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Abstract— By considering the specific characteristics of ran-
dom variables in active distribution grids, such as their sta-
tistical dependencies and often irregularly-shaped probability
distributions, we propose a non-parametric chance-constrained
optimization approach to operate and plan energy storage units in
power distribution girds. In particular, we develop new closed-
form stochastic models for the key operational parameters in
the system. Our approach is analytical and allows formulating
tractable optimization problems. Yet, it does not involve any
restricting assumption on the distribution of random parameters,
hence, it results in accurate modeling of uncertainties. Different
case studies are presented to compare the proposed approach
with the conventional deterministic and parametric stochastic
approaches, where the latter is based on approximating random
variables with Gaussian probability distributions.

Keywords: Energy storage, distribution grid, non-parametric
probability distributions, chance-constrained optimization, prob-
abilistic optimal power flow, linearized branch model.

NOMENCLATURE

N ,L Set of all buses, and all distribution lines.
Ni,Di Set of descendants and direct descendants of bus i.
Li,0 Set of lines on the path from bus i to bus 0.
s Superscript indicating storage.
e Superscript indicating charging station.
r Superscript indicating renewable generator.
b Superscript indicating baseload.
u Superscript indicating solar panel.
i, j, k, l Subscripts indicating bus numbers.
(i, j) Distribution line connecting buses i and j.
P,Q Functions for active power, and reactive power.
v, V Functions for voltage, and square of voltage .
v, p, q Values for square voltage, active, and reactive power.
U,H Active, and reactive power output of a solar panel.
φ Random part of an operational parameter.
ψ Decision variable part of an operational parameter.
[t],∆t Index of time slot, duration of a time slot.
R,X Line resistance and reactance.
f, g Probability density function.
F,G Cumulative probability distribution function.
κ Reactive to active power ratio for an energy resource.
λ Number of solar panels.
ζ Scale of a random input at power flow distributions.
γ Scale of a random input at voltage distributions.∗Ni=1 Convolution integral over N functions.
ε Probability target for a chance constraint.
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h Battery storage efficiency function.
hapx Battery storage Approximated efficiency function.
η0 Efficiency coefficient of energy storage system.
Ah Installed capacity of energy storage system in a bus.
NESS Number of total installed energy storage systems.
Kcp Scale factor for capacity to available energy.
π Scale factor for installation or operation costs.
(·), (·) Indicators of maxima and minima of variables.

I. INTRODUCTION

A. Motivation

Small and medium size Energy Storage Systems (ESS) have
diverse applications in power distribution networks. For exam-
ple, American Electric Power has recently installed a 1MW
ESS to relieve pressure on a distribution-level transformer
[1]. Distribution-level ESS installations can also relieve the
fluctuations caused by generation of distributed generators
(DGs) and/ or the charging load of electric vehicles (EVs)
[2]. Such fluctuations are often more significant compared to
typical baseloads [3]. The traditional distribution systems and
their control equipment are not designed for compensating the
excessive load / generation across their feeders, yet upgrading
the existing system for such short periods of deficiency is not
economical. In contrast ESS installations as a multi-functional
resource, can maintain the system safe operation at low cost,
if they are deployed and managed effectively.

Modelling uncertainty is different at distribution level versus
at transmission level. For example, it might be reasonable to
assume statistical independence and/or Gaussian distributions
for the generation outputs of wind and/or solar farms that are
scattered across a large transmission network [4]. However,
these assumptions may not hold in a distribution grid with
renewable DGs and EV charging stations that are confined to
a relatively small geographical location due to the dependency
in solar irradiance in proximate system buses [5] and the
non-standard distribution of EV charging loads [6]. Also,
the impact of some fluctuating elements may dominate the
overall uncertainty in a distribution grid, making the typical
use of the central limit theorem less practical. Therefore, a
more general non-parametric approach (with no restricting
assumption on the distribution of random parameters) could
be more appropriate for ESS optimization at distribution level.

While non-parametric optimization has been adopted in a
verity of problems in power systems, e.g. see [7]–[9], the
aim of this paper is to incorporate non-parametric stochastic
modelling and optimization in power distribution systems, by
addressing the specific characteristics of such systems to op-
timally operate and plan ESS for improved grid performance.
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B. Comparison to Related Literature
With respect to the scope of this paper, the related literature

can be classified into several groups. First, some previous stud-
ies, e.g., in [10]–[13], are based on the assumption of complete
knowledge of the hourly generation, demand, etc. Accordingly,
despite their different design objectives and methodologies,
they can all be classified as deterministic methods. In contrast,
here, our focus is on stochastic optimization of ESS.

Second, there are studies, e.g., in [14]–[16], that do rec-
ognize uncertainties in ESS and distribution generation (DG)
planning. However, they require fitting Gaussian or other para-
metric distributions into random variables. Accordingly, their
design efficiency can degrade significantly if the Gaussian or
other parametric distribution approximations are not accurate.

Third, there are studies, such as in [17]–[21], that address
uncertainty without restricting the analysis to pre-determined
parametric distributions of random variables; however, they
account for uncertainties by defining many instances of each
random variable. For example, the studies in [17], [18] use
Monte-Carlo simulation methods. Accordingly, they must deal
with a large number of scenarios. Such large-scale scenario
generation is tractable if the focus is primarily on analysis,
as opposed to on design and optimization. Other studies,
e.g. in [19]–[21], utilize stochastic programing to address
uncertainties which also involves scenario generation. Such
methods are capable to incorporate non-linear but convex
power flow equations by solving a deterministic problem over
many samples of random variables; yet concerns do exist about
the convergence and accuracy of the solution once the number
of scenarios increases. In contrast, here in this paper, we take
an analytical approach where we improve modeling efficiency
without exploding the computation workload, but of course
with the limitation of linearizing the power flow equations.

Forth, there are studies, e.g. in [22]–[25], that use chance-
constrained optimization for optimal operation and planning
of resources, mainly in transmission systems. For example,
in [22] a chance-constrained optimal power dispatch strategy
is developed for transmission systems, using cumulant-based
stochastic models. The Gram-Charlier expansion method is
applied in [22], [26], [27] to approximate the distribution of
state variables; however, it reduces the accuracy of stochastic
modelling. Such reduced accuracy could be inevitable in
large transmission systems; but it may not be acceptable at
distribution level, which is where we focus on in this paper.
Also, the DC power flow equations used in [22]–[26] are not
appropriate to represent power distribution systems.

Last but not least, our design approach in this paper is also
fundamentally different from the fifth group of prior work, e.g.,
in [28]–[32], where heuristics such as Genetic Algorithms are
used to optimize ESS in distribution networks.

C. Technical Contributions
The contributions in this paper are summarized as follows:
• We propose a new non-parametric chance-constrained

optimization approach to operate and plan ESS in power
distribution networks. Uncertainty from different sources
of different stochastic nature, e.g. DGs, EVs, and resi-
dential baseloads are taken into consideration.
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Fig. 1. An example radial distribution network with 12 distribution buses.

• Our analysis is based on developing new closed-form
stochastic models for various key operational parameters
of the distribution grid. This allowesd us to formulate
optimization problems for ESS operation and planning
that are in the form of tractable linear programs (LPs) or
mixed integer linear programs (MILP). In principle, the
developed closed-form stochastic models can be used also
in other non-ESS distribution-level planning problems.

• Our ESS planning framework is customized for distribu-
tion grids, as opposed to some commonly used models
that are based on Gaussian approximations of random
variables that were originally intended for transmission
systems. For example, our design accounts for the typical
radial configuration of the distribution networks as well
as the close proximity of distribution buses that causes
statistical dependency across certain random variables.

• Several case studies confirmed the advantages of non-
parametric chance-constrained optimization over deter-
ministic and parametric chance-constrained optimization.

II. STOCHASTIC SYSTEM MODEL

A. Notations and Power Flow Equations

Consider a radial distribution network, such as the one in
Fig. 1. Let N denote the set of all buses, including reference
bus 0. Also let L denote the set of all distribution lines.
We define N s, N e, N r, and N b as the sets of buses with
storage units, EV charging stations, renewable DG units, and
baseloads, respectively. At each bus i, we define Di and Ni
as the sets of direct descendant and descendant buses of bus
i, where Di ⊆ Ni. We also define Li,0 as the set of lines
that connect bus i to bus 0. As an example, in Fig. 1, we
have N e = {7, 8, 9}, N r = N s = {7} and N b = {2, 3, 4, 5,
8, 9, 10, 11}. At bus 3, we have D3 = {6, 7, 8} and N3 =
{6, 7, 8, 10, 11}. Set L7,0 = {(0, 1), (1, 3), (3, 7)}.

Suppose the operation time is divided into T time slots. For
each line (i, j), let P(i,j)[t] and Q(i,j)[t] denote the line active
and reactive power flows at time slot t. The voltage at bus i
at time slot t is denoted by Vi[t]. At each bus i, the active
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power draw at time slot t is denoted by P si [t], P ei [t], P ri [t],
and P bi [t], for storage units, EV charging stations, renewable
DG units, and baseloads, respectively. A negative power draw
means power injection. The notations Qsi [t], Q

e
i [t], Q

r
i [t], and

Qbi [t] are defined similarly for reactive power.
Next, we model power flows in the distribution grid using

the linearized DistFlow equations, which are widely used in
the literature, e.g., see [33]–[35]. For all non-reference buses
i ∈ N\0, and all distribution lines (i, j) ∈ L we have:

P̃(i,j)[t] =P sj [t]+P̃ bj [t]+P̃ ej [t]+P̃ rj [t] +
∑
l∈Dj

P̃(j,l)[t] (1)

Q̃(i,j)[t] = Qsj [t]+Q̃
b
j [t]+Q̃

e
j [t]+Q̃

r
j [t]+

∑
l∈Dj

Q̃(j,l)[t] (2)

ṽ2i [t]− ṽ2j [t] = 2R(i,j) P̃(i,j)[t] + 2X(i,j) Q̃(i,j)[t], (3)

where v0 = 1 and the tilde sign indicates random variables.
Bus 0 serves as a slack bus with infinite supply capability.
Note that, the DistFlow model is originally non-linear and non-
convex. Certain convex relaxation techniques are proposed,
e.g., in [36], that are exact under certain deterministic formula-
tions. However, those techniques are not applicable in chance-
constrained programming. See Section IV-D for additional
discussions on the impact of the DistFlow model linearzation.

For the ease of notation, for the rest of this paper we denote:

V , v2. (4)

Given the above one-to-one relation, we refer to V as voltage,
even though it is technically voltage squared. Obtaining all
characteristics of v from V is straightforward.

B. Stochastic Representation of Key Operational Parameters

We classify the parameters and variables in a distribution
grid into three groups: First, the key operational parameters,
i.e., the voltages at all buses and the power flows at all lines;
second, all random variables, i.e., baseloads, EV charging
loads, and renewable DG outputs at all buses; third, our
decision variables, i.e., the charge and discharge powers of
all ESS units. Using the recursive relationships in (1)-(3), we
can describe the key operational parameters in the first group
in terms of the variables in the second and the third groups:

P̃(i,j)[t] =
∑
k∈Nj

P sk [t] +
∑
k∈Nj

(
P̃ bk [t] + P̃ rk [t] + P̃ ek [t]

)
, (5)

Q̃(i,j)[t] =
∑
k∈Nj

Qsk[t] +
∑
k∈Nj

(
Q̃bk[t] + Q̃rk[t] + Q̃ek[t]

)
, (6)

and

Ṽi[t]=1−
∑

(k,j)∈Li,0

(
2R(k,j) P(k,j)[t] + 2X(k,j) Q(k,j)[t]

)
=1−

∑
(k,j)∈Li,0

∑
l∈Nj

(
2R(k,j) P

s
l [t] + 2X(k,j) Q

s
l [t]
)

−
∑

(k,j)∈Li,0

∑
l∈Nj

[
2R(k,j)

(
P̃ bl [t] + P̃ rl [t] + P̃ el [t]

)
+2X(k,j)

(
Q̃bl [t] + Q̃rl [t] + Q̃el [t]

)]
.

(7)

We can see that each line power flow or each bus voltage is
formulated as a sum of a deterministic term and a stochastic
term. The former is a linear combination of ESS injection
decision variables while the latter is a linear combination of
power draw from random variables at different buses.

Given the expressions in (5), (6), and (7), at each time slot t,
we can define the Cumulative Distribution Functions (CDFs)
for the distribution line active power flows as

FP(i,j)[t](p) , Pr
{
P̃(i,j)[t] ≤ p

}
= Pr

{
φ̃P(i,j)[t] ≤ p− ψ

P
(i,j)[t]

}
,

(8)

and for reactive power flows and voltages as

FQ(i,j)[t](q) , Pr
{
φ̃Q(i,j)[t] ≤ q − ψ

Q
(i,j)[t]

}
, (9)

FVi [t](v) , 1− Pr
{
φ̃Vi [t] ≤ 1− v − ψVi [t]

}
, (10)

where

φ̃P(i,j)[t] ,
∑
k∈Nj

(
P̃ bk [t] + P̃ rk [t] + P̃ ek [t]

)
, (11)

φ̃Q(i,j)[t] ,
∑
k∈Nj

(
Q̃bk[t] + Q̃rk[t] + Q̃ek[t]

)
, (12)

φ̃Vi [t] ,
∑

(k,j)∈Li,0

(
2R(k,j) φ̃

P
(k,j)[t] + 2X(k,j) φ̃

Q
(k,j)[t]

)
, (13)

and

ψP(i,j)[t] ,
∑
k∈Nj

P sk [t], ψQ(i,j)[t] ,
∑
k∈Nj

Qsk[t], (14)

ψVi [t] ,
∑

(k,j)∈Li,0

(
2R(k,j) ψ

P
(k,j)[t] + 2X(k,j) ψ

Q
(k,j)[t]

)
. (15)

Note that, the expressions in (11)-(13) depend solely on
random variables and the expressions in (14)-(15) depend
solely on the decision variables of the storage units.

At each bus i and time slot t, the Probability Density
Function (PDF) for baseload, EV charging load, and renewable
generation is denoted by f bi [t](·), fei [t](·), and fri [t](·), respec-
tively. These random variables are represented by discrete em-
pirical distributions with no specific mathematical expressions.
Also, fP(i,j)[t](·), fQ(i,j)[t](·), and fVi [t](·) denote the PDFs of
the system operational parameters at each line and each bus.

Next, we group the random variables based on their statis-
tical dependence. For example, the outputs of all solar panels
are dependent due to their proximity, given the relatively small
size of distribution grids. Accordingly, such outputs can be
grouped such that they can all be represented in terms of solar
irradiance as the independent random variable. Other grouping
can be done for other renewable DGs of the same type.

Without loss of generality, suppose solar panels are the
only DG types on the distribution grid. Let Ũ [t] and H̃[t] =
κu[t] Ũ [t] denote the active and reactive power outputs of a
solar panel at time slot t, where κu is a constant of the solar
panel and its power electronics interface [37]. The PDF of the
random variable Ũ [t], i.e. a unit of solar panel active power
output, is expressed by fu[t](·). At each bus i ∈ N r, we have:

P̃ ri [t] = λui Ũ [t], Q̃ri [t] = λui κ
u[t] Ũ [t], (16)
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where λUi is a constant that is set for the the DG installation at
bus i. Random variable Ũ [t] solely depends on solar irradiance.
Statistical dependency also exists among active and reactive
power injections at each bus [38]. Therefore, at each bus i, we
assume that Q̃bi [t] = κbi [t]P̃

b
i [t] and Q̃ei [t] = κei [t]P̃

e
i [t], where

κbi depends on the type of loads and their power electronics
interfaces and κei depends on the EV chargers.

Theorem 1: The CDFs in (8)-(10) are obtained as

FP(i,j)[t](p) = Gφ
P

(i,j)[t]
(
p− ψP(i,j)[t]

)
, (17)

FQ(i,j)[t](q) = Gφ
Q

(i,j)[t]
(
q − ψQ(i,j)[t]

)
, (18)

FVi [t](v) = 1−Gφ
V

i [t]
(

1− v − ψVi [t]
)
, (19)

where Gφ
P

, Gφ
Q

, and Gφ
V

are some CDFs that have the
following probability density functions:

gφ
P

(i,j)[t](z) , ζu(i,j)

(
∗

k∈Nj

f bk [t]∗ fek [t](z)

)
∗ fu[t]

(
ζu(i,j)z

)
, (20)

gφ
Q

(i,j)[t](z) ,
ζu(i,j)

∏
k∈Nj

(
κbk[t]κek[t]

)
κu[t]

fu[t]
(ζu(i,j)z
κu[t]

)
∗
(
∗

k∈Nj

f bk [t](
z

κbk[t]
) ∗ fek [t](

z

κek[t]
)

)
,

(21)

gφ
V

i [t](z),γui [t]
∏
l∈N

(
γb(l,i)[t]γ

e
(l,i)[t]

)
fu[t]

(
γui [t]z

)
∗
(
∗

l∈N
f bk [t](γb(l,i)[t]z) ∗ f

e
k [t](γe(l,i)[t]z)

)
.

(22)

The proof of Theorem 1 and the definition of coefficients ζu(i,j),
γb(l,i)[t], γ

e
(l,i)[t], and γui [t] are given in Appendix I. Here, we

do not make any assumption about the distribution of random
parameters. Specifically, we do not assume any pre-determined
PDF, such as Gaussian distribution. The discrete convolution in
Theorem 1 can be calculated efficiency, e.g., using the methods
in [39]. A brief discussion on the computational complexity
of these convolution operations is given in the Section IV-D.

C. Design Implications
The results in Theorem 1 can be used to analytically, yet

accurately, model the complex probability distributions of line
power flows and voltage buses. An example is shown in Fig. 2.
Here, we compare two methods. First, the proposed analytical
method where we obtain the non-parametric distributions of
operational parameters from the numerical convolution in The-
orem 1. Second, the Monte-Carlo Simulation (MCS) method,
where extensive scenario generations from the original random
variables are applied to the power flow model in (1)-(3). We
can see that the PDFs obtained from Theorem 1, achieve the
same results as the MCS method. However, the computation
complexity of our analytical method is much less than that of
the MCS method, see Section IV-D.

III. OPTIMAL OPERATION AND DEPLOYMENT
OF ENERGY STORAGE UNITS

The analytical approach in Section II can also be used to
find the best charge and discharge schedules for the ESS in an
optimization-based framework, as we will see in details next.
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Fig. 2. Example non-Gaussian PDFs for the parameters of the network in
Fig. 1: (a) and (b) power flow in line (6, 10); (c) and (d) voltage at bus 10.

A. Bus Voltage Violation Chance Constraints

At each time slot, the probability of under- and over- voltage
violations must be less than a certain threshold ε > 0:

Pr
{
Vi[t] ≤ v

}
< ε ⇒ FVi [t](v) < ε,

Pr
{
Vi[t] ≥ v

}
< ε ⇒ 1− FVi [t](v) < ε.

(23)

From (19), we can rewrite (23) as

Gφ
V

i [t]
(

1− v − ψVi [t]
)
> 1− ε,

Gφ
V

i [t]
(

1− v − ψVi [t]
)
< ε.

(24)

Since, by definition, Gφ
V

i [t] is a non-decreasing function, we
have unique equivalents for (24) as follows [40]:

1− v − ψVi [t] > sup{φ|Gφ
V

i [t](φ) ≤ 1− ε},

1− v − ψVi [t] < inf{φ|Gφ
V

i [t](φ) ≥ ε}.
(25)

The right-hand sides in (25) are known, as long as Gφ
V

i [t] is
known. Since ψVi [t] is a linear function of the ESS active and
reactive power variables, the constraints in (25) are linear.

B. Line Active Power Flow Violation Chance Constraints

Next, we set the constraints to limit the probabilities of
violating line thermal limits based on the line power flows:

Pr
{
P(i,j)[t]≥ p

}
< ε ⇒ FP(i,j)[t](p)> 1− ε,

Pr
{
P(i,j)[t] ≤ p

}
< ε ⇒ FP(i,j)[t](p) < ε,

(26)

and with the same analogy of Section III-A, we arrive at

p− ψP(i,j)[t] > sup{φ|Gφ
P

(i,j)[t](φ) ≤ 1− ε},

p− ψP(i,j)[t] < inf{φ|Gφ
P

(i,j)[t](φ) ≥ ε}.
(27)

C. Energy Storage System Operation Constraints

The operational constraints of the ESS can generally include
many details, c.f. [41]. In this section, we discuss some of
the basic, most dominant operational constraints of the ESS
that are commonly adopted in the literature with respect
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to tractable optimal operation. In particular, we address the
constraints related to the ESS permissible energy and power
charge/discharge constraints. The ESS power output limita-
tions can be expressed as:

−Isi ≤ P si (t) ≤ Isi , (28)

where Isi denotes the power rating of the inverter.
Accurate energy reservoir constraints are also prominent

in the ESS operation. Let SoCi[t] denote the energy that is
available in the ESS at bus i during time slot t. The energy
stored in the ESS should be maintained within the permitted
upper and lower bounds; that is, we must have:

SoCi[t] ≤ Kup
cp Ahi ∀i ∈ NS , ∀t ∈ {1, · · · , T},

SoCi[t] ≥ Kdw
cp Ahi ∀i ∈ NS , ∀t ∈ {1, · · · , T}.

(29)

The energy that is stored (and available) in a battery at the
end of time slot t, i.e. SoCi[t], is in fact a non-linear, non-
convex function of the vector of all the power flows into and
from the device since the beginning of operation until time
slot t, i.e. P si [1], · · · , P si [t]. Accordingly, given the available
energy at the previous time slot, the state of charge at a time
slot t, i.e. SoCi[t], can be stated as an iterative function of
SoCi[t− 1] and P si [t]:

SoCi[t] = SoCi[t− 1] + h(SoCi[t− 1], P si [t]∆t). (30)

The equality constraint in (30), however, includes a complex
non-linear function of the battery’s prior state of charge as
well as the prior ESS charge/discharge rates. To handle this
constraint in a tractable optimization, we approximate it as

SoC[t] = SoC[t− 1] + hapx(P si [t]∆t). (31)

Note that, hapx(·) itself could still take a non-linear form in
order to capture the impact of battery efficiency during each
charge and discharge half-cycle. We use the model in [42]:

hapx(P si [t]∆t) =

{
1/η0P

s
i [t]∆t if P si [t] ≥ 0,

η0P
s
i [t]∆t if P si [t] < 0.

(32)

We can equivalently rewrite (32) as
hapx(P si [t]∆t) = max{η0P si [t], 1/η0P

s
i [t]}∆t. (33)

More complex models, such as piece-wise linear approxi-
mations combined with binary variables can also be used
to capture the dependency of hapx(P si [t]∆t) to charge and
discharge rates, e.g., see [43].

D. Energy Storage System Deployment Constraints
If we seek to select the best location(s) to install the storage

unit(s), then we need to also define a variable di∈{0, 1} which
indicates whether or not an energy storage unit is installed at
each bus i. Hence, the following constraints must hold:

Ahi ≤ di ·Ah, (34)
Isi ≤ di · Is, (35)∑

i∈N
Ahi ≤ Ah, (36)∑

i∈N
Isi ≤ Is, (37)∑

i∈N
di = NESS . (38)

Fig. 3. The pdf of voltage at bus 10 with and without installed ESS: (a)
The ESS is charged during time slot 8, which is an off-peak hour, and this
has resulted in some tolerable drop in voltage; (b) The ESS is discharged
during time slot 22, which is a peak hour, and this has resulted in some
desirable increase in voltage; (c) The ESS is discharged also during time slot
24, which is another peak hour, and this has resulted in some desirable increase
in voltage. The probability of violating the minimum threshold v = 0.95 at
hour 22 reduces from 0.7 to only 0.1 when the ESS is being used.

E. Energy Storage System Design Objective

Various design objectives can be considered when it comes
to installing energy storage units on a distribution grid, e.g.,
see [19]. However, since the focus in this paper is on un-
derstanding the impact of using non-parametric stochastic
optimization in energy storage planning, we account only for
a typical design objective. Specifically, we seek to minimize∑

i∈N

(
T∑
t=1

πopr · |hapx(P si [t])|

)
+ πcap ·Ahi + πinv · Isi . (39)

The first term is related to the operation cost, i.e., the wear
cost, which is proportional to the charge/discharge level at
each time slot. The second and third terms are related to the
installation cost, which are proportional to the size of the ESS.

F. Optimization Summary

In brief, the ESS optimization problem is formulated as

Minimize
Ps
i [t],Es

i [t],Ahi

(39)

Subject to (25), (27), (28), (29), (31), (33)

(34), (35), (36), (37).

(40)

All the constraints in Sections III-A, III-B, and III-C are
linear. The absolute-value function in the first term of the
objective function in (39) can be replaced by linear constraints
using auxiliary variables, c.f. [44]. Therefore, depending on
whether the constraints in Sections III-D are taken into consid-
eration, the formulated optimization problem is either a linear
program or a mixed-integer linear program.

IV. CASE STUDIES

Again, consider the distribution grid in Fig. 1. This grid
represents the IEEE 13-bus distribution test feeder which is
slightly modified. The feeder is assumed to be balanced. The
additional parameters and data of this test network are given in
[45]. The baseload is synthesized by aggregating the metered
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Fig. 4. The hourly ESS operation schedule based on three optimal designs.

hourly loads of 633 residential consumers in the PECON
project [46], from January 2012 to August 2014. This is done
such that the average combined load at each bus roughly
matches its original feeder load in [47]. The generation output
of a solar panel is synthesized by applying the metered pair of
solar irradiation and temperature to a detailed dynamic model
of a 1.2 MW solar panel in PSCAD [48]. The solar irradiation
and temperature data was obtained from the LLNL database
over six years form 2008 to 2013 for the months of May
and June [49]. The hourly load of EV charging stations are
from [6]. Given the focus of this paper, we take the PDFs
of the random variables, e.g., solar generation, baseload, EV
charging, etc. as given. These PDFs are obtained using the
above historical hourly data.

The cost of battery is calculated for WB-LYP1000AHA
lithium ion 1000 Ah battery modules with 3.2V discharge
voltage [50]. The batteries operate between 20% to 80% of
their nominal capacity. The rated lifetime of these batteries
is 12,000 cycles and the current market price is $1,660 per
module. Therefore, by dividing the module price by

2×Ah× volts× cap(%)×Ncycle, (41)

we can estimate the battery wear cost as 36 $/MWh per cycle.

A. Parametric versus Non-Parametric Design

We compare our Non-Parametric Chance-Constrained
(NPCC) approach with two other approaches in ESS planning:
1) Deterministic, where all random variables are represented
by their mean values; 2) Parametric chance-constrained (PCC),
where all random variables are represented by their Gaussian
approximations, i.e., based on their mean and variance.

We start off our analysis based on a simplified problem set
up, where the line power flow limits are not enforced, and only
the bus voltage limits are considered. The minimum voltage
threshold is assumed to be 0.95 per unit. The acceptable
probability of violating the minimum voltage threshold is
ε = 0.1 or less. We consider the typical scenario where the
battery system does not provide reactive power support. The
location of the storage unit is assumed to be fixed at bus 7.

The probability mass functions of voltage at bus 10 are
shown in Fig. 3, where there is severe voltage drop at peak
hours prior to using ESS. The voltage distributions in one off-
peak hour, hour 8, and two peak hours, hours 22 and 24 are

Fig. 5. The pdf of voltage in bus 10 at hour 24, under three different design
approaches for the case study in Section IV.A.

shown prior and after ESS compensation. We can see that the
use of ESS reduces the probability of violating the minimum
threshold at peak hours. The probability of violating v = 0.95
in bus 10 at hour 22 prior to ESS installation is 0.7. Such
probability reduces to only 0.1 once the ESS is installed.

Next, we show the ESS operation schedules for various
designs in Fig. 4. We can see that different designs lead to
significantly different charge and discharge schedules. Accord-
ingly, the obtained optimal size of the ESS is also different
for each design. Based on the deterministic approach, it is
presumed that the system constraints are met most of the
time, thus under-estimating the potential for voltage violations.
Accordingly, the size of the ESS unit is under-estimated and
the allocated ESS unit is not used extensively. On the contrary,
the PCC approach over-estimates the potentials for voltage
violations. As a result, the ESS utilization based on PCC
approach is higher than the NPCC approach in most peak
hours. The required ESS capacity is also larger. Note that, the
optimal ESS size based on the deterministic, PCC, and NPCC
design approaches are 1.05, 3.57, and 2.69 MWh, respectively.

The voltage distributions for the deterministic, PCC, and
NPCC designs are shown in Fig. 5. We can see that the
deterministic approach compensates for the voltage less than
the NPCC approach, whereas the PCC approach compensates
more than the NPCC approach at this hour. The probability
that the voltage distribution falls below v = 0.95 is 0.21,
0.093, and 0.018 for the deterministic approach, the NPCC
approach, and the PCC approach, respectively.

Additional details about the ESS operation during time slots
22 and 24 based on the PCC approach are given in Fig. 6.
Here, the Gaussian approximations of the voltage probability
functions with and without ESS unit are compared with the
empirical pdf curves. The approximated probability of voltage
violation, i.e., the black shaded area in Fig. 6(a), is 0.07.
However, the empirical probability of voltage violation is only
0.02 in Fig. 6(b). This confirms our previous observation
that a PCC approach often over estimates the probability of
voltage violation; thus, requiring a ESS size larger than what
is actually needed. The inaccurate estimation of the probability
of violating the voltage constraints is the main reason for the
difference between the PCC approach and the NPCC approach.
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Fig. 6. Voltage compensation at hour 24 based on the PCC approach: (a)
the Gaussian approximation of the voltage pdfs; (b) the true voltage pdfs.
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Fig. 7. The best minimum voltage bounds achieved during 11× 24 = 264
bus-hour instances under NPCC approach.

B. Compensation on System Operational Limits

In this section, we discuss another factor that further shows
the advantages of NPCC over PCC. First, we note the fact that
an ESS cannot increase the voltage or decrease the power flow
at a certain hour, unless it decreases the voltage and increases
the power flow at another hour. Therefore, the distribution
network must originally be capable of tolerating bus voltage
decreases or line power flow increases during certain hours;
otherwise the ESS is not the solution for alleviating the system
undesirable states. Therefore, next, we examine the system
operational bounds under different ESS design approaches.

Unlike in Section IV-A, where the minimum threshold for
voltages was pre-set to v = 0.95, and the required ESS capac-
ity was obtained using different approaches, in this section,
we instead assume that the ESS storage capacity is fixed
to 2MWh and we rather obtain the best voltage operation
thresholds using non-parametric and parametric approaches.
Same as in Section IV-A, we assume that ε = 0.1.

To examine the system operational bounds, we introduce
some slack variables to all chance constraints. That is, we
treat the acceptable system state bounds in Sections III-A
and III-B to be decision variables. Instead, we set the ESS
capacity to be fixed. We also introduce a new regulatory term
Kreg maxi,t{vi[t]} into the objective function in (39), where
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Fig. 8. The best maximum active power flow bounds achieved during 11×
24 = 264 line-hour instances under NPCC approach.
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Fig. 9. The maximum v bounds achieved in all buses for different ESS
capacities under NPCC and PCC design approaches.

Kreg is a large weight factor. The purpose of adding this
regulatory term is to make all chance constraints binding so
that we can obtain the best bounds achievable for each state.

Fig. 7 shows the tolerable bounds for the case of bus voltage
compensation when the proposed NPCC approach is used.
The blue dashed line shows the minimum of such bounds
across all locations and all time slots. Here, we also show
the similar minimum bounds for the PCC and the No-ESS
case. In this figure, if the minimum bound is 0.94 p.u. with
at least 90% probability at all times, then the PCC approach
gives an infeasible solution with 2 MWh of ESS at bus 8.

A similar analysis can be done to assess the tolerable
bounds for line power flow compensation. Here, we must
minimize the power flow on the most congested line. To
do so, we shall minimize the maximum of p/pnominal for
each line. The results are shown in Fig. 8. We can see that
the ESS compensation brings down the highest power flow
limit. However, the ESS may affect only the lines that lie
on the path from the ESS to the substation bus. Therefore,
the ESS location is of importance if we intend to lower the
power flow on a particular line. For each ESS capacity, this
figure also shows how much the maximum power flow can be
reduced by the ESS among the lines that have the possibility
of improvement based on the ESS location.

The best minimum voltage bounds achieved in 24 hours at
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Fig. 10. The Impact of ESS location on voltage improvement at each bus.

all buses as a function of ESS capacity under NPCC and PCC
stochastic design approaches are shown in Fig. 9. First, we
note that both curves are continuous, piecewise linear, concave,
and monotonic increasing, c.f. [51, Lemma 2]. Second, we
can see that the NPCC approach can always enforce higher
minimum voltage, regardless of the capacity of the ESS.

C. Impact of Location

Next, we take a closer look at the impact of the ESS location
on improving the system tolerable bounds that we introduced
in Section IV-B. This also brings up the question on optimizing
the location, when there are multiple ESS units.

We observe in Fig. 10 that installing an ESS at either of
buses 1, 2, 4, 5, and 9 does not significantly improve the
minimum voltage bounds. Therefore, at least for the purpose
of voltage improvement, these buses are not suitable locations
for ESS installation. Note that, we do not suffer from over-
voltage issue of PV injections at end buses since the grid is
heavy-loaded.

Based upon a similar analysis as in Section IV.B, Fig. 11
shows the normalized maximum active power flow bound
reduction in each line, i.e. ∆p for the cases of with and without
ESS installation. We can see that installing the ESS at each
bus improves the active power flow only on certain lines in
the path between the ESS bus and the reference bus. Since
the back current issue is not considered, installing an ESS is
always preferred in the end buses of a heavy-loaded line.

D. Optimal Locations and Sizes of Multiple ESS Units

Recall that in sections IV-A to IV-C, only a single ESS unit
was deployed and the optimization did not involve choosing
the location of the ESS. As we illustrated in Section IV-C,
however, the location of the ESS unit can have a significant
impact on its ability to improve the system operational pa-
rameters. Additionally, the locations of uncertain resources
in the distribution system can also have impact on the ESS
requirements for the system. Therefore, we obtained the op-
timal ESS locations and sizes for the base-case as well as
for several additional test cases, where the location of some
random resources are changed in the test distribution system of
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Fig. 11. The impact of ESS location on active flow improvement at each line.

Fig. 1. The results of the optimal deployment solutions for the
NPCC and PCC approaches are given in Table I for two ESS
units (i.e. Ness = 2). Note that, the ESS units are deployed
in order to maintain the voltage violation probabilities within
10% of the thresholds as in Section IV-A.

TABLE I
OPTIMAL LOCATIONS AND SIZES FOR TWO ESS UNITS

Case
Number

PV
Bus

EV Chargers
Buses

Optimal ESS Plan
Capacity (MWh) Bus Location

NPCC PCC NPCC PCC
1 7 7,8,9 1.6,0.33 0.12, 3.2 8, 11 8,10
2 3 2,4,11 0.29, 0.03 0.31,0.02 8,10 8,10
3 4 2,3,6 0.38, 0.08 0.5,0.3 8,10 10,11
4 1 4,5,7 0.32, 0.01 0.13,0.21 8,10 7, 8

From the results in Table I, we can make several obser-
vations. First, the NPCC method achieves a better solution
in terms of a lower deployed ESS capacity to maintain the
same voltage thresholds. The overall ESS capacity deployed
by NPCC is 1.93 MWh, whereas PCC requires the deployment
of 3.32 MWh ESS capacity. Second, the deployed capacity
with multiple ESS units and in the optimal locations is smaller
both in NPCC and PCC approaches compared to Section IV-A,
where the location of the single ESS was arbitrarily selected.
Third, the choice of the design method, i.e., NPCC or PCC,
in representing the random variables can have an impact on
the optimal locations of ESS unit as well. Specifically, from
case numbers 2-4 in Table I, it is also observed that the
required ESS capacity as well as the optimal ESS locations
are greatly affected by the locations of the random resources
on the distribution system. In Case 1, the placement of those
resources at the end buses has led to more voltage drops and
hence more ESS capacity requirements. In contrast, in Cases 2
to 4, we have less ESS requirements, because several random
resources are placed in up-stream buses of the distribution
grid. Finally, the design objective towards which the ESS de-
ployment is optimized, e.g. better voltage compensation, lower
line power flow reduction, and/or reverse flow prevention, has
great impact on the choices of the ESS capacity and locations.

E. Comparison with Scenario-Based Stochastic Optimization
In this section, we compare the performance of our proposed

NPCC approach with that of the methods that rely on sampling
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of input random variables. To this aim, we approximate the
chance constraints in (25) and (27) with some convex bounds
in the form of their expected values, specifically by using the
Markov Bounds [52]. We then compare the two approaches
for the same set-up and objectives of Section IV-A.

TABLE II
OPTIMAL LOCATIONS AND SIZES FOR TWO ESS UNITS TO MITIGATE THE

VOLTAGE VIOLATION.

Method Decision Vars.
Num.

ESS Cap.
(MWh)

Voltage Violation
Worst Probability

NPCC 97 2.69 0.105
SBO(50) 55800 6.25 0.112
SBO(100) 217800 5.5 0.086
SBO(500) 1M+ 4.1 0.073

The optimal ESS capacity deployed by each approach to
maintain the system voltage within the 90% tolerable range
is compared for each approach, and the results are shown in
Table II. Here, the scenario-based optimization (SBO), solved
with 50 scenarios, converges roughly within the same time that
our proposed approach converges, including its distribution
processing time. However, the deployed ESS capacity to main-
tain the voltage violations within the probability threshold, is
much higher for SBO than the NPCC approach, which means a
better resource management for our proposed NPCC approach.

We also compared the actual numerically-obtained prob-
ability of voltage violation for each method using Monte-
Carlo simulation with 10,000 random scenarios. The worst
probability of voltage violation across the system buses and at
different hours is shown in Table. II. We observe that SBO with
50 scenarios leads to even a higher probability of violation,
even with a larger ESS capacity deployed. We also see in Table
II that the performance of SBO indeed improves with a larger
number of scenarios. However, such improvement is obviously
at the expense of higher computational complexity. Another
observation was that increasing the number of scenarios is
not easy, because as we increase the number of scenarios,
the performance of the scenarios-based optimization approach
either becomes dependent to the choice of solver software or
all solvers face numerical issues to reach a solution.

We note that, there exist techniques, e.g those in [53]–[55],
to decompose and / or improve the computation efficiency
of scenario-based optimization approaches. They often are
applicable to a wide range of optimization problems, including
our intended problems, and are independent of the inherent
computation burden of solving the optimization problem under
many instances of the random variables. However, those
techniques are not always guaranteed to convergence.

F. Computational Complexity and Accuracy

In this section, we assess the impact of the common
DistFlow model linearization on the result accuracy. Fig. 12
compares the empirical voltage PDFs obtained from Theorem
1 and that of a Monte-Carlo Simulation that is based on
non-linear power flow equations. We can see that due to
ignoring the line losses, the analytical voltage PDFs are
slightly different from the empirical PDFs. Thus, there is a
small over estimation in the voltage PDFs when the linear flow
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Fig. 12. Power flow linearization impact on a voltage distribution at hour 17.

model is used. However, the significantly lower computation
complexity of our analytical method compensates its slight
inaccuracy. For example, in Fig. 12, we perform only 12
convolution operations to obtain the voltage PDF in each bus,
whereas more than 60, 000 scenarios are generated to construct
the empirical PDF.

We also compared the computation efficiency of our pro-
posed approach with those of the two existing approaches.
The results are shown in Table III. Note that, our proposed
approach consists of two parts: first, an analytical stochastic
representation of the operational parameters, i.e. bus voltages
and line active and reactive flows; and second, a chance-
constrained optimization approach based on the results in the
first part. The computation time required for the first part
is compared to that of the Monte-Carlo simulation method
discussed in section II-C with 60,000 scenarios to produce
comparable resolution of operational parameters probability
density functions. The amount of computation time required
for MCS is more than 500 times that of our proposed analytical
approach. The overall runtime of our proposed approach, i.e.
for the first as well as the second part mentioned earlier, is also
compared with that of scenario-based stochastic optimization
(SBO), discussed in section IV-E, with a mere 100 scenarios.
Clearly, in order to increase the accuracy of the scenario-
based optimization approach, the required computation time
increases significantly. The runtime obtained for all the meth-
ods above is based on a single 2.67 GHz processor.

TABLE III
THE COMPUTATION TIME REQUIRED FORM DIFFERENT METHODS.

Method Analytical Monte-Carlo NPCC SBO
Runtime (min.) 37 20000 90 225

The convolution operations required to obtain each opera-
tional parameter is at most equal to the number of independent
random variables. It does not depend on network size. Also,
for a practical system, we may not need the PDFs of all opera-
tional parameters, but just for a few important ones. To assess
the computation efficiency, in the data preparation process, the
hourly PDFs of more than 500 individual residential users with
length of 60 for each vector, i.e., 12,000 operations in total,
was convolved in only few minutes using a single processor.
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Fig. 13. The voltage distribution at bus 11 and hour=17, which are obtained
using MCS with 60,000 scenarios and AC power flow model: (a) the line
transverse parameters (Y) are neglected; (b) Those parameters are modelled
as constant power shunt elements.

G. Impact of Line Traverse Parameters

Next, we examine the impact of considering the distribution
line transverse parameters, such as the capacitances of coaxial
cables, on the probability distributions of the operational pa-
rameters, e.g. bus voltages. Based on the presented formulation
in section II-B, the impact of transverse line parameters may
not be modeled thoroughly due to the limitations of the
DistFlow model. There are often two approaches to take with
respect to this issue. First, in many studies, the impact of
transverse line parameters are simply neglected, such as in
[33], [56]. Note that, the results in Sections IV-A to IV-F are
similarly obtained by neglecting the impact of transverse line
parameters. Second, there are studies that try to approximate
the impact of transverse line parameters, by modeling them
as constant power shunt elements connected to the terminal
buses of each line. This second approach is tried in Fig. 13,
where we compare the results of bus voltage distribution at
bus 11 and hour 17, for two cases. The first case is where the
impact of transverse line parameters are neglected. The second
case is where such parameters are approximated as constant
power elements. The results are obtained from MCS with
60,000 scenarios. The AC power flow equations are solved
by applying second-order cone programming, c.f. [36].

We see in Fig. 13 that the voltage distribution inaccuracy
due to neglecting the line suscpetance is not significant. The
reactive power injections from the lines shunt capacitors are
well below 8×10−4 p.u. in all buses. It is presumed the results
inaccuracy due to inability of Distflow model in representing
lines constant impedance capacitance, instead of constant
power, is even less significant.

However, the results in Fig. 13 for the distribution grid
of Fig. 1, may not be generalized to all distribution grids.
In particular, in case of weak distribution systems with long
feeders, the impact of transverse line parameters could in
fact be noteworthy and have impact on calculating the bus
voltage and line flow violation flow constraints. For instance,
in Fig. 14, we evaluated the impact of neglecting the line
transverse parameters for a weaker network, i.e., a modified
IEEE 34 bus distribution grid. Again, the distributions of a
single bus voltage at a given hour were compared in two
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Fig. 14. The voltage distribution at bus 11 of IEEE 34-bus test feeder (weak
grid) and hour=17, which are obtained using MCS with 30,000 scenarios and
AC power flow model: (a) the line transverse parameters (Y) are neglected;
(b) Those parameters are modelled as constant power shunt elements.

cases where transverse line parameters are neglected or alter-
natively modeled as constant power elements. The additional
parameters of this test network are given in [45]. Note that
the same MCS method of Fig. 13 is applied here on the 34
bus grid. We can see in Fig. 14, that if the impact of the
transverse line parameters are neglected, then the calculated
voltage of the selected bus is lower than the actual voltage
values. Therefore, for a week network such as the one in Fig.
14, it is advised to consider the impact of such parameters. We
emphasize that, the probability distribution depicted in Fig. 14
is still not an entirely accurate representation of the true bus
voltage values where transverse line parameters are accurately
modeled. Even though, with approximating the transverse line
parameters as constant power components, the inaccuracy of
the DistFlow model is significantly mitigated, such model is
still unable to account for the quadratic voltage-dependency
of reactive power injections of line shunt capacitances. Thus,
such inaccuracy needs to be accounted for in the final design.

H. Multiple-year Chance-constrained Design

Finally, in this section, we utilize our proposed non-
parametric probabilistic approach in conducting a multiple-
year time horizon planning based on operational chance-
constraints. Note that, the objective function that we intro-
duced in (39), and applied so far for the results discussed
in sections IV-A to IV-G, is covering the typical, most es-
sential cost model in ESS operation problem. However, in a
detailed ESS planning problem, it is suitable to also consider
a multiple-year time horizon design which accounts for future
grid conditions. Such design would have to incorporate large
time series of stochastic variables. It will also involve the
forecast of the grid stochastic load and generation growth.
Therefore, here we present an analysis of ESS planing with
considering multi-year time horizon planning performed via
parametric and non-parametric chance-constrained optimiza-
tion. We shall emphasize, however, that a comprehensive ESS
planning design would involve many details, which are not
within the scope of this paper.

To form a new objective function for the purpose of a
multi-year planning design, we first represent the ESS installed
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Fig. 15. The probabilities of bus voltage violations under single-year and
multi-year ESS planning; the daily largest values at (a) year one, (b) year
two, and (c) year three.

capacity, i.e. Isi , and Ahsi , based on the operation schedules
obtained for multiple years. The operating schedules are
obtained to maintain system operational constraints in the
successive years of the design horizon. Therefore, we form
the multi-year design objective as∑

i∈N

(
πcap ·Ahi + πinv · Isi +

Nyear∑
yr=1

T∑
t=1

πyropr · |hapx(P si [t, yr])|
)
,

(42)

where πyropr denotes the operational cost coefficient for each
year within the design horizon. Here, we assume that the
design horizon is three years. More details regarding the ESS
installation and operation costs can be found at studies such
as [57], [58]. Note that, we have also some additional system
constraints in order to maintain the acceptable operation
conditions in each year of the design horizon. Accordingly,
functions ψVi [t], ψPi,j [t], G

φV

i [t], and Gφ
P

i [t] in (25) and

(27) are extended to ψVi [t, yr], ψPi,j [t, yr], G
φV

i [t, yr], and

Gφ
P

i [t, yr], respectively. Additionally, since the uncertainty in
grid random power injections increase as we move forward in
time, it is reasonable to apply different violation probabilities
for each year. Here, we assume that the allowed violation
probability is 0.1, 0.15, and 0.2 for the first, second, and
third years of the design horizon. We also assume that the
random loads and random generations have a constant growth
rate of α each year. Accordingly, in our model, the probability
distributions of the input random variables representing power
injections of the loads/generators are multiplied by a factor of
1 +α each year. Here, without loss of generality, we assumed
the growth factors of 1 %, 2 %, and 5% for the EV chargers,
residential baseload, and PV generation, respectively.

Te performance of ESS planing based on the aforemen-
tioned multi-year design is compared with that of the base-
design, i.e. based on the objective in (39). In both cases,
the ESS is installed at bus 7 of the distribution grid in Fig.

1. The ESS capacity and the yearly operation schedules are
obtained based on each design. Fig. 15 shows the results. In
this figure, the maximum probability of voltage violation in
each bus is shown for the first, second and third years of the
design horizon. We can see in Fig. 15 that the voltage violation
probabilities are beyond the allowed values in the base design,
where the impact of stochastic load growth is ignored. In
the multi-year design, however, the stochastic load growth
is considered; thus the capacity and the different operation
schedules are calculated based on the multi-year design. The
required ESS capacity is 3.56 MWh based on multi-year
design. Accordingly, the voltage violations are kept within the
permitted probabilities, in all three years of the design horizon.
We can conclude that , our proposed non-parametric approach
can readily be used in a multi-year planning framework.

V. ADDITIONAL REMARKS AND EXTENSIONS

A. Modeling Chance-Constraints Based on Line Currents

In section III-B, the chance-constraints related to line flows
were expressed in terms of power. However, in practice, for
lines below 36 kV, this value is often expressed in terms of
current. If one chooses to use a current-based model, he/she
needs to transform our power-limit constraints to current-limit
constraints, e.g., in form of I2 < I2max. Since I2 = S2/V ,
such constraint can then be transformed into S2 ≤ I2maxV .
If we neglect the changes in voltage, then after replacing S2

with its active and reactive power terms, we have:{
P 2
i,j +Q2

i,j < S2
max.

}
> 1− ε. (43)

If the ESS power injection is given, then we can obtain the
distributions of Pi,j , Qi,j , and Si,j in terms of ESS injections.
But even in that case, the above family of constraints will
not be convex. Note that, since Pi,j = ψPi,j + φPi,j , for the
square variable, we will have multiplication of random vari-
ables and decision variables, which renders the optimization
non-convex when we use non-parametric distributions. Of
course, a tractable chance-constraint on the current of the
transmission line can still be approximated, possibly by using
several independent linear constraints on active and reactive
power flow of the line. Even by doing so, the dependency
of the original chance constraints on the bus voltages are
neglected. Based on the rated voltage of the distribution grid,
and depending on how weak the gird is, parameter Smax
in (43) could actually be lower than what is assumed. This
approximation could potentially lead to some inaccuracies in
the results obtained based on the current chance constraints.
Therefore, the generalization of the proposed approach for the
current chance-constraints may require further investigation.
However, addressing this issue is beyond the scope of this
paper. It could be a pointer for a future work.

B. Impact of Slack-Bus Voltage Variations

In order to study the stochastic representation of the model
in Section II, we assumed that the voltage on the slack bus
is fixed. However, in practice, this value might fluctuate as a
function of the state of the upstream grid. The impact of slack
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bus voltage fluctuations may as well be treated as a stochastic
random variable, independent of the nodal power injections.
By considering the slack bus voltage as a random variable
with probability density function of fV0 , we can write (9) as

FVi [t](v) , 1− Pr
{
φ̃Vi [t]− Ṽ0 ≤ −v − ψVi [t]

}
, (44)

which will result in the following CDF of voltage distributions:

FVi [t](v) = 1−Gφ
′V

i (−v − ψVi ). (45)

Here Gφ
′V

i is the CDF corresponding to density function

gφ
′V

i (z) = −gφ
V

i (z) ∗ fV0(−z). (46)

VI. CONCLUSIONS

A non-parametric chance-constrained optimization approach
was proposed for energy storage operation and planning
in power distribution networks. The analysis was done by
introducing new closed-form stochastic models for various
key operational parameters, with no restricting assumption on
the probably distribution of random parameters. Uncertainties
from different sources of different nature, such as DGs and
EVs, were considered. Several case studies confirmed the
advantages of the proposed design method compared to the
conventional deterministic and parametric (based on Gaussian
approximation) chance-constrained optimization frameworks.
In future, the developed closed-form stochastic models can be
used in other non-ESS distribution-level planning problems.
Some limitations of the proposed approach such as inaccu-
racy of the approximations in the chance constraints on line
currents, and inaccuracy of the constraints on ESS energy
reservoirs can as well be addressed in follow-up studies.

APPENDIX: PROOF OF THEOREM 1

From the properties of linear transformations on density
functions, c.f. [59], if Y = a1X1 + · · ·+ aNXN , then

fY (y)=fa1X1
(y)∗· · · ∗ faNXN

(y)

=

(
1

a1
· · · 1

aN

)
· fX1

(y/a1) ∗ · · · ∗ fXN
(y/aN ).

(47)

Therefore, the expression in (20) results directly from (11) and
(16), where the coefficient ζui,j is defined by tracking all the
DGs that are on descendants of the intended node:

ζu(i,j) , 1/

∑
k∈Nj

λuk

 . (48)

We can show (21) similarly. Note that, since Q̃bk = κbkP̃
b
k and

Q̃ek = κekP̃
b
k , we have

fQ
b

k (z) = (1/κbk)f bk(z/κbk),

fQ
e

k (z) = (1/κek)fek(z/κek).
(49)

Therefore, from (12), (16) , and (47), we can obtain (21).
To derive (22), we note that the distributions φPk,j across

(k, j) ∈ Li,0 are not independent. The distributions of φQk,j
across (k, j) ∈ Li,0 are not independent either. Thus, we

can rewrite (13) in terms of the original independent random
variables f bk , fek , and fu. Specifically, from (11)-(13), we have:

γb(l,i)[t] , 1

/ ∑
(j,k)∈Li,0∩Ll,0

2(R(j,k) +X(j,k))κ
b
l [t]

 ,

(50)

γe(l,i)[t] , 1

/ ∑
(j,k)∈Li,0∩Ll,0

2(R(j,k) +X(j,k))κ
e
l [t]

 .

(51)
For renewable DGs, since they are all assumed to depend

on the similar solar irradiance, we combine the coefficients of
all the DG’s that share a path with the intended node:

γui [t],1

/∑
l∈N s

∑
(j,k)∈Li,0∩Ll,0

λul
(
2(R(j,k)+X(j,k))κ

u
l [t]
)
(52)
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