

decomposes X ′
1 into three matrices: U1, Σ1, and V1, where U1

and V1 are orthogonal matrices, and Σ1 is a diagonal matrix
containing the singular values. Next, the first m most signif-
icant singular values are selected from the diagonal matrix
Σ1. These values represent the most important components of
the matrix. A new diagonal matrix Σm is then constructed,
which contains only these m significant singular values. As

Fig. 4: Comparison of Waveform Completion Methods.

shown in Fig. 3, especially the voltage part, we observe that
the singular values decrease rapidly, with the value around
the 20th singular value falling to around 10. Notably, these
singular values are also smaller than 0.1% of the first singular
value. This indicates that the majority of the information in
the matrix is concentrated in the first few singular values,
while the remaining ones contribute marginally to the overall
structure of the data. As a result, for the subsequent recovery
process, we select the first 20 singular values, as they capture
the most significant components of the data. Consequently,
for the subsequent recovery process, we select the first 20
singular values. After this, matrix completion is performed on
X ′

2 using a low-rank approximation technique. By leveraging
the significant singular values derived from X ′

1, the matrix
completion process effectively recovers the primary structure
of X ′

2. Finally, the recovered data matrix X recovery
2 is obtained

by performing matrix multiplication using the matrices from
the matrix completion process. The resulting matrix provides
an approximation of the original matrix X ′

2, which has been
recovered through low-rank approximation.

Remark: Compared to the traditional matrix completion
method (solely relying on the local measurement, without
any help from the neighbor measurements), the presence of
missing values introduces errors in the matrix completion
process. As shown in Fig. 4, the traditional SVD method
performs worse than our approach due to the presence of
missing values, which adversely affect the accuracy of ma-
trix completion. Missing data points cause the conventional
SVD to produce biased singular vectors, leading to higher
reconstruction errors. By leveraging data from two spatially
close WMU devices, our method exploits the inherent spatial
correlation to better estimate the missing entries, thereby
significantly improving the completion performance.

C. The Necessity of Learning Ensemble

In this part, we investigate the performance of several
learning models for synchro-waveform recovery. We evaluate
the models using three standard metrics, Mean Absolute Error
(MAE), Mean Square Error (MSE), and R-squared (R2),
across three scenarios: perfect, missing data, and noisy data.
Then, after basic recovery with SVD-based matrix completion,
we introduce the learning ensemble with the LSTM, GRU, and
CNN models. The results are summarized in Table II.

1) Perfect Environment: The numerical evaluation under
perfect environmental conditions demonstrates the superior
performance of the proposed method compared to conven-
tional learning ensemble techniques. As shown in Table II,



TABLE II: Performance Comparison of Different Learning Ensemble Methods

Matrix
Completion

Learning
Method Perfect Environment Under Missing Data Conditions Under Noisy Conditions

MSE MAE R2 T MSE MAE R2 T MSE MAE R2 T

None GRU 8,831.39 43.51 0.96 6’47” 14,504.21 78.51 0.77 1’42” 10,221.19 58.35 0.90 6’26”
CNN 14,457.31 71.96 0.74 45” 18,329.64 90.95 0.65 12” 15,047.90 86.73 0.67 58”

LSTM 7,444.97 38.76 0.98 4’40” 12,925.40 61.22 0.91 1’09” 9,727.65 47.58 0.91 5’30”
Our Work 539.78 10.61 0.99 30’09” 10,237.92 48.53 0.95 25’59” 8,049.91 40.74 0.93 33’30”

SVD GRU 4,265.72 28.21 0.98 7’05” 8,375.99 45.19 0.88 1’59” 6,207.90 39.61 0.92 7’01”
CNN 8,684.21 43.07 0.86 1’01” 14,547.34 70.73 0.81 27” 8,517.28 51.25 0.81 1’17”

LSTM 3,266.61 20.81 0.99 4’45” 7,861.53 38.06 0.92 1’26” 5,744.61 28.74 0.93 5’54”
Our Work 422.73 9.50 0.99 31’62” 4,349.91 29.74 0.85 27’28” 2,913.19 20.27 0.96 35’01”

Fig. 5: Performance Comparison of Different Models under Missing
Data and Noisy Conditions after Noisy Reduction.

the proposed approach achieves the lowest MSE and MAE
across all noise reduction methods. Specifically, when no noise
reduction is applied, the proposed method attains an MSE
of 539.78 and an MAE of 10.61, significantly outperforming
GRU, CNN, and LSTM models, which exhibit notably higher
error values. Similarly, under the SVD noise reduction frame-
work, the proposed method further reduces the MSE to 422.73
and MAE to 9.50, surpassing other recovery methods with
clear margins. Additionally, the coefficient of determination
values consistently approach 0.99 for the proposed method,
indicating an excellent fit to the true waveform data and a
highly reliable recovery performance.

2) Missing Data Conditions: To evaluate the performance
of data recovery methods under missing data conditions, in
WMU1, we also have a few cycles of data due to missing data.
We observe significant differences in each model’s ability to
handle missing values. As shown in Table II and Fig. 5(a),
without matrix completion, our method achieves an MSE of
10,237.92 and MAE of 48.53, outperforming GRU, CNN, and
LSTM significantly under the same conditions, indicating its
effectiveness in recovering missing data.

After applying matrix completion, recovery performance
across all models improves significantly under missing data

conditions. The proposed learning ensemble method demon-
strates superior robustness and accuracy compared to individ-
ual models. Without matrix completion, the ensemble method
already outperforms GRU, CNN, and LSTM, achieving an
MSE of 10,237.92, an MAE of 48.53, and an R2 of 0.95,
indicating its effectiveness in handling incomplete waveform
information. These results highlight the robustness of the
proposed learning ensemble approach in recovering missing
waveform data under challenging conditions, surpassing both
standalone models and conventional recovery methods en-
hanced with matrix completion. The visual comparisons in
Fig. 5(a) further confirm that the ensemble method combined
with SVD achieves the most accurate reconstruction, outper-
forming individual models in scenarios with missing data.

3) Noisy Conditions: Under noisy conditions, where Gaus-
sian noise was artificially added to the original data, the
proposed learning ensemble method is designed to effectively
address the challenges posed by such complex noise scenarios.
Unlike the SVD noise reduction technique, which primarily
targets inherent noise in the data, our approach combines
three deep learning models to enhance robustness against
both intrinsic and externally introduced noise. According to
Table II and Fig. 5(b), without noise reduction, our ensemble
method achieves an MSE of 8,049.91 and an MAE of 40.74,
significantly outperforming GRU, CNN, and LSTM, which
show higher error metrics under the same noisy conditions.

After matrix completion, the ensemble’s performance im-
proves further, reducing the MSE to 2,913.19 and the MAE
to 20.27. This indicates that the complementary use of SVD
for completion and the ensemble’s integrated deep learning
models effectively mitigate the impact of both intrinsic and
externally added noise, resulting in more accurate waveform
recovery. In contrast, individual deep learning models show
higher error rates and less consistent recovery performance
under the same noisy conditions, demonstrating the advantage
of the learning ensemble approach in handling noise scenarios.

4) Summary of Learning Ensemble Model Performance:
Above all, we have evaluated the performance of various
deep learning models and learning ensemble methods in data
recovery tasks under different conditions. The results show
that traditional models struggle significantly when faced with
missing data or noisy environments. However, the integration



of learning ensembles demonstrated superior adaptability and
recovery capabilities in these challenging scenarios. Similarly,
the SVD-based matrix completion as a denoising method also
significantly improved the experimental results. Deep learning
methods like GRU, CNN, and LSTM, as well as learning
ensemble methods, further enhanced recovery accuracy.

Overall, the learning ensemble after matrix completion
stands out as a highly reliable and resilient approach for data
recovery, especially in missing data and noisy environments.

D. Time Efficiency of Various Data Recovery Methods

In studying data recovery under different scenarios, both
time efficiency and accuracy are crucial. Table II evaluates
several machine learning methods, including GRU, CNN,
LSTM, and our work with matrix completion, comparing their
time consumption for data recovery in different environments.
Integrating matrix completion with these methods results in
a slight increase in computational time, which is a small
trade-off considering the improvements in recovery accuracy.
The learning ensemble method with matrix completion, while
offering superior recovery accuracy, requires more computa-
tional time than others. Although not the fastest, the modest
increase in time is justified by the significant improvements
in recovery accuracy, particularly when handling missing and
noisy data. In conclusion, while other methods may be more
time-efficient, our work stands out as the best choice, offering
enhanced recovery accuracy while maintaining computational
efficiency. This approach is especially beneficial for handling
noisy or incomplete data, where the slight increase in time
consumption is well justified by the improvement in the
quality of the recovered data.

IV. CONCLUSIONS

This study investigates synchro-waveform data recovery
using a learning ensemble methodology that combines the
strengths of three different deep learning networks after matrix
completion by SVD. The proposed method helps to address
the inherent challenges of recovering time-series data, espe-
cially in the presence of noise and missing values, commonly
encountered in real-world power system monitoring scenar-
ios. Specifically, the ensemble model demonstrated a notable
reduction in MSE and MAE while maintaining an R2 value,
suggesting an effective recovery of the missing data under
different conditions. When evaluated under more challenging
conditions, such as the introduction of Gaussian noise and
random data removal, our approach continued to demonstrate
remarkable resilience. The findings underscore the potential
of integrating multiple learning techniques to enhance the
reliability and accuracy of synchro-waveform data recovery.
The more accurate and complete synchro-waveform could
enable demand-side management via customized pricing [21],
false data injection attack detection [22], and distributed user
profiling [23].
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