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Abstract— In this paper, we consider a scenario where a group
of investor-owned independently-operated storage units seek to
offer energy and reserve in the day-ahead market and energy in
the hour-ahead market. We are particularly interested in the case
where a significant portion of the power generated in the grid is
from wind and other intermittent renewable energy resources. In
this regard, we formulate a stochastic programming framework
to choose optimal energy and reserve bids for the storage units
that takes into account the fluctuating nature of the market
prices due to the randomness in the renewable power generation
availability. We show that the formulated stochastic program
can be converted to a convex optimization problem to be solved
efficiently. Our simulation results also show that our design can
assure profitability of the private investment on storage units. We
also investigate the impact of various design parameters, such as
the size and location of the storage unit on increasing the profit.

Keywords: Independent storage systems, energy and reserve
markets, wind power integration, stochastic optimization.

NOMENCLATURE

h, t Indices for hours.
k Index of random wind generation scenarios.
K Total number of random wind generation scenarios
γ The weight/probability for different scenarios.
E Expected value operator.
P Storage bid in the day-ahead market for power.
R Storage bid in the day-ahead market for reserve.
p Storage bid in the hour-ahead market for power.
r Actual utilization of the storage reserve.
rmax The upper bound for reserve utilization.
CP Price value for energy in the day-ahead market.
CR Price for reserve in the day-ahead market.
cp Price for energy in the hour-ahead market.
cr Price for reserve utilization in the hour-ahead market.
Clinit Initial charging level of the battery unit.
Clfull Maximum charging capacity of the battery unit.
Clmin Minimum charging capacity of the battery unit.
P The total number of peak price hours.
h∗j The jth hour from the set of peak price hours.

I. INTRODUCTION

Due to their intermittency and inter-temporal variations, the
integration of renewable energy sources is very challenging
[1]. A recent study in [2] has shown that significant wind
power curtailment may become inevitable if more renewable
power generation resources are installed without improving the
existing infrastructure or using energy storage. Other studies,
e.g., in [3]–[5] have similarly suggested that energy storage
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can potentially help integrating renewable, in particular wind,
energy resources. Although this basic idea has been widely
speculated in the smart grid community, it is still not clear
how we can encourage major investment for building large-
scale independently-owned storage units and how we should
utilize the many different opportunities existing for these units.
Addressing these open problems is the focus of this paper.

The existing literature on integrating energy storage into
smart grid is diverse. One thread of research, e.g. in [6]–[8],
seek to achieve various social objectives such as increasing
the power system reliability, reducing carbon emissions, and
minimizing the total power generation cost. They do not see
the storage units as independent entities and rather assume
that the operation of energy storage systems is governed by
a centralized controller. As a result, they do not address
the profitability of investment in the storage sector and the
possibility for storage units to participate in the wholesale
market. Another thread of research, e.g., in [9]–[12], seeks
to optimally operate a storage unit when it is combined and
co-located with a wind farm. They essentially assume that, it
is the owner of the wind farm that must pay for the storage
units. Clearly, this assumption may not always hold and it can
certainly limit the opportunities to attract investment to build
new energy storage systems. Finally, there are some papers,
such as [12]–[16], that aim to select optimal strategies for
certain storage technologies, e.g., pumped hydro storage units,
to bid in the electricity market. However, they typically do not
account for the uncertainties in the market prices which can
be a major decision factor if the amount of renewable power
generation is significant. Moreover, they do not consider the
opportunities for the energy storage systems to participate not
only in energy markets but also in reserve markets.

Therefore, the following question is yet to be answered:
How can an energy storage unit that is owned and operated
by an independent investor bid in both energy and reserve
markets to maximize its profit, when there exists significant
wind power penetration in the power grid? The storage unit
may or may not be collocated with renewable or traditional
generators. In fact, the location and size of the unit is decided
by investors based on factors such as land availability and
spot price profile. In order to optimally operate the storage
unit of interest, we propose a stochastic optimization approach
to bid for energy and reserve in the day-ahead market and
energy in the hour-ahead markets. Here, we assume a reserve
market structure similar to a simplified version of the day
ahead scheduling reserve market in the PJM (Pennsylvania,
New Jersey, Maryland) inter-connection [17], where the exact
utilization of the reserve bids is not decided by the storage
unit; instead, it is decided by the market. As a result, finding
the optimal charge and discharge schedules is particularly



challenging when the storage unit participates in the reserve
market. Another challenge is to formulate the bidding opti-
mization problem as a convex program to make it tractable
and appropriate for practical scenarios. Compared to an earlier
conference version of this work in [18], in this paper, a more
accurate solution approach is proposed to solve the formulated
non-convex optimization problems. The new solution is more
general and allows selling unused reserves in the hour-ahead
energy market. Simulation results confirm significant perfor-
mance improvement that can be achieved based on this new
design, compared to the prior work in [18]. Our contributions
in this paper can be summarized as follows.

• We propose a new stochastic optimization bidding mech-
anism for independent storage units in the day-ahead
and hour-ahead energy and reserve markets. Our design
operates the charge and discharge cycles for the batteries
such to assure meeting the future reserve commitments
under different scenarios, regardless of the uncertainties
that are present in the decision making process.

• An important feature in our proposed market participation
model is that the power grid does not treat independent
storage units any different from other energy and reserve
resources. Therefore, our design can be used to encour-
age large-scale integration of energy storage resources
without the need for restructuring the market.

• We show through computer simulations that our proposed
optimal energy and reserve bidding mechanism is highly
beneficial to independent storage units as it assures the
profit gain of their investment. We also investigate the
impact of various design parameters, such as the size and
location of the storage unit on increasing the profit.

The rest of this paper is organized as follows. The system
model and the optimal bidding problem formulation are ex-
plained in Section II. Two different tractable design approaches
to solve the formulated problems are presented in Section III.
Simulation results are presented in Section IV. The concluding
remarks and future work are discussed in Section V.

II. PROBLEM FORMULATION

Consider a power grid with several traditional and renewable
power generators as well as multiple independent energy
storage systems. We assume that not only the generators
but also the storage units can bid and participate in the
deregulated electricity market. As pointed out in Section I,
our key assumption is that the storage units are not treated any
differently from other generators that participate in the energy
or reserve markets. Since the energy storage units in the system
are owned and operated by private entities, they naturally seek
to maximize their own profit. The stochastic wind generation,
however, may create some extra benefits for storage units, con-
sidering that energy and reserve market prices may fluctuate
significantly, giving them more opportunities to gain profit, in
presence of high wind power penetration. We assume that the
storage unit operates as a price taker and due to its typically
lower size (in megawatts) compared to traditional generators,
its operation does not have impact on market prices.
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Fig. 1. An example for the charge and discharge cycles for an independent
storage unit when it participates in both energy and reserve markets.

The storage unit’s bid in the day-ahead market have direct
impact on the storage unit’s future profit in the hour-ahead
market, since the commitments in the day-ahead market will
put some constraints in the charging and discharging profiles of
the storage unit. An example for the charging and discharging
cycles in the day-ahead energy and reserve markets is shown
in Fig. 1, where the storage unit has committed to offer energy
and reserve at three hours: h1 = 7:00 AM, h2 = 3:00 PM, and
h3 = 8:00 PM. In each case, the charging level of batteries
must reach a level Clh ≥ Ph +Rh for all h ∈ {h1, h2, h3}.

When an independent storage unit submits a bid to the day-
ahead market (DAM) it seeks to maximize its profit in the day-
ahead market plus the expected value of its profit in the next
24 hour-ahead markets (HAM). This can be mathematically
formulated as the following optimization problem1:

Maximize
P,R,p

24∑
h=1

(Ph · CPh +Rh · CRh)

+ E
{

HAM
(
p,P,R, c̃p, c̃r, r̃

)}
Subject to
∀h=1,··· ,24

h∑
t=1

(Pt + r̃t + pt) ≥ Clinit − Clfull

h∑
t=1

(Pt + r̃t + pt) ≤ Clinit − Clmin

Rh ≥ 0.

(1)

Note that, P can take both positive and negative values
while R is always positive. Negative values for P indicate
purchasing power, i.e., charging. The expected value of the
profit in the hour-ahead market, i.e., the second term in the
objective function in (1), depends on not only the choices of
P and R, but also the storage unit’s decision on the amount
of power to be sold in the hour-ahead market ph, the price
of power in the hour-ahead market c̃p, the price of reserve
in the hour-ahead market c̃r, the actual reserve utilization
in the hour-ahead market r̃, and the fluctuations in wind
generated. The third constraint assures that the reserve bid is
non-negative. Note that, at the time of solving (1), c̃ph, c̃rh,
and r̃h, are unknown stochastic parameters.

Using the definition of mathematical expectation, we can
rewrite the second term in (1) as a weighted summation of

1The formulation in (1) includes the basic, most dominant features of a
storage unit. Other features such as storage efficiency, maximum charging
current, and depreciation may also be included in the optimization problem.



the aggregate hour-ahead profit terms, denoted by HAM, at
many but finite scenarios, where the weight for each scenario
is the probability for that scenario. That is, we can write

E
{

HAM
(
p̃,P,R; c̃p, c̃r, r̃

)}
=

K∑
k=1

γk HAMk, (2)

where HAMk denotes the aggregate hour-ahead profit when
scenario k occurs. We have

∑K
k=1 γk = 1. It is worth

clarifying that one of the main causes for profit uncertainty
is the fluctuations in available wind power. Therefore, in our
system model, each scenario is derived as a realization of
available wind power at different wind generation locations,
given the wind speed probability distribution functions, which
is assumed to be available, e.g., by using the wind forecasting
techniques in [19]–[21]. For each scenario k, the correspond-
ing aggregate hour-ahead profit can be calculated as follows:

Max
pk

HAMk

(
p,P,R; cpk, crk, rk

)
=

Max
pk

24∑
h=1

(pk,h · cpk,h + rk,h · crk,h)

S.t.
∀h=1,··· ,24

h∑
t=1

pk,t ≤ Clinit − Clmin −
h∑

t=1

(Pt + rk,t)

h∑
t=1

pk,t ≥ Clinit − Clfull −
h∑

t=1

(Pt + rk,t),

(3)

where pk is the adjustment to the power draw or power
injection of the storage unit in the hour-ahead market for
h = 1, . . . , 24, under scenario k. Here, cpk, crk, and rk are
the actual realizations of the stochastic parameters c̃p, c̃r and
r̃ when scenario k occurs. We note that they are all set by
the grid operator. The constraint in (3) indicates that the total
generation bid up to hour h of the hour-ahead market has to be
limited to the total charge available to the storage unit at hour
h. Such total charge is calculated as the initial charge minus
the sum of all the power drawn from the storage including the
bid for power, i.e., Ph, and the reserve utilization in the hour-
ahead market, i.e., rk,h, for all previous hours t = 1, . . . , h−1.

Note that, the actual reserve utilization rk,h may not always
be as high as the committed reserve, as the grid may not need
to utilize the entire reserve power offered by the storage unit.
As a result, in the hour-ahead market, the storage unit needs
to make corrective decisions to make the best use of any extra
charge which is available due to different reserve utilizations
caused by different wind availability and load scenarios. This
makes dealing with parameter rk,h particularly complicated, as
shown in Fig.2. Let rmax

h,k denote the maximum reserve power
that the grid operator will need from the storage unit of interest
at hour h if scenario k occurs. It is required that:

rk,h ≤ rmax
k,h h = 1, . . . , 24. (4)

On the other hand, parameter rk,h also depends on the storage
unit’s reserve commitment for each hour h based on its bid in
the day-ahead market. Therefore, it is further required that

rk,h ≤ Rh h = 1, . . . , 24. (5)

Rh

rk,h

r2,hr2,h
max

r1,h
max

r1,h

Fig. 2. The exact utilization of the storage unit in the reserve market at hour
h depends on two factors: First, the storage unit’s committed reserve amount
Rh. Second, the grid’s need rmax

k,h under stochastic scenario k. Two examples
for the value of rk,h as a function of Rh and rmax

k,h are shown in this figure.

From (4) and (5), at each hour h and scenario k, we have:

rk,h = min{rmax
k,h , Rh}. (6)

Replacing (6) in the hour-ahead problem (3), it becomes:

Max
pk

24∑
h=1

(pk,h · cpk,h +min{rmax
k,h , Rh} · crk,h)

S.t.
∀h

h∑
t=1

pk,t + Pt +min{rmax
k,t , Rt} ≤ Clinit − Clmin

h∑
t=1

pk,t + Pt +min{rmax
k,t , Rt} ≥ Clinit − Clfull

(7)

Next, we use the following equality [22]:

sup
x

(
f(x) + sup

y
(g(x, y))

)
= sup

x,y

(
f(x) + g(x, y)

)
, (8)

and combine problems (1) and (3) into a single problem:

Max
P,R,p

24∑
h=1

(Ph · CPh +Rh · CRh)+

K∑
k=1

γk

24∑
h=1

(pk,h · cpk,h +min{rmax
k,h , Rh} · crk,h)

S.t.
∀h,k

h∑
t=1

pk,t + Pt +min{rmax
k,t , Rt} ≤ Clinit − Clmin

h∑
t=1

pk,t + Pt +min{rmax
k,t , Rt} ≥ Clinit − Clfull

Rh ≥ 0.
(9)

However, optimization problem (9) is non-convex and hence
difficult to solve. Note that, the non-convexity is due to the
way that the min function has appeared in the first constraint.

III. SOLUTION METHODS

In this section, we consider some practical assumptions in
order to make problem (9) more tractable. In this regard, we
take two approaches for choosing pk,h before solving the rest
of the optimization problem. In both cases, we assume that



the participation of the storage unit in the hour-ahead market
is mainly by selling the unused charge from reserve bids.
Therefore, for both approaches we always have pk,h ≥ 0.

A. The First Approach

In this approach, the intuition is that the storage unit
immediately sells any excessive power available at each hour
in case the entire committed reversed power is not utilized.
That is, at each hour h and for each scenario k, we choose

pk,h = Rh − rk,h. (10)

The second term in the objective in problem (9) becomes:

K∑
k=1

γk

24∑
h=1

(Rh − rk,h) · cpk,h + rk,h · crk,h

=

K∑
k=1

γk

24∑
h=1

Rh · cpk,h

+ (crk,h − cpk,h) ·min{rmax
k,h , Rh}.

(11)

Next, we note that based on (10), the total power sold in the
hour-ahead market at hour h is:

h∑
t=1

pk,t =

h∑
t=1

(Rt −min{Rt, r
max
k,t }). (12)

Therefore, the first constraint in problem (9) becomes:

h∑
t=1

pk,t + Pt +min{Rt, r
max
t }

=

h∑
t=1

Rt + Pt ≤ Clinit − Clmin.

(13)

The second constraint can also be revised as
h∑

t=1

pk,t + Pt +min{Rt, r
max
t }

=

h∑
t=1

Rt + Pt ≥ Clinit − Clfull.

(14)

From (9), (11), (13), and (14), we can rewrite problem (9)
based on (10) and with respect to the rest of the variables as:

Max
P,R

24∑
h=1

(Ph · CPh +Rh · CRh)

+

K∑
k=1

γk

24∑
h=1

(
Rh · cpk,h+

(crk,h − cpk,h) ·min{rmax
k,h , Rh}

)
S.t.

∀h=1,...,24

h∑
t=1

(Pt +Rt) ≥ Clinit − Clfull

h∑
t=1

(Pt +Rt) ≤ Clinit − Clmin

Rh ≥ 0.

(15)

Since min is a convex function and the rest of the objective
function and constraints are all linear, problem (15) is a convex
program, as long as crk,h − cpk,h ≥ 0, for all k = 1, . . . ,K
and for all h = 1, . . . , 24. Interestingly, this condition holds
in most practical markets, where reserve utilization price is
relatively higher than the energy clearing price. Therefore,
we maintain this assumption for the rest of this paper. If this
condition holds, then optimization problem (11) can further be
written as a linear program. To show how, next, we introduce
an auxiliary variable vk,h and rewrite problem (15) as

Max
P,R,v

24∑
h=1

(Ph · CPh +Rh · CRh)+

K∑
k=1

γk

24∑
h=1

(
Rh · cpk,h + vk,h · (crk,h − cpk,h)

)
S.t.

∀h=1,...,24
vk,h ≤ rmax

k,h ∀k = 1, . . . ,K

vk,h ≤ Rh ∀k = 1 . . . ,K

vk,h ≥ 0 ∀k = 1 . . . ,K
h∑

t=1

(Pt +Rt) ≥ Clinit − Clfull

h∑
t=1

(Pt +Rt) ≤ Clinit − Clmin

Rh ≥ 0.
(16)

where v is a 24K×1 vector of all auxiliary variables. It is easy
to show that at optimality, for all k = 1, . . . ,K and any h =
1, . . . , 24, we have vk,h = min{rmax

k,h , Rh}. Therefore, while
problems (15) and (16) are not exactly the same, yet they are
equivalent, i.e., they both lead to the same optimal solutions
[22, Chapter 4]. As a result, solving one problem readily gives
the solution for the other problem. Linear program (16) can
be solved efficiently using the interior point method [22].

B. The Second Approach

In this approach, instead of immediately selling the ex-
cessive power Rh − rk,h at hour h, we may wait and sell
accumulated unused reserve powers in an hour-ahead market
with high price of electricity. We define an hour h∗ as a
“peak hour” if there does not exist any h > h∗ such that
cpk,h > cpk,h∗ . Based on the second approach, for each
k = 1, . . . ,K and h = 2, ..., 24 , we select pk,h as follows:

• If h is not a peak hour then pk,h = 0.
• If h is the jth peak hour, j = 1, ...,P , then,

pk,h∗
j
=

h∗
j∑

h=h∗
j−1+1

(Rh − rk,h). (17)

At each peak hour, the amount of electricity sold is equal to
the total unused reserve since the previous peak-hour. Next, we
replace pk,h in (9) with selling strategy explained above. The



second term in the objective function in problem (9) becomes

K∑
k=1

γk

P∑
j=0

( h∗
j+1∑

h=h∗
j+1

Rh · cpk,h∗
j+1

+min{rmax
k,h , Rh} · (crk,h − cpk,h∗

j+1
)

)
,

(18)

where

0 = h∗0 < h∗1 < h∗j < h∗P = 24. (19)

Next, we note that from (17), we have

pk,h ≥ 0, ∀k = 1, . . . ,K, h = 1, . . . , 24, (20)

and
h∑

t=1

pk,t +min{rmax
k,t , Rt} ≤

h∑
t=1

Rt, ∀k. (21)

Therefore, a sufficient condition for the first constraint in (9)
to hold is satisfy the following more restrictive constraint:

h∑
t=1

(Pt +Rt) ≤ Clinit − Clmin ∀h. (22)

Next, consider the second constraint in (9). Given the com-
plexity of this constraint, we need to separately analyze two
different cases. On one hand, for each peak hour h∗j , we have

h∗
j∑

t=1

pk,t =
∑

h∗∈{h∗
1 ,...,h

∗
j }

pk,h∗ =

h∗
j∑

t=1

(Rt − rk,t). (23)

By replacing (23) in the second constraint in (9) it becomes

h∗
j∑

t=1

pk,t +Pt + rk,t =

h∗
j∑

t=1

(Pt +Rt) ≥ Clinit−Clfull. (24)

On the other hand, at each non-peak hour h = h∗j +
1, ..., h∗j+1−1, since no power is sold in the hour-ahead market,
we only need that the sum of the day-ahead power bids and the
actual reserve utilization do not exceed the maximum charge
level permitted for the batteries. The second constraint in (9)
for each non-peak hour h ∈ {h∗j + 1, ..., h∗j+1 − 1} becomes

h∑
t=1

pk,t +

h∑
t=1

Pt +

h∑
t=1

rk,t

=

h∗
j∑

t=1

(Pt +Rt) +

h∑
t=h∗

j+1

(Pt + rk,t)

≥ Clinit − Clfull

(25)

From (9), (18), (22), (24), and (25) and after using the
auxiliary variable vector v, we propose to solve the following

optimization problem as our second approach:

Max
P,R,v

24∑
h=1

(Ph · CPh +Rh · CRh)+

K∑
k=1

γk

P∑
j=1

( h∗
j+1∑

h=h∗
j+1

Rh · cpk,h∗
j+1

+ vk,h · (crk,h − cpk,h∗
j+1

)

)
S.t.

∀k=1,...,K

h∑
t=1

Pt +Rt ≤ Clinit − Clmin ∀h = 1, . . . , 24

h∗
j∑

t=1

Pt +Rt ≥ Clinit − Clfull ∀h∗j ∈{h∗1, . . . , h∗P}

h∑
t=1

Pt +

h∗
j∑

t=1

Rt +

h∑
t=h∗

j+1

vk,t ≥ Clinit − Clfull

∀h∗j < h < h∗j+1, h∗j ∈ {h∗1, . . . , h∗P}
vk,h ≤ rmax

k,h

vk,h ≤ Rh

vk,h ≥ 0

Rh ≥ 0.
(26)

Unlike problem (9), problem (26) is a convex program.
Therefore, problem (26) is significantly more tractable as it
can be solved using standard convex optimization techniques,
e.g., see [22]. However, in general, solving problem (26)
gives a sub-optimal (not necessarily optimal) solution for the
original optimization problem (9) because of the following two
reasons. First, the first constraint in (26) is more restrictive
than the first constraint in (9). This can limit the feasible
set. Second, there is no guarantee for problem (26) that at
its optimality we have vk,h = min{rmax

k,h , Rh}. Therefore,
it is possible that the optimal solution of problem (26) does
not satisfy the second constraint in problem (9). In such rare
cases, in order to maintain a feasible solution, the storage unit
needs to sell any excessive stored energy into the hour-ahead
energy market, even if the next hour is not a peak price hour.
This corrective action can cause some minor sub-optimality.
Nevertheless, we will see in our simulation results that the
optimality gap of our second approach is very minor.

C. Selecting Stochastic Price Parameters

Before we end this section, we note that in order to solve
problems (16) and (26), we must know the values of rmax

k,h ,
cpk,h, and crk,h as well as CPh and CRh. These parame-
ters can be obtained in an off-line calculation by solving a
standard stochastic unit commitment (SUC), as explained in
the Appendix. Once the SUC problem is solved, since the
storage units are price-taker, we can calculate cpk,h from the
Lagrange multipliers of the hour-ahead market constraints in
the SUC problem. To calculate crk,h, we assume that it is
proportional to cpk,h. Next, we obtain CPh using the definition
of locational marginal price (LMP) and by comparing the
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Fig. 3. The IEEE 24 bus test system with independent storage units at buses
11 and 21. There are also three wind farms at buses 17, 20, and 22.

SUC’s optimal objective values with and without having an
additional unit of load at each bus [23]. After that, we set
CRh equal to the reserve market clearing price, which is
calculated based on the opportunity costs for generation units
[24]. Here, we assume that the independent system operator
(ISO), uniformly utilizes all available units which are deployed
for reserve service. Therefore, parameter rmax

k,h is obtained by
dividing the total reserve utilization in each scenario by the
total number of units that offer reserve. Note that, all these
parameters are obtained based on historical data on previous
market operations, i.e., by following the standard procedure in
solving SUCs for different scenarios. The obtained solutions
are then placed in look-up tables to be used every time that
problem (16) is solved by the independent storage unit.

IV. NUMERICAL RESULTS

In this section, we consider the modified IEEE 24-bus test
system [25], as shown in Fig. 3. At any hour, the maximum
total load in the system is 2850 MW. There are three wind
farms with 150, 70, and 30 wind turbines at buses 22, 17,
and 11, respectively. Each wind turbine is assumed to have
a maximum generation capacity of 1.5 MW. Therefore, the
wind penetration is about 13 percent. The wind speed across
these three wind sites is assumed to be the same, due to
relative proximity. The wind speed data was obtained from
the Alternative Energy Institute Wind Test Center [26] for
the duration of September-November 2012. The wind speed
probability distribution curves, such as the one shown in Fig.
4, was derived separately for every hour of the day. Given the
wind speed probability distribution curves, we generate 200
daily wind power generation scenarios for the purpose of our
analysis. In order to make our simulations more realistic, 180
scenarios are used as training scenarios to run the standard
SUC to obtain the price values used for the storage stochastic
bidding optimization which can be thought of as historical
data. The remaining 20 scenarios are used as unseen test
scenarios to evaluate the actual operation of the storage unit,
after it bids in the day-ahead market during its run time.

Two independent investor-owned 4.5 MWhs storage units
are assumed at buses 21 and 11. The initial charge level for
both units is 1.5 MW. The price values for the day-ahead and
the hour-ahead markets are obtained from the standard SUC
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Fig. 4. An example hourly wind speed distribution from empirical data.
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Fig. 5. Day-ahead and average hour-ahead market prices at bus 21.

analysis that we explained in Section II. The price curves for
the day-ahead energy market, and the average prices in the
hour-ahead energy markets across all scenarios, at bus 21, are
shown in Fig. 5. Depending on the scenarios, the hour-ahead
prices may go up to $215/MWh. The price curves for the
day-ahead market and for different scenarios of the hour-ahead
market are used to set the storage bid for purchasing or selling
of energy and reserve services in the day-ahead market.

A. Stochastic versus Deterministic Design
The charging levels for different design methods are shown

in Fig. 6. The deterministic optimization method serves as
a base for comparison, where we use the expected values
of the hour-ahead market prices instead of considering each
random scenario separately. The two stochastic optimization
approaches are based on our designs in Sections III-A and III-
B. While the charging level does not change across different
scenarios when Approach 1 is used, it does change when
Approach 2 is used as shown by dashed lines in Fig. 6(c).

B. Optimality
Recall from Section III-B that our second approach may

sometimes be sub-optimal due to the slight differences be-



TABLE I
ACTUAL HOUR-AHEAD OPERATION OF THE STORAGE UNIT FOR 10 UNSEEN TEST SCENARIOS

Scenario Number 1 2 3 4 5 6 7 8 9 10
Power Sold at Peak Hours (MW) 7.08 6.52 7.13 4.09 7.08 7.06 6.72 6.92 4.23 7.12

Power Sold at off-Peak Hours (MW) 0.93 0.46 0.88 0 0.89 0.95 0.70 0.63 0 0.61
Optimality Loss (%) 4.37 3.53 4.69 0 4.54 4.45 4.78 3.73 0 3.67
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Fig. 6. Comparing the charging levels during the operation of the storage
unit for various design methods: (a) A deterministic optimization design is
implemented. (b) A stochastic optimization design based on our first approach
is implemented. (c) A stochastic optimization design based on our second
approach is implemented. The dashed lines correspond to different random
scenarios that have been simulated based on experimental wind speed data.
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Fig. 7. An example for the operation of the storage unit based on our second
approach. Reserve bids are submitted only when the unit can be discharged.

tween the constraints in optimization problems (9) and (26).
Therefore, in this section, we examine the optimality of the
second approach. The results for 10 different unseen test
scenarios are shown in Table I. Here, the optimality loss was
calculated based on the difference in the amount of revenue if
the unused reserve power is sold only during the peak hours
in the hour ahead market. We can see that for two scenarios,
4 and 9, the exact optimal solution was achieved as there
was no need to sell power in any off-peak hour. For the rest
of the scenarios, although the solution was sub-optimal, the
optimality loss was very minor. On average, the optimality
loss across all 10 scenarios is only 3.367%.

C. Day-ahead versus Hour-ahead Operation

In this section, we take a closer look at the operation of
the storage unit in the day-ahead and the hour-ahead markets
based on an example solution that we obtained by using our
second approach. The day-ahead energy and reserve bids in
this example are shown in Fig. 7. Here, any negative bar
indicates charging of the batteries in an hour h, where Ph < 0
and Rh = 0. In contrast, any positive bar indicates discharging
of the batteries in an hour h, where Ph ≥ 0 and Rh ≥ 0.
Recall that the exact utilization of the reserve power and the
amount of power sold in the hour-ahead market are determined
later during the operation time. Therefore, different operation
scenarios can lead to different outcomes when it comes to
the participation of the storage unit in the hour-ahead market.
Three examples based on three different scenarios are shown in
Figs 8(a) and (b). We can see that, at each hour, the amount of
reserve that is sold in the hour-ahead market is always upper
bounded by the amount of reserve that the storage unit is
committed to in the day-ahead market, i.e., rr,h ≤ Rh for any



1 6 12 18 24
0

0.5

1

1.5

2

2.5

3

Hour

H
ou

r−
ah

ea
d 

R
es

er
ve

 S
ch

ed
ul

e 
(M

W
)

(a)

 

 
Reserve Utilized in Scen 1
Reserve Utilized in Scen 2
Reserve Utilized in Scen 3

1 6 12 18 24
0

0.5

1

1.5

2

2.5

3
(b)

Hour

H
o
u
r−

a
h
e
a
d
 E

n
e
rg

y
 S

c
h
e
d
u
le

 (
M

W
)

Energy Sold at HAM in Scen 1

Energy Sold at HAM in Scen 2

Energy Sold at HAM in Scen 3

 Peak Hour

 Peak Hour

 Peak Hour

Fig. 8. Examples for the operation of the storage unit based on our second
approach for three different unseen scenarios. (a) Hour-ahead reserve. At each
hour, the amount of reserve that is sold in the hour-ahead market is always
upper bounded by the amount of reserve that the storage unit is committed to
in the day-ahead market which was shown in Fig. 7. (b) Hour-ahead energy
schedule. The unused reserve power is typically sold during peak hours.

scenario k. Moreover, the unused reserve power that is sold in
the hour-ahead market, i.e., ph,k, is almost always sold during
the peak-hours to maximize the storage unit’s profit.

D. Impact of Increasing the Storage Capacity

The daily revenue obtained using various design approaches
are shown in Fig. 9, where the storage capacity grows from 4.5
MW to 4.5×10 = 45 MW. We can see that both stochastic op-
timization approaches outperform deterministic optimization
while the second stochastic optimization approach outperforms
the first stochastic optimization approach. The performance
gains maintain across all storage capacity scenarios. When
the storage size is as high as 50 MW, the merit of using our
proposed approaches become particularly evident.

E. Optimal Storage Capacity Planning

The results in Fig. 9 can also be used for optimal capacity
planning of investor-owned storage units by examining both
revenue and cost. This issue is better illustrated in Fig.10,
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Fig. 9. The daily revenue of an independent storage unit versus its storage
capacities for various choices of deterministic and stochastic design schemes.
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Fig. 10. The trade-off in selecting the storage capacity to maximize profit.

where we have plotted the net daily profit, i.e., the revenue
minus the cost, versus the size of the storage units. The battery
investment cost was obtained per cycle of charge and discharge
for units with WB-LYP1000AHA lithium ion 1000 Ah battery
modules with 3.2V discharge voltage [27]. The life time of
the batteries was assumed to be 12000 cycles and the listed
price was $1660 per module which we assumed to decrease
to $1000 as more batteries are installed. We can see that there
is a trade-off between revenue and cost and the optimal profit
can be reached for certain sizes of the storage system.

F. Impact of Location

Next, we investigate the impact of location for the storage
unit with respect to the revenue achieved. In this regard, we
run the simulations for 24 different scenarios, each for a case
where the storage unit is assumed to be located at one of
the 24 different buses in the system. The results are shown
in Fig. 11. We can see that different buses provide different
opportunities for the storage units, making it more desirable to
build the storage unit at certain locations. The differences are
mainly due to changes in the LMP’s at different buses which
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In all cases, the first stochastic optimization approach is being used.
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Fig. 12. The charging level when operating two independent storage units
at buses 11 and 21 using the first stochastic optimization approach is used.

is caused by different line congestion scenarios. In our study,
in order to see the effect of line congestions, the capacity of
some of the 500 MW transmission lines of the standard test
system was reduced to 200 MW. Note that, the results in Fig.
11 are based on the first stochastic optimization approach, i.e.,
by solving problem optimization (16). That is, we separately
obtained the optimal bids and charge/discharge schedules for
the case of placing the storage unit at each of the buses. As an
example, the charging level when the storage unit is located
at buses 21 and 11 are separately plotted in Fig. 12.

V. CONCLUSIONS

Integration of large-scale storage systems in the power
system is a key component of the future smart grids. In
this paper, a novel approach is proposed to optimally operate
such storage systems that are owned by independent private
investors. In particular, we proposed an optimal bidding mech-
anism for storage units to offer both energy and reserve in
the day-ahead and the hour-ahead markets when significant
fluctuation exists in the market prices due to high penetration
of wind and intermittent renewable energy resources. Our
design was based on formulating a stochastic programming

framework to select different bidding variables. We showed
that the formulated optimization problem can be transformed
into convex optimization problems that are tractable and ap-
propriate for implementation. We showed that accounting for
the unpredictable feature of market prices due to wind power
fluctuations can improve the decisions made by large storage
units, hence increasing their profit. We also investigated the
impact of various design parameters, such as the size and
location of the storage unit on increasing the profit.

APPENDIX

First, we explain the new set of notations that we need
in order to formulate and solve the standard stochastic unit
commitment problem. C(.) denotes the cost of a particular
service. Comi,h denotes commitment of ith unit in hour h.
Pi,h denotes generation of ith unit in hour h. Ri,h denotes
reserve commitment of ith unit in hour h. P+

i denotes maxi-
mum capacity of ith unit. P−i denotes minimum capacity of ith
unit. Ramp+i denotes maximum ramp up of ith unit. Ramp−i
denotes maximum ramp down of ith unit. Gf denotes subset of
fast generators. pi,k,h denotes generation of ith fast unit in the
hour ahead market for hour h and scenario k. ri,k,h denotes
reserve usage of ith unit in the hour ahead market for hour
h and scenario k. NLk,h denotes the total net load in hour
h of scenario k which is the actual demand minus the wind
power generation. Given these notations and parameters, we
can now formulate the standard SUC as follows, in which the
realization scenarios are considered in order to minimize the
the expected value of the unit commitment cost in the system:

min
Com,P,R,pk,rk

∑
h

∑
i

CComi .Comi,h + CPi .Pi,h + CRi .Ri,h

+
∑
k

γk
∑
h

∑
i

(cpi · pi,k,h + cri · ri,k,h)

s.t. Pi,h +Ri,h ≤ P+
i Comi,h ∀i, h

Pi,h +Ri,h ≥ P−i Comi,h ∀i, h
Pi,h, Ri,h ≥ 0 ∀i, h
Pi,h − Pi,h−1 ≤ Ramp+i ∀i, h
Pi,h−1 − Pi,h ≤ Ramp−i ∀i, h∑

i

Pi,h + pi,k,h + ri,k,h = NLk,h ∀ h, k

0 ≤ ri,k,h ≤ Ri,h ∀i, k, h
0 ≤ pi,k,h ≤ p+i ∀i ∈ Gf , k, h

pi,k,h − pi,k,h−1 ≤ Ramp+i ∀i ∈ Gf , k, h

pi,k,h−1 − pi,k,h ≤ Ramp−i ∀i ∈ Gf , k, h

Comi,h ∈ {0, 1} ∀i, h
(27)

The above SUC is a mixed integer program. In general,
mixed integer programs are difficult to solve, although some
classes of mixed integer programs can be solved, e.g., using
MOSEK and CPLEX software [2]. Alternatively, we can relax
the binary constraint, solve problem (27) which is a convex
optimization problem after the binary constraints are relaxed,
and then set Comi,h = 1 for any i and h with highest Comi,h.
If we repeat this operation until any Comi,h in the solution is



either zero or one, we can obtain a feasible but sub-optimal
solution for the original problem (27). We used this latter
approach. Given the solution and the Lagrange multipliers cor-
responding to each constraint, the needed system parameters
are calculated accordingly, as we have already explained at the
end of Section II. Note that the above problem is solved in
centralized fashion. We also note that, since the storage units
are assumed to have no impact on prices, this optimization
problem does not include any variable from the storage units.
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